
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 35, No. 1, pp. 22–58

A PROBABILISTIC ANALYSIS OF TRIE-BASED SORTING
OF LARGE COLLECTIONS OF LINE SEGMENTS

IN SPATIAL DATABASES∗

MICHAEL LINDENBAUM† , HANAN SAMET‡ , AND GISLI R. HJALTASON§

Abstract. The size of five trie-based methods of sorting large collections of line segments in a
spatial database is investigated analytically using a random lines image model and geometric prob-
ability techniques. The methods are based on sorting the line segments with respect to the space
that they occupy. Since the space is two-dimensional, the trie is formed by interleaving the bits
corresponding to the binary representation of the x and y coordinates of the underlying space and
then testing two bits at each iteration. The result of this formulation yields a class of representations
that are referred to as quadtrie variants, although they have been traditionally referred to as quadtree
variants. The analysis differs from prior work in that it uses a detailed explicit model of the image
instead of relying on modeling the branching process represented by the tree and leaving the under-
lying image unspecified. The analysis provides analytic expressions and bounds on the expected size
of these quadtree variants. This enables the prediction of storage required by the representations
and of the associated performance of algorithms that rely on them. The results are useful in the
following two ways:

1. They reveal the properties of the various representations and permit their comparison using
analytic, nonexperimental criteria. Some of the results confirm previous analyses (e.g.,
that the storage requirement of the MX quadtree is proportional to the total lengths of
the line segments). An important new result is that for a PMR and Bucket PMR quadtree
with sufficiently high values of the splitting threshold (i.e., ≥ 4) the number of nodes is
proportional to the number of line segments and is independent of the maximum depth
of the tree. This provides a theoretical justification for the good behavior and use of the
PMR quadtree, which so far has been only of an empirical nature.

2. The random lines model was found to be general enough to approximate real data in
the sense that the properties of the trie representations, when used to store real data
(e.g., maps), are similar to their properties when storing random lines data. Therefore,
by specifying an equivalent random lines model for a real map, the proposed analytical
expressions can be applied to predict the storage required for real data. Specifying the
equivalent random lines model requires only an estimate of the effective number of random
lines in it. Several such estimates are derived for real images, and the accuracy of the
implied predictions is demonstrated on a real collection of maps. The agreement between
the predictions and real data suggests that they could serve as the basis of a cost model
that can be used by a query optimizer to generate an appropriate query evaluation plan.

Key words. large spatial databases, tries, sorting line segments, geometric probability, analysis
of algorithms, spatial data structures, quadtrees, quadtries, cost model, query evaluation

AMS subject classification. 68W40

DOI. 10.1137/S0097539700368527

∗Received by the editors February 25, 2000; accepted for publication (in revised form) March 24,
2005; published electronically September 8, 2005. This work was supported in part by the National
Science Foundation under grants IRI-9712715, EIA-99-00268, EIA-99-01636, EAR-99-05844, IIS-00-
86162, and EIA-00-91474 and by Microsoft Research.

http://www.siam.org/journals/sicomp/35-1/36852.html.
†Computer Science Department, Technion, 32000 Haifa, Israel (mic@cs.technion.ac.il).
‡Computer Science Department, University of Maryland, College Park, MD 10742 (hjs@umiacs.

umd.edu).
§Deceased. Gisli Hjaltason was a graduate of the University of Maryland and a new faculty

member at the University of Waterloo. He passed away tragically and unexpectedly on June 19,
2003. We mourn the loss of this promising scientist and dear friend.

22

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 23

1. Introduction.

1.1. Background. The efficient management of data in large database systems
depends on grouping the data in such a way that similar data are aggregated and
also stored in proximity so that they can be operated upon at the same time or at
approximately the same time (see, e.g., [17]). This grouping is usually achieved by
sorting the data. The rationale for sorting the data is to facilitate the presentation
of the data to the user (e.g., in reports) and also to speed up query processing using
sort-based algorithms such as merge-join.

Although sorting has traditionally been applied to one-dimensional data, it is also
applicable to data of higher dimensions. This data can consist of points in a higher
dimensional space or of spatial objects that span the higher dimensional space (e.g.,
lines, regions, surfaces, volumes, etc.). In the case of spatial data in more than one
dimension, which is the focus of this paper, the result of applying conventional sorting
techniques does not always lead to simpler algorithms. For example, suppose that
the data are sorted with respect to a particular reference point (e.g., all U.S. cities,
represented as points, are sorted with respect to their distance from Chicago). In
this case, if we wish to obtain the points in the order of their distance from another
point (e.g., with respect to their distance from Omaha), then the sorting process will,
in general, have to be reapplied to the entire set of data. The problem is that the
data were sorted in an explicit manner. Instead, we need methods that provide an
implicit ordering. Examples of such techniques are called bucketing methods (see,
e.g., [43, 45]). In this case, the data are sorted on the basis of the space that they
occupy and are grouped into cells (i.e., buckets) of a finite capacity.

There are two principal methods for sorting spatial data. The first makes use of
an object hierarchy. It is based on propagating the space occupied by groups of the
data objects up through the hierarchy (e.g., members of the R-tree family [3, 18]). We
do not deal with this method in this paper. The second is based on a decomposition of
the space occupied by the data into disjoint cells which are aggregated into larger cells
(e.g., members of the quadtree family [44, 43, 45]). The decomposition can be either
tree-based or trie-based. The distinction is that the former is applied to the values of
the data (e.g., a binary search tree), while the latter makes use of the digits (termed
a trie [5, 16, 28]) that comprise the domain of the values of the data. Data structures
that make use of the latter in one dimension are also known as digital trees [28].

Our data consists mainly of line segments in two-dimensional space. Our focus is
on using tries to sort the line segments with respect to the space that they occupy. We
use tries because they result in partitioning different data sets at the same positions,
thereby making it very easy and efficient to use merge-join query processing algo-
rithms. Since the space is two-dimensional, the trie is formed by interleaving the bits
corresponding to the binary representation of the x and y coordinates of the underly-
ing space. Two similar, yet still different, trie-based data structures may be created
depending on whether we test one bit at each iteration (a k-d trie [15]) or two bits at
each iteration (a quadtrie [21, 43, 45]). In this paper, we focus on quadtries for collec-
tions of line segments. Unfortunately, the representations that make use of quadtries
have been traditionally referred to as quadtree variants (see, e.g., [26, 44, 43, 45]).
In our discussion, all quadtrees are based on tries and we precede the term quadtree
with an appropriate qualifier whenever there is a potential for confusion. Thus the
quadtrees that we discuss are distinct from those based on multidimensional binary
search trees that are used for points (see, e.g., [13, 14]).

Variants of quadtree structures have been used for many different spatial objects

24 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

including points, regions, lines, rectangles, surfaces, volumes, etc. Algorithms us-
ing them generally have good average execution times while maintaining a relatively
compact representation [44, 43, 45]. To use these data structures in a database appli-
cation, we must be able to predict their size. The most obvious advantage of such a
capability is that it enables us to determine how much space will be required to store
different data sets and to choose between different data structures from an efficiency
standpoint. It may also be of use at query evaluation time to aid the estimation of
the cost of a particular query execution plan (i.e., processing strategy) to be used by
a query optimizer. For example, suppose that we are using a filter-and-refine strat-
egy [6] for processing a window query. In particular, suppose further that we have a
method of estimating the number of data structure blocks that intersect the window
based on the window’s size (see, e.g., [40]). Our results could be used in a reverse
sense to estimate the number of objects (i.e., line segments in our case) that intersect
these blocks. This could serve as a measure of the cost of the refinement step, which
must subsequently determine which of the lines actually intersect the query window.
Continuing the filter-and-refine query processing strategy, suppose that we are using
the histogram method (see, e.g., [29, 31, 34]) for estimating the number of objects
that intersect the query window. We can now plug this information into our results
to estimate the number of data structure blocks that intersect the window. This is a
good measure of the cost of the filter step, i.e., the I/O (Input/Output) cost for the
spatial data structure. An alternative factor in measuring performance when data
is disk-based is to examine how the various data structure blocks are declustered on
various disks (see, e.g., [33]), but this is beyond the scope of this paper and is not
discussed further here.

1.2. Related work. Traditional worst-case analysis is often inappropriate be-
cause the worst case tends to be both very bad and highly improbable. Thus most
approaches to the analysis of hierarchical data structures have been statistical in
nature.

A number of statistical approaches have been tried. The most common uses a
uniform distribution in the underlying space (see, e.g., [2, 11]). An alternative is to use
a nonuniform distribution. Some techniques that have been used include the Gaussian
distribution [36] as well as the clustering of uniformly distributed points [38] or even
predetermined shapes [3]. Another approach uses a fractal distribution [9] that has
the advantage of exhibiting self-similarity, which means that portions of a part of the
data set are statistically similar to the entire data set. The key to this approach is to
compute a fractal dimension for a particular point data set and then use it in a query
optimizer.

The methods described above are for point data sets.1 In this paper, we are inter-
ested in data where every object has nonzero size (e.g., collections of lines, regions, and
so on, instead of being restricted to collections of points). Tamminen [54] considers
the performance of quadtrees and bintrees under the assumption that the image con-
sists of a single random line treated as a region, and he analyzes the number of nodes
in them using geometric probability. Shaffer, Juvvadi, and Heath [52] follow Tammi-
nen’s approach and use a local straight line model to perform an analysis that yields
the relative (rather than absolute) storage requirements of the region quadtree and
bintree data structures. Other works on region data include Dyer [8], Shaffer [51], and

1The fractal model has been applied to points derived from a collection of line segments in the
sense that the points corresponded to intersections of line segments [9]. This was used to predict the
effective occupancy of nodes in an R-tree that stores point data.

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 25

Faloutsos, Jagadish, and Manolopoulos [10], Mathieu, Puech, and Yahia [30], Puech
and Yahia [42], and Vassilakopoulos and Manolopoulos [56], and these investigate the
size of quadtree representations of region data and study some other related questions
using some assumptions on the branching probabilities of nodes in the tree. Nelson
and Samet [35, 36, 37] consider the distributions of node occupancies in hierarchical
geometric data structures that store a variable number of geometric data items per
node, which include points and lines. However, the methods of Nelson and Samet
have much wider applicability. This approach is similar to hashing [28], where each
node acts like a bucket.

Although these approaches sometimes lead to remarkable agreement between the-
ory and simulation (see, e.g., [1, 36]), they have a common drawback. The explicit
model of the image on which the statistical analysis is performed is either exceedingly
simple or is not given at all. When the model is not given, the model must be implied
from other assumptions. In particular, an assumption is made on the splitting prob-
ability in the data structure (see, e.g., [1, 30, 36, 42]), which implies the existence of
some implicit model on the data. However, when we ask what kind of data (real or
contrived) fit this model, the only possible answer is a circular one that says that the
data give rise to these probabilities. Unfortunately, there is no explicit indication of
whether there exists some image model associated with these splitting probabilities.
Thus the connection between the analysis and the performance with real image data is
not clear. In contrast, our approach, as described below, is to use an explicit nontriv-
ial random image model and to then show that data can be generated corresponding
to this model, which also fits the analysis. Note that we are not claiming that the
data we generate correspond exactly to typical images, although we deal with this
issue as well. In this sense our approach is complementary to the work of Flajolet and
Puech [15], who analyzed the partial match query time for hierarchical data struc-
tures, while we analyze their storage requirements. Unlike their data, which consist of
random points in a high-dimensional space whose coordinate values are drawn from
a uniform distribution, our data consist of randomly drawn lines. It is important to
note that a line is a qualitatively different data type than a point, as the action of
every line on the structure is not local.

An alternative nonstatistical approach was applied by Hunter [22] and Stei-
glitz [23] to show that, for a polygon of perimeter l, the size (i.e., the number of
nodes) of the corresponding MX quadtree (a variant of the region quadtree described
in more detail in section 2) is O(l). This classic result, although derived for simple
polygons, has been observed to be sufficiently general to be useful for predicting the
performance of a number of algorithms for different images represented by a region
quadtree [48].

As we pointed out above, in this paper we investigate the use of a random image
model consisting of M randomly drawn lines. Unlike Tamminen’s approach [54], which
considers a single random line, here we treat the much more general and complicated
situation of an arbitrary number of lines. We use geometric probability to analyze
four variants of the quadtree that can be built for data that obey this model by
determining the expected number of nodes in each variant. These variants are the
MX quadtree [23, 43, 45], the PM quadtree [49], the PMR quadtree [35, 36, 37], and
a new variant of the PMR quadtree representation, which we call a Bucket PMR
quadtree (see also [19, 20]).

1.3. Contributions. The analysis that we provide is important for two reasons.
First, it allows for a meaningful, quantitative, and analytic comparison of a number of

26 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

different options for representing linear spatial data, and it provides tools for choosing
between these options in a way which is neither experimental nor domain dependent.
The second reason is even more practical: we found that we could actually predict
the storage requirements of these representation options by specifying an equivalent
random lines data set, with some equivalent number of lines, and use the proposed
analytic expressions for predicting its size.

In particular, our analysis shows that for images of the same complexity, the PMR
quadtree and the Bucket PMR quadtree for sufficiently high values of the splitting
threshold (i.e., ≥ 4) are the most efficient in the sense that they require the least
storage. The PM quadtree follows, and the MX quadtree requires the largest amount
of storage. This qualitative ordering verifies experimental results obtained in the
past [22, 23, 35, 49] and agrees with the extensive experimentation that we have
carried out. This verification, along with its accompanying theoretical justification,
is one of the contributions of our research.

The agreement between the results of our analysis and the data was not surprising
in the case of the MX quadtree because it confirmed previous results (i.e., [22, 23]).
However, in the case of the PMR and Bucket PMR quadtrees for sufficiently high
values of the splitting threshold (i.e., ≥ 4) our analysis breaks new ground because we
are able to derive theoretically and verify experimentally for both random data and
real map data that the number of nodes is asymptotically proportional to the number
of line segments. This is quite significant, as it enables us to predict the number
of nodes required by this representation, and, most importantly, to show that it is
independent of the maximum depth of the tree.

It is important to note that we do not claim that our proposed random image
model yields data instances which are visually similar to what appears in realistic
geometric applications, such as road networks. Nevertheless, we do show that the
analysis can be interpreted in terms of the geometric properties of the image, such as
line length and the number of intersections between lines. With this interpretation,
the predictions, derived for random images, may be applied to real data by measuring
the relevant geometric property and using it to specify equivalent random images.
Testing the predictions on a real set of maps yielded relatively accurate predictions
of the storage required for the maps.

Although our analysis is for a particular data type (i.e., collections of line seg-
ments) and data structures, we believe that it has wider applicability. In particular,
the geometric probability approach could be extended for data types other than line
segments (e.g., points, polygons, surfaces, solids, etc.). Furthermore, the random
image model can be used in a statistical analysis of other trie-based spatial data
structures.

The rest of this paper is organized as follows. Section 2 gives a brief overview of
the quadtree representations of collections of line segments, including the definitions
of the four variants that we analyze. Section 3 presents the random image model
and reviews some necessary results from geometric probability. Section 4 contains a
statistical analysis using the model and the results of its application to each of the
aforementioned quadtree variants. It also contains the results of some experiments
with instances of the random image model. Section 5 describes the application of
the analysis to predict the storage requirements for real data and presents results of
extensive experiments that support its validity. Section 6 contains concluding remarks
and gives some directions for future research.

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 27

A1

A2 A3 A4 A5

C3
C1

C2

B2
B1

W10 W11

W14 W15
W4 W5 W6 W7

W12 W13
W8

W9

W1 W2

W3

(a) (b)

C1 C2A4 A5A2 A3B1

C3B2

A1

W10
W11

W1 W2 W3 W5W4 W7W6 W8 W9

W12
W13 W14

W15

Fig. 1. (a) Block decomposition and (b) its tree representation for the region quadtree corre-
sponding to a collection of three regions A, B, and C.

2. Overview of quadtree representations of collections of line segments.
A quadtree is a hierarchical variable resolution data structure based on the recursive
partitioning of the two-dimensional plane into quadrants. It can be viewed as a 4-ary
tree, where each node represents a region in the plane called a block, and the children
of each node represent a partition of that region into four parts. This scheme is useful
for representing geometric data at a variable resolution. The most commonly known
version of the quadtree is the region quadtree [26]. It is used for the representation of
planar regions. In this case, for two-dimensional data, the environment containing the
regions is recursively decomposed into four rectangular congruent blocks until each
block either is completely occupied by a region or is empty (such a decomposition
process is termed regular). For example, Figure 1(a) is the block decomposition for
the region quadtree corresponding to three regions A, B, and C. Notice that, in this
case, all the blocks are square, have sides whose size is a power of 2, and are located
at specific positions.

The traditional, and most natural, access structure for a region quadtree corre-
sponding to a two-dimensional image is a tree with a fanout of 4 (see, e.g., Figure 1(b)).
Each leaf node in the tree corresponds to a different block b and contains the identity
of the region associated with b. Each nonleaf node f corresponds to a block whose
volume is the union of the blocks corresponding to the four children of f . In this case,
the tree is a containment hierarchy and closely parallels the decomposition in that
they are both recursive processes and the blocks corresponding to nodes at different
depths of the tree are similar in shape.

Quadtree variants exist for representing other spatial data types than just planar
regions. For example, they are used to represent collections of points [12, 46], col-
lections of line segments [35, 36, 37, 49], as well as more complicated objects (e.g.,
rectangles [25]). Generalizations of the quadtree to three and higher dimensions (e.g.,
octrees [22, 24, 32] and bintrees [27, 48, 55]) have also been investigated. These
generalizations have many of the same basic properties.

The different variants of the quadtree data structure can be subdivided into two
categories: those based on a regular decomposition of space using predefined positions
for the partition lines (i.e., trie-based), and those in which the positions of the partition
lines are determined explicitly by the data as they are inserted into the data structure
(i.e., tree-based or data-based). In most cases, use of regular decomposition indicates

28 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

(a) (b)

h
a b

e

fi

c

d

g
h

a b
e

fi

c

d

g

(c)

h
a b

e

fi

c

d

g

(d)

Fig. 2. (a) Collection of line segments in a 4 × 4 grid, (b) its MX quadtree, (c) its PM quadtree,
and (d) its Bucket PMR quadtree with a bucket capacity of 2. Only the resulting decomposition of
the underlying space into blocks is shown. The corresponding tree structure that acts as an access
structure to ensure logarithmic access times is not shown.

that the shape of the resulting data structure is independent of the order in which the
data are inserted into the structure when building it. This is not the case for data-
based decompositions. Interestingly, for most applications, regular decomposition
works at least as well as data-based decomposition. Moreover, regular decomposition
is easier to implement and analyze. At times, a distinction between different variants
of the quadtree data structure is also made on the basis of whether or not there is a
predefined maximum depth (denoted by N).

In this paper we only consider quadtree representations of collections of line seg-
ments. We restrict ourselves to quadtrees based on a regular decomposition. In the
rest of this section we review the different quadtree variants that we study. They
differ in the condition that is used to determine when a quadtree block should be
decomposed—this condition is termed a splitting rule.

The simplest quadtree representation is the MX quadtree, which assumes that
the underlying domain of the data is a 2N × 2N grid. The MX quadtree is built by
digitizing the line segments and labeling each unit-sized cell (i.e., pixel) through which
it passes as being of type boundary. The remaining pixels are marked WHITE and are
merged, if possible, into larger and larger quadtree blocks, as done in the region
quadtree. Figure 2(b) is the MX quadtree for the collection of line segment objects
in Figure 2(a). A drawback of the MX quadtree is that it associates a thickness with
a line. Also, it is difficult to detect the presence of a vertex whenever five or more
line segments meet. The above definition of the MX quadtree is given in a bottom-up
manner. We can also define it in a top-down manner. In particular, we start with one
block corresponding to the entire 2N × 2N space and recursively decompose it into
four blocks, halting the decomposition when a block is empty or is of size 1 × 1 (i.e.,
the block corresponds to a pixel).

The PM quadtree is a refinement of the MX quadtree that is motivated by the
observation that the number of blocks in the decomposition can be reduced by ter-
minating the subdivision whenever a line segment passes through a block completely
(i.e., it enters and exits the block rather than starting or terminating in the block).
Nevertheless, even when this observation is used, the resulting structure still has full
decomposition at each vertex or endpoint of a line segment. To avoid this situation,
we further modify the above top-down MX quadtree definition so that decomposition
takes place as long as more than one line segment passes through the block, unless all
of the line segments that pass through the block are incident at the same vertex, which
is also required to be in the same block. In addition, the decomposition is also halted
whenever a 1× 1 block is encountered. The PM quadtree is the structure that results
when these additional halting conditions are imposed on the top-down definition of

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 29

the MX quadtree. The fact that the PM quadtree is defined in a top-down manner
means that each block is maximal. It should be clear that each block at a depth less
than the maximum depth contains at most one vertex. For example, Figure 2(c) is the
PM quadtree corresponding to the collection of line segment objects in Figure 2(a).

The PM quadtree is vertex-based in the sense that the vertices play a role in
determining when the decomposition process stops. In particular, the decomposition
process halts when there is more than one line segment in a block, provided that all
of the line segments are incident at the same vertex in the block. An alternative is to
use an edge-based representation, where a block is split whenever there are more than
q line segments passing through it. Thus the blocks serve as buckets with a capacity
q. This is known as a Bucket PMR quadtree. The drawback of this method is that,
whenever more than q line segments are incident at a vertex v, the block containing
v will be decomposed until reaching the maximum depth N , which corresponds to a
1 × 1 block. For example, Figure 2(d) is the Bucket PMR quadtree corresponding to
the collection of line segment objects in Figure 2(a) when using a bucket capacity of
q = 2 and a maximum depth N = 4.

As pointed out above, the drawback of the Bucket PMR quadtree is that if the
number of line segments incident at a vertex exceeds the bucket capacity, then the
decomposition in the neighborhood of the vertex will not halt unless we reach the
maximum allowable depth N . This problem is resolved by the PMR quadtree, which
is similar to a Bucket PMR quadtree with the difference that, in the PMR quadtree, a
block is decomposed once, and only once, if the insertion causes it to have more than
q line segments. Therefore, in the PMR quadtree, q serves as a splitting threshold,
which is quite different than a bucket capacity, which is its role in the Bucket PMR
quadtree. There is no maximum depth in the PMR quadtree.

The PMR quadtree is constructed by inserting the line segments one by one into
an initially empty structure consisting of one block. Each line segment is inserted
into all the blocks that it intersects or occupies in its entirety. During this process,
the occupancy of each block that is intersected by the line segment is checked to see
if the insertion causes it to exceed the splitting threshold. If the splitting threshold
is exceeded, the block is split once, and only once, into four blocks of equal size.

Figure 3(e) is the PMR quadtree for the collection of line segment objects in
Figure 2(a) with a splitting threshold of q = 2. The nine line segments, labeled a–i,
are inserted in alphabetic order. It should be clear that the shape of the PMR quadtree
for a given collection of line segments is not unique; instead, it depends on the order
in which the line segments are inserted into it. In contrast, the shapes of the MX,
PM, and Bucket PMR quadtrees are unique. Figure 3(a)–(e) shows some of the steps
in the process of building the PMR quadtree of Figure 3(e) with a splitting threshold
of 2. In each part of Figure 3(a)–(e), the line segment that caused the subdivision is
denoted by a thick line, while the gray regions indicate the blocks where a subdivision
has taken place.

The insertion of line segments c, e, g, h, and i causes the subdivisions in parts
(a), (b), (c), (d), and (e), respectively, of Figure 3. The insertion of line segment
i causes three blocks to be subdivided (i.e., the SE block in the SW quadrant, the
SE quadrant, and the SW block in the NE quadrant). The final result is shown in
Figure 3(e). Note the difference from the PM quadtree in Figure 2(c)—that is, the NE
block of the SW quadrant is decomposed in the PM quadtree, while the SE block of
the SW quadrant is not decomposed in the PM quadtree. We also observe that, unlike
the Bucket PMR quadtree in Figure 2(d), we did not have to split to the maximum

30 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

a b

c
d

e

f

g
h

i

a b

cd
e

a b

c

a
b

cd e
f

g
a

b

cd e
f

g h

(a) (b)

(c) (d) (e)

Fig. 3. PMR quadtree with a splitting threshold of 2 for the collection of line segments of
Figure 2(a). (a)–(e) illustrate snapshots of the construction process with the final PMR quadtree
given in (e).

depth in the neighborhood of the vertices, where line segments c, d, i, as well as b, e,
i, meet.

It should be clear that the number of line segments in a PMR quadtree block
can exceed the value of the splitting threshold q. A value of four for q is usually
sufficient to store collections of line segments efficiently, as it implies that junctions
of two, three, and four line segments (which are common in maps of roads and rivers,
etc.) do not cause a split. Of course, there are situations in which more than four line
segments will meet at a vertex. However, we assume that such situations are rare.
Note that, at times, we want to express the dependence of the Bucket PMR quadtree
and the PMR quadtree on q explicitly, in which case we use the term bucket PMRq

quadtree and PMRq quadtree, respectively, to describe the structure.
Note that, in the general case, we may have a collection of line segments that

intersect, while the intersection point is not a vertex. Such a situation can result
when we are representing a nonplanar graph. As we shall see later, this is not an
issue for the line segment arrangements that are generated by our random image
model (described in section 3).

3. Random image models. In the first part of this paper (sections 3 and 4) we
assumed that the quadtree variants that are discussed represent geometric structures,
which are instances of a random process described as follows. Observe that the line
L(ρ, θ) consists of the points (x, y) satisfying the relation

L(ρ, θ) = {(x, y)|x cos θ + y sin θ = ρ}.

The line L(ρ, θ) is perpendicular to the vector (cosθ, sinθ) (see Figure 4(a)). Although
the position of every particular line, L(ρ, θ), naturally depends on the origin and
orientation of the coordinate system, we shall soon see that the probability of every
random line, drawn according to our model, does not. Therefore, the origin and
orientation of the coordinate system relative to the image does not make a difference.
The arbitrarily chosen location of the coordinate system in Figure 4(a) illustrates this
invariance property. For the rectangular region R,

R = {(x, y)| |x|, |y| < 2N−1},

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 31

5

3

(b)(a)

y

x

1

2
4

ρθ

Fig. 4. The random image model: (a) The process of generating a random line (note that
the coordinate system is arbitrary with respect to the image). (b) A typical instance of the random
image constructed for M = 5 independently drawn lines labeled 1–5.

let T be the parameter set

T = {(ρ, θ)|L(ρ, θ) ∩R �= ∅},

which includes all the parameter pairs (ρ, θ) that represent lines intersecting with R.
Let

p(ρ, θ) =

{ 1
|T | (ρ, θ) ∈ T,

0 otherwise
(1)

be a probability density function, where

|T | =

∫
T

dρdθ.

This distribution, called the uniform density distribution, is the only one which
ensures that the probability of choosing a particular random line is independent of the
coordinate system in which ρ and θ are defined (i.e., it is independent of the trans-
lation or rotation of the coordinate system [50]). Therefore, it is the natural density
function to specify when modeling collections of random lines. As an illustration, see
Figure 4(b), where an instance of the random image containing five lines labeled 1–5
is described.

Every instance of our random image model is a 2N × 2N image with M random
lines that intersect it and which are chosen independently according to the density
function (1). The continuous uniform density distribution implies that three lines
intersect at the same point with probability zero. This follows from the observation
that two intersecting lines define a point, say (x0, y0), which can be regarded as
prespecified for the third line. The parameters of every line which intersects this point
must be in the set {(ρ, θ)|x0cosθ + y0sinθ = ρ}, the measure of which is zero (i.e., a
one-dimensional quantity) with respect to the measure of T (i.e., a two-dimensional
quantity). Therefore, after drawing a finite number of random lines, the probability
that any three of them will intersect (x0, y0) is zero. This property is usually satisfied
for real spatial data such as road maps, as intersections of four or more line segments
are rare (i.e., junctions of four or more roads).

32 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

Each of the line segments clipped from a random infinite line by the boundary
of the image is subdivided further into smaller line segments by its intersection with
other infinite lines so that, eventually, no line segment crosses another line segment
except at the endpoints of the line segments.

Thus the data represented by the various quadtrees (in the first, analytical, part
of the paper) are a collection of random line segments specified as a set of M random
infinite lines. Note that the infinite lines are not of interest by themselves but are
useful for creating the distribution of line segments which we analyze.

We do not claim that our proposed random image model will enable us to generate
data that correlate with what appears in realistic geometric applications, such as road
networks. Finding such a correlation is unlikely, as realistic geometric data do not
consist of lines whose endpoints lie on the image boundary. Nevertheless, the analysis
can be interpreted, as we shall see later, in terms of the geometric properties of the
image, such as line length and the number of intersections between lines. This allows
us to apply its results to real data with similar geometric properties. Most impor-
tant, the analysis provides us a means to justify claims about the relative qualitative
behavior of the different data structures.

Before starting the analysis, we first present three results from geometric proba-
bility which form the basis of our results [50].

Geometric probability theorem 1 (Theorem GP1). Let C1 be a convex
planar set included in the convex planar set C ⊂ R. Let L1 and L be the perimeters
of C1 and C, respectively. Let l be a random line chosen using the uniform density
distribution given by (1). Therefore, the probability that a line l passing through C
also passes through C1 is

p{l ∩ C1 �= ∅|l ∩ C �= ∅} =
L1

L
.

Geometric probability theorem 2 (Theorem GP2). Let C ⊂ R be a convex
planar set with area A and perimeter L. Let l be a random line chosen using the
uniform density distribution given by (1). Suppose that l intersects with C and
creates a chord H with length |H|. Then the expected length of H is

E[|H|] =
πA

L
.

Geometric probability theorem 3 (Theorem GP3). Let C ⊂ R be a convex
planar set with area A and perimeter L. Let l1 and l2 be two random lines, inde-
pendently chosen using the uniform density distribution (1). If both lines l1 and l2
intersect with C, then the probability that l1 intersects with l2 inside C is

p{(l1 ∩ l2) ∩ C �= ∅|l1 ∩ C �= ∅, l2 ∩ C �= ∅} =
2πA

L2
.

4. Statistical analysis of quadtree representations of collections of line
segments. An image as defined in section 3 is an instance of a random event. It
follows that its hierarchical representation, using one of the quadtree variants, is also
a random event. Moreover, the existence of a node in the tree, or its being a leaf,
is a random event. Let v be a node of the tree, at depth d, corresponding to some
particular cell. Both the existence of v in the tree and its potential split are random
events corresponding to the particular arrangement of random lines. Let Pd be the
probability that both of these events happen. Recall that the distribution of the

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 33

random lines is independent of the coordinate system translation, thereby implying
that Pd depends only on the depth.

Let ve denote the event that the node v exists. Let vs denote the event that the
splitting condition holds for the block corresponding to node v. Letting Prob(ve, vs)
be the probability of the joint event that both node v at depth d exists (ve) and that
the splitting condition is satisfied for the square region corresponding to node v (vs),
we have that

Pd = Prob(ve, vs) = Prob(vs)Prob(ve|vs).(2)

Prob(vs) is the probability that the splitting condition is satisfied for a particular
square region corresponding to a node v (at depth d), while Prob(ve|vs) is the con-
ditional probability that node v at depth d exists, given that the splitting condition
holds for the square region corresponding to v. Note that both vs and ve depend on
the depth d as well.2 For example, in the MX quadtree, Prob(vs) is the probability
that at least one line passes through this region. The node v exists if every member in
the sequence of its recursive parents splits as well. For the MX quadtree, this always
happens (if vs is true) because there is at least one line passing through all of them:
the line which passes through v and satisfies its splitting condition. Therefore, for
the MX quadtree, Prob(ve|vs) = 1 and Pd = Prob(vs). We shall see later that this
relation is not necessarily satisfied for every tree structure (e.g., the PM quadtree as
discussed in subsection 4.2.1).

Let S be the total number of nodes in the tree. Every nonleaf node at depth d−1
contributes 4 nodes at depth d. The maximal number of nodes at depth d−1 is 4d−1,
implying that the expected size of the tree is

E[S] = 1 +
N∑

d=1

4d · Pd−1.(3)

Note that while the splitting events associated with, say, neighboring nodes, are def-
initely dependent events, this does not effect the calculation of the expected value
[41].

Equation (3), which gives the expected number of nodes in the tree, serves as
the basis for our analysis. In the following subsections we focus on splitting rules
for each of the quadtree variants discussed in section 2. For each rule, we derive the
corresponding splitting probabilities Pd and then use (3) to calculate the expected
size of the data structure.

4.1. MX quadtree. An MX quadtree represents a collection of line segments
on the plane by partitioning the plane into square blocks using the splitting rule that
says a block is split if both the depth of its corresponding node is less than N and if the
block contains at least one line segment. If the block does not contain a line segment,
then it is not subdivided further and its corresponding node is a leaf. Otherwise, it
is subdivided and its corresponding node has four children (see Figure 2(b)).

2This “backward” decomposition was preferred over the “more natural” Prob(ve)Prob(vs|ve)
because it isolates the event vs, which is “local” and depends only on the configuration of the lines
intersecting the block corresponding to v. In contrast, ve is a more complex event, depending on the
existence of all of the ancestors of v.

34 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

4.1.1. Analysis. In order to compute the probabilities Pd, we use the following
argument. A node (denoted v) at depth d corresponds to a 2N−d × 2N−d square
(denoted v as well). Theorem GP1 implies that a particular random line passes
through this region with probability

pd =
4 · 2N−d

4 · 2N =

(
1

2

)d

.

The probability that exactly k out of M lines pass through this region is

pd,k =

(
M

k

)(
1

2

)dk
[
1 −

(
1

2

)d
]M−k

.(4)

The probability that this region corresponds to a nonleaf node is

Pd = Prob(vs)Prob(ve|vs) = Prob(vs) = 1 − pd,0 = 1 −
[
1 −

(
1

2

)d
]M

,(5)

where Prob(vs) is the probability that one or more lines pass through this region,
thereby satisfying the splitting condition. As mentioned above, for the MX quadtree,
Prob(ve|vs) is always 1 because there is at least one line passing through all the regions
corresponding to the recursive parents of this region: the line which passes through v
and satisfies its splitting condition.

Inserting (5) into (3), we get

E[S] = 1 +

N∑
d=1

4d · Pd−1 =

N∑
d=1

4d

⎡
⎣1 −

[
1 −

(
1

2

)d−1
]M

⎤
⎦.(6)

It is difficult to derive closed forms of sums of this nature. To our knowledge, no
relevant solutions exist in the literature. Furthermore, we tried, without success, to
evaluate it using various symbolic equation solvers, and consulted their developers as
well. Therefore, as we are primarily interested in comparing the asymptotic behavior
of the storage requirements of the various data structures, we resort to closed form
upper and lower bounds for E[S]—that is, the expected number of nodes in the tree.
However, for practical use of this estimate, we suggest inserting the known parameters
(i.e., M and N) into the sum (6) and evaluating it numerically. These comments are
also applicable in the analyses of the rest of the data structures (see subsections 4.2.1
and 4.3).3

Our technique is based on decomposing (6) into two sums
∑

1 and
∑

2 corre-
sponding to the number of nodes at depth less than or equal to d0 and all the nodes
at a depth greater than d0, respectively. In essence, our analysis focuses on evaluat-
ing the second sum, while the first sum is bounded by the number of nodes in the
complete tree (when calculating the upper bound) or by zero (when calculating the
lower bound). We find it convenient to formulate our analysis of E[S] in terms of an

3Note that, although the form of the sum (6) intuitively calls for the use of the commonly known
1 + x ≤ ex inequality, it does not help here. The problem is that, in the case at hand, we want to

bound (6) from above, which means that the term
[
1−

(
1
2

)d−1]M
should be bound from below, but

this is not possible with this inequality.

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 35

additional parameter β (as well as M and N), which is defined as

β = M

(
1

2

)d0

.(7)

The depth d0 is chosen so that β is less than 1. This enables us to make some
assumptions leading to crucial simplifications (i.e., that certain sums converge as the
index of summation gets infinitely large). The result (i.e., E[S]) is in terms of M ,
N , and β. Once the result has been obtained, the value of d0 is adjusted so that the
bounds on E[S] are as tight as possible under the constraints that d0 is an integer
bounded by N and that β < 1.

Decomposing E[S] into two sums
∑

1 and
∑

2 yields

E[S] = 1 +

d0∑
d=1

4d

⎡
⎣1 −

[
1 −

(
1

2

)d−1
]M

⎤
⎦ +

N∑
d=d0+1

4d

⎡
⎣1 −

[
1 −

(
1

2

)d−1
]M

⎤
⎦(8)

=
∑

1 +
∑

2·

∑
1 = 1 +

d0∑
d=1

4d

⎡
⎣1 −

[
1 −

(
1

2

)d−1
]M

⎤
⎦ ≤

d0∑
d=0

4d · 1 ≈ 4d0

1 − 1
4

≈ 4

3

M2

β2
.(9)

Note that what we have done is decompose E[S] into two parts,
∑

1 and
∑

2, where∑
1 corresponds to a complete tree at a depth less than or equal to d0. Taking the

binomial expansion of
∑

2, we get

∑
2 =

N∑
d=d0+1

4d

[
1 −

M∑
k=0

(
1

2

)kd−k (
M

k

)
(−1)k

]
(10)

=
N∑

d=d0+1

M∑
k=1

22d

(
1

2

)kd−k (
M

k

)
(−1)k−1.

Changing the order of summation and separating the k = 1 (
∑

3), k = 2 (
∑

4), and
k > 2 (

∑
5) cases, we get

∑
2 =

∑
3 +

∑
4 +

∑
5,(11)

∑
3 =

N∑
d=d0+1

22d

(
1

2

)d−1 (
M

1

)
(12)

=
N∑

d=d0+1

2d · 2 ·M = 4M(2N − 2d0) = 4M · 2N − 4M2

β
,

∑
4 = −

N∑
d=d0+1

22d

(
1

2

)2d−2 (
M

2

)
= −

N∑
d=d0+1

4

(
M

2

)
= −2M(M − 1)(N − d0),(13)

36 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

(14)

∑
5 =

N∑
d=d0+1

M∑
k=3

2k
(
M

k

)(
1

2

)(k−2)d

(−1)k−1

≤
M∑
k=3

N∑
d=d0+1

2k
(
M

k

)(
1

2

)(k−2)d

≈
M∑
k=3

2k
(
M

k

)
(1
2)d0(k−2)(1

2)k−2

1 − (1
2)k−2

=

M∑
k=3

4

(
M

k

)[
β

M

]k−2
1

1 − (1
2)k−2

=

M∑
k=3

4 · M · (M − 1) · (M − 2) · · · (M − k + 1)

k!

βk−2

Mk−2

1

1 − (1
2)k−2

≤ 4

3
M2 β

1 − β
.

Note that all approximations performed while calculating
∑

1 and
∑

5 are also upper
bounds. We continue by summing all contributions, which are partly expected values
and partly upper bounds for expected values, to get

(15)

E[S] =
∑

1 +
∑

3 +
∑

4 +
∑

5

≤ 4 ·M · 2N − 2 ·M(M − 1) ·N + M2

[
− 4

β
+

4

3

1

β2
+

4

3

β

1 − β
+ 2 log2

M

β

]
.

Figure 5 shows the value of the sum estimate given by (6) (second curve from the
top) as well as the upper bound (upper curve) given by (15) as a function of M at a
maximal depth of N = 10. Recall that the upper bounds in the figure are minimal in
the sense that, for each value of M , upper bounds were calculated for every possible
value of d0 (subject to the constraint β < 1) and the minimal (tightest) upper bound
was taken.

4.1.2. Interpretation. Asymptotically, the dominant contribution to the num-
ber of nodes comes from the first term in (15), which may be transformed into a more
familiar form using the GP2. Letting Li be the length of the ith line in our geometric
structure, the expected total length L of all lines is

E[L] =
M∑
i=1

E[Li] = M · π (2N)2

4 · 2N =
π

4
·M · 2N .(16)

Substituting (16) into the first term of (15), we get

E[S] ≈ 16

π
E[L].(17)

In other words, the expected number of nodes in an MX quadtree is proportional to
the total expected length of the lines, which agrees with results derived previously
under different (nonprobabilistic) models [22, 23].

4.1.3. A lower bound. The derivation of E[S] given by (9)–(15) may be used to
set a lower bound on the expected number of nodes. E[S] consists of the contributions

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 37

0 20 40 60 80 100 120
of random lines

0

100

200

300

400

#
of

no
de

s
/

10
00

MX quadtree size and estimates

LB
UB
Empirical
Sum Estimate

Fig. 5. The upper bound (UB), the model prediction (Sum Estimate), the empirical estimate
(Empirical), and the lower bound (LB) on the number of nodes necessary to store an MX quadtree.
The empirical estimate almost coincides with the model prediction. These are the two middle curves,
which actually look like one curve. The x and y axes correspond to the number of lines and nodes,
respectively, for a tree of depth N = 10.

of
∑

1,
∑

3,
∑

4, and
∑

5.
∑

3 and
∑

4 are exact values,
∑

1 is positive, thereby having

a lower bound of 0, while
∑

5 can be easily bounded from below by − 4
3M

2 β
1−β . Thus,

E[S] ≥
∑
3

+
∑
4

− 4

3
M2 β

1 − β
.(18)

Furthermore, for large N satisfying 2N ≥ M ·N , we have that
∑

1,
∑

4, and
∑

5

are small with respect to
∑

3. Thus the difference between the upper bound and the
lower bound is small, and each of the bounds is a good approximation of E[S] (see
the lowest curve in Figure 5).

4.2. PM quadtree. Our variant of a PM quadtree represents a collection of line
segments in the plane. It partitions the plane into square blocks using the splitting
rule that says a block is split unless the depth of the corresponding node is N , or
only one line passes through the block, or there is just one vertex in the block and all
the lines that pass through the block meet at that vertex. Thus if the block contains
a single line, or all the lines pass through a common point in the block and there
is no other endpoint in the block, then the block is not subdivided further and its
corresponding node is a leaf. Otherwise, it is subdivided and its corresponding node
has four children (see Figure 2(c)).

4.2.1. Analysis. Recall from the opening remarks in section 4 that the prob-
ability that a region corresponds to a nonleaf node is Pd = Prob(vs)Prob(ve|vs).
Consider first Prob(vs), the probability that the splitting condition is satisfied. Let
α be the probability that two lines intersect inside a square region Q given that each
of these lines passes through Q. For a square 2N−d × 2N−d region (0 ≤ d ≤ N), the
probability that the splitting conditions of a PM quadtree are satisfied for a node v
in depth d may be written as

Prob(vs) = 1 − pd,0 − pd,1 − α · pd,2,(19)

38 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

where pd,k is the probability that exactly k of M lines pass through a square region
of side 2N−d. The random image model implies that three lines intersect with zero
probability at a common point. Therefore, this event may be ignored, leading to the
conclusion that a region is always split if three or more lines pass through it. If only
two lines pass through the region, then the region is split only if the two lines do
not intersect within the region. The intersection probability α may be inferred from
Theorem GP3, which implies that

α =
2πA

L2
=

2π(2N−d)2

(4 · 2N−d)2
=

π

8
.

Hence,

Prob(vs) = 1 −
(
M

0

)[
1 −

(
1

2

)d
]M

(20)

−
(
M

1

)(
1

2

)d
[
1 −

(
1

2

)d
]M−1

− π

8

(
M

2

)(
1

2

)2d
[
1 −

(
1

2

)d
]M−2

.

In contrast to the other quadtree variants considered in this paper, the probability
Prob(ve|vs) is not 1 here. In particular, for a PM quadtree, it is possible that the
splitting condition is satisfied for some node (region) at depth d but not for its parent
node. For the random image model, this arises only in one case, which is when exactly
two lines pass through both the node v and its parent node, with their intersection
point lying inside the region corresponding to the parent node and outside the region
corresponding to the node v. In this case, we have the anomalous situation that,
although the node v does not exist, its corresponding region would be split (if it did
exist).

Note that Pd ≤ Prob(vs). We start our analysis by treating this bound, denoted
by P ′

d, as the splitting probability itself. The difference between the following anal-
ysis and the one carried out for the MX quadtree is that here the sum itself is an
upper bound as well. Later, we also derive a tighter bound, based on an asymptotic
approximation.

To obtain a bounded expressed in a simpler way, let us once again, as in the MX
quadtree, formulate our analysis of E[S] in terms of an additional parameter β (as
well as M and N), which is defined in (7). Here we shall not try to find a lower bound
on the sum, as the sum itself is an upper bound.

The result of inserting (20) into (3) (i.e., a bound on E[S]) is decomposed into
two sums

∑
1 and

∑
2 corresponding to the number of nodes at depth less than or

equal to d0, and all the nodes at a depth greater than d0, respectively. In essence, we
assume that the part of the tree at depth less than or equal to d0 is complete. The
value of d0 is adjusted later so that the bounds on E[S] are as tight as possible under
the constraints that d0 is an integer bounded by N and that β < 1.

Thus, we have

E[S] ≤ 1 +

N∑
1

4dP ′
d−1 = 1 +

d0∑
d=1

4dP ′
d−1 +

N∑
d=d0+1

4dP ′
d−1 =

∑
1

+
∑
2

.(21)

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 39

A bound on
∑

1 is obtained as in the case of the MX quadtree:

∑
1 = 1 +

d0∑
d=1

P ′
d−14

d ≤
d0∑
d=0

4d ≈ 4

3
4d0 =

4

3

M2

β2
.(22)

∑
2 is evaluated by taking its binomial expansion to get a sum of the powers of

(
1
2

)d
(i.e.,

(
1
2

)0
,
(

1
2

)d
,
(

1
2

)2d
, . . .). After some algebraic manipulation, the

(
1
2

)0
and

(
1
2

)d
terms cancel out, and we get

∑
2 =

N∑
d=d0+1

M∑
k=2

Ck

(
1

2

)kd−k

· 4d,(23)

where

Ck = (−1)k−1

[(
M

k

)
−
(
M

1

)
·
(
M − 1

k − 1

)
+

(
M

2

)
·
(
M − 2

k − 2

)
π

8

]
.

Changing the order of summation and separating the k = 2 (
∑

3) and k > 2 (
∑

4)
cases yield ∑

2 =
∑

3 +
∑

4,(24)

∑
3 =

N∑
d=d0+1

C2

(
1

2

)2d−2

4d(25)

= 2
(
1 − π

8

)
M(M − 1)(N − d0) ≈ 1.215M(M − 1)(N − d0),

∑
4 =

M∑
k=3

Ck2
k

N∑
d=d0+1

(
1

2

)d(k−2)

≈
M∑
k=3

Ck2
k (1

2)(k−2)(d0+1)

1 − (1
2)k−2

(26)

= 4

M∑
k=3

Ck

1 − (1
2)k−2

[
β

M

]k−2

.

Now, let us examine the coefficients Ck:

Ck = (−1)k−1

[(
M

k

)
−
(
M

1

)
·
(
M − 1

k − 1

)
+

(
M

2

)
·
(
M − 2

k − 2

)
π

8

]
(27)

= (−1)k−1

[(
M

k

)
−M · k

M
·
(
M

k

)
+

(
M

2

)
k(k − 1)

M(M − 1)
·
(
M

k

)
π

8

]

= (−1)k−1

(
M

k

)[
1 − k +

k(k − 1)

2

π

8

]
.

By checking a few values of k, it can be shown that, for k ≥ 3,

−0.137Mk ≤ Ck ≤ 0.027Mk.(28)

Inserting (28) into (27) and accounting for the worst cases lead to

−1.1M2 β

1 − β
≤

∑
4 ≤ 0.22M2 β

1 − β
.(29)

40 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

0 20 40 60 80 100 120
of random lines

0

20

40

60

80

100

120

#
of

no
de

s
/

10
00

PM1 quadtree size and estimates

Empirical
Asymptotic
Sum Estimate
UB

Fig. 6. The upper bound (UB), the sum estimate (Sum Estimate), which is also an upper
bound, the empirical estimate (Empirical), and the asymptotic approximation (Asymptotic) on the
number of nodes in a PM quadtree. The x and y axes correspond to the number of lines and nodes,
respectively, for a tree of depth N = 10. Note the “rounded staircase-like” behavior of the upper
bound resulting from our method of analysis, which calculates several bounds (each for different
integer values of the d0 parameter) retaining the tightest one.

Therefore, the contribution of
∑

4 to E[S] is O(M2). Collecting the contributions of∑
1,

∑
3, and

∑
4, we have

E[S] =
∑

1 +
∑

3 +
∑

4

≤ 1.215M(M − 1)N + M2

[
4

3

1

β2
+ 0.22

β

1 − β
− 1.215 log2

M

β

]
.(30)

Once again, d0 is chosen to minimize (30), subject to the conditions that d0 is an
integer less than N and that β (as defined in (7)) is less than 1. Figure 6 shows the
value of the upper bounds given by (30) (the uppermost curve) as a function of M
at a maximal depth of N = 10, as well as the value of the sum (21) from which it is
derived (second curve from the top). Recall that, here, the sum is also an upper bound
itself. In addition, we also recall that the upper bounds in the figure are minimal in
the sense that, for each value of M , upper bounds were calculated for every possible
value of d0 (subject to the constraint β < 1) and the minimal (tightest) upper bound
was taken.

4.2.2. An asymptotic approximation. The bound developed above is valid
but may not be tight. We now propose an asymptotic approximation which is expected
to be more accurate when N is large. Denoting the parent node of v (as well as the
corresponding region) by fv, we have

(31)

Prob(ve|vs) = Prob((fve and fvs)|vs) = Prob(fvs|vs)Prob(fve|(vs and fvs))

= γdProb(fve|(vs and fvs)) ≤ γd,

where γd is the conditional probability Prob(fvs|vs). As discussed above, the only
possibility of this conditional event not happening is when exactly two lines cross both
the region v and its parent region fv, and when these lines are arranged so that they
do not intersect within v but do intersect within fv.

This probability does not have a simple expression, though, as it depends on the
number of lines intersecting the region, which is distributed differently for different

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 41

depths. Note that, as the depth is increased, the probability that more than two lines
intersect the region (i.e.,

∑M
k=3 pd,k (see (4)) gets smaller and eventually becomes

negligible. Quantitatively, the ratio of the probability that three or more lines inter-
sect the region and the probability that exactly two lines intersect the region (i.e.,

(
∑M

k=3 pd,k)/pd,2) tends to zero as d increases. As a result, the probability γd cor-
respondingly decreases and reaches a constant asymptotic value γ∞ ≈ 0.405, which
corresponds to the assumption that exactly two lines intersect the parent region fv.
(The value of γ∞ was estimated by probabilistic simulation.)

Thus, with the asymptotic approximation, and relying on (31), we get a tighter
bound on Pd:

Pd = Prob(vs)Prob(ve|vs) ≤ Prob(vs)γ∞ = P∞
d .(32)

Using the bound P∞
d as P ′

d in the sum (21) we get an asymptotic approximation,
which is expected to better model the splitting process when the depth is high. Note
that this approximation is not an upper bound, as the asymptotic approximation
of the splitting probability holds only for large depths. Naturally, the asymptotic
approximation is good when the majority of the nodes satisfies the above assumption
but is expected to fail otherwise (i.e., when the maximal depth of the tree is small
and the number of lines is large). In our experiments, we show that this is indeed
the case (see Table 1). Note that technically the appoximation is equal to the upper
bound we obtained above (when we used P ′

d = Prob(vs) in the sum) multiplied by a
factor of γ∞. Figure 6 shows the value of the resulting asymptotic approximation as
a function of M at a maximal depth of N = 10 (lowest curve).

4.2.3. Interpretation. The number of possible line pairs in the image is
(
M
2

)
.

Multiplying this number by α yields the expected number of intersections. Approxi-
mating

(
M
2

)
by M2/2, we have that the expected number of vertices (line intersections)

in the whole image is approximately π
16M

2. Considering only the dominant first term
in (30), which is roughly proportional to N ·M2, we see that the results of the analysis
may be interpreted as confirming that both the number of vertices and the maximum
depth of the tree impact the number of nodes necessary. The dependence of E[S] on
the number of vertices (i.e., the factor M2) is intuitively clear, as each vertex will be
stored in a separate node in the tree.

The dependence of E[S] on the maximum depth of the tree (i.e., N) is less obvious.
On the one hand, it could be said that, since our result is only an upper bound, it may
be that the actual PM quadtree node count does not increase with the depth. However,
it actually confirms a known result that, when the vertices of the line segements are
constrained to lie on the grid points of a 2n × 2n grid, the PM quadtree can be as
deep as 4n [47]. In fact, for an image generated by the random line model, there is no
constraint on the positions of the vertices (i.e., the intersection points), and thus the
maximum decomposition depth can be even higher than 4·n, as this depth depends on
the locations of the vertices. Thus we see that this dependence is in agreement with
the fact that, in the worst case, some of the vertices created by a random configuration
of lines could appear in nodes at the maximum level. The linear dependence predicts
that the probability of the occurrence of such “bad” line sets is not zero. This behavior
was confirmed by our experiments, which found that the expected number of nodes in
the PM quadtree increases linearly, but very slowly, with depth (see subsection 4.6).
A related result is that, in most cases, the randomly generated PM quadtree is small,
but in some rare cases it can be very large.

42 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

4.3. Bucket PMRq quadtree. A bucket PMRq quadtree represents a collec-
tion of line segments in the plane. It partitions the plane into square blocks using the
splitting rule that stipulates that a block is split if both the depth of its corresponding
node is less than N and more than q line segments pass through the block. Thus if
the block contains q or less line segments, then it is not subdivided further and its
corresponding node is a leaf. Otherwise, it is subdivided and its corresponding node
has four children (see Figure 2(d)).

Note that if the expected degree of a vertex v is k, then choosing q < k results in
splitting the node containing v to the maximal depth. Observe that for the random
image model, the degree of every vertex is 4. Thus, using a Bucket PMRq quadtree,
with q < 4 is not recommended. Nevertheless, for the sake of completeness, we briefly
comment on these special cases below.

The Bucket PMR0 quadtree is an MX quadtree. For the Bucket PMR1 quadtree,

Pd < Prob(vs) = 1 − pd,0 − pd,1.(33)

Observe that Prob(ve|vs) = 1 for all Bucket PMR quadtrees. For the Bucket PMR2

quadtree,

Pd < Prob(vs) = 1 − pd,0 − pd,1 − (1 − α) · pd,2.(34)

For the Bucket PMR3 quadtree, the splitting probability is the same as in (34) with the
subtraction of a term corresponding to the small probability that three line segments
intersect the region, but not each other. Thus, the splitting probabilities for q = 3
satisfy

Pd < Prob(vs) < 1 − pd,0 − pd,1 − (1 − α) · pd,2(35)

and are assumed to be very close to its bound.
For a Bucket PMR2 quadtree, it is clear that the splitting probability is identical

to that of the PM quadtree, apart from changing a multiplicative constant from α to
1 − α. Therefore, the expected number of nodes is given by an expression similar to
(30). The same considerations hold for the Bucket PMR3 quadtree.

While it is less obvious, the Bucket PMR1 quadtree behaves very similarly to the
PM quadtree as well. This is apparent by observing that the term

∑
3 (25), which

dominates the number of nodes in the PM quadtree, grows by a factor of 1/(1− π/8)
if the split probability (33) is used.

The situation, however, changes dramatically when considering bucket PMRq

quadtrees with values of q equal to 4 and higher. For q = 4, the splitting probability
satisfies

Pd < Prob(vs) = 1 − pd,0 − pd,1 − pd,2.(36)

The probability Pd is smaller than the right side of the above inequality because the
probabilities of some additional events that imply the absence of splitting are not
included. For example, if three or four lines intersect the region, but not each other,
then the region is not split. The inclusion of these contributions is complicated and
is not needed for computing an upper bound. Using the upper bound P ′

d = Prob(vs)
in (36) as the probability Pd, and the same techniques as in subsection 4.2, we define
β and d0 as in (7) and decompose the sum corresponding to E[S] into two sums,

∑
1

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 43

from (22) and
∑

2 from (23). Here, however,

Ck = (−1)k−1

[(
M

k

)
−
(
M

1

)
·
(
M − 1

k − 1

)
+

(
M

2

)
·
(
M − 2

k − 2

)]
(37)

= (−1)k−1

[(
M

k

)
−
(
M

1

)
· k

M
·
(
M

k

)
+

(
M

2

)
· k(k − 1)

M(M − 1)
·
(
M

k

)]

= (−1)k−1

(
M

k

)[
(k − 1)(k − 2)

2

]
,

implying that C2 = 0 and that

−1

8
Mk ≤ Ck ≤ 1

6
Mk.(38)

The bounds (38) are derived by evaluating Ck for several values of k and by observing
that |Ck| decreases with k. The fact that C2 = 0 is important, as it means that

∑
3

is 0, and thus once we bound the finite geometric series in 1
2 by the infinite geometric

series, the expected number of nodes will no longer depend on N . Now,

∑
4 =

M∑
k=3

Ck2
k

N∑
d=d0+1

(
1

2

)d(k−2)

≈
M∑
k=3

Ck2
k (1

2)(k−2)(d0+1)

1 − (1
2)k−2

(39)

= 4

M∑
k=3

Ck

1 − (1
2)k−2

[
β

M

]k−2

≤ 4

3
M2 β

1 − β
.(40)

This derivation is based on bounding the finite geometric progression with the cor-
responding infinite progression, expressing d0 in terms of β and M , and performing
some additional arithmetic manipulations. Therefore,

E[S] ≤ 4

3
M2

[
1

β2
+

β

1 − β

]
.(41)

Figure 7 shows the value of the upper bound given by (41) (uppermost curve)
as a function of M at a maximal depth of N = 10 as well as the value given by
the corresponding sum (middle curve). Again, we recall that the upper bounds in
the figure are minimal in the sense that, for each value of M , upper bounds were
calculated for every possible value of d0 (subject to the constraint β < 1) and the
minimal (tightest) upper bound was chosen. To get a clearer interpretation of the
bound, select a specific value for β, say, 0.75 (which corresponds to sets of 6, 12, 24, . . .
lines and to d0 values of 3, 4, 5, . . ., respectively). Then, we get

E[S] ≤ 6.37M2 (q = 4).(42)

The bound (42) means that for a bucket PMRq quadtree (with q = 4) the ex-
pected number of nodes is proportional to the expected number of intersection points

(approximately πM2

16 as derived in subsection 4.2.2), henceforth referred to as vertices,
and does not depend on the maximal depth N . Therefore, if the maximal depth is
large enough, the subdivision stops before reaching the maximal depth almost every-
where. Alternatively, the O(M2) intersection points result in O(M2) line segments.
Thus, an equally powerful characterization of this result is that the number of nodes
is proportional to the number of line segments and does not depend on the maximal

44 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

0 20 40 60 80 100 120
of random lines

0

10

20

30

40

50

60

#
of

no
de

s
/

10
00

PMR quadtree size and estimates

Empirical
Sum Estimate
UB

Fig. 7. The upper bound (UB), the sum estimate (Sum Estimate), and the empirical estimate
(Empirical) on the number of nodes necessary to store a PMR4 quadtree. The x and y axes corre-
spond to the number of lines and nodes, respectively, for a tree of depth N = 10. Note the “rounded
staircase-like” behavior of the upper bound resulting from our method of analysis, which calculates
several bounds (each for different integer values of the d0 parameter) retaining the tightest one.

depth of the tree. Higher values of q require a more complicated analysis, as the num-
ber of line segments created by the intersection of more than two lines is a random
variable of more complicated statistics. In particular, we have more possibilities to
consider than just the two events corresponding to the intersection or nonintersection
of two lines. It is clear, however, that the splitting probability decreases as q increases,
and therefore, for q ≥ 4 the bound (41) still holds. Note that it is not possible to
reduce this bound by much (even for higher values of q) since the bound on the first

term,
∑

1, remains 4
3
M2

β2 < 4
3M

2.

Regions that contain a vertex (resulting from the intersection of lines) are split
if the number of line segments that are incident at this vertex is higher than q. This
explains the significant change in the quadtree size when q ≥ 4. For our random image
model, all vertices have four line segments incident at them, and therefore the regions
in a Bucket PMR2 quadtree must split until the maximal depth is achieved. On the
other hand, in the Bucket PMR4 quadtree (and for values of q ≥ 4), regions that
contain a single vertex are not split, which leads to a tree whose size is independent
of the maximal depth N .

4.4. PMRq quadtree. A PMRq quadtree represents a collection of line seg-
ments in the plane. It depends on a parameter q and is created as a dynamic result of
a sequence of insertion of line segments using the splitting rule that says a block b is
split once, and only once, if b is intersected by the new line segment and if b already
contains q or more line segments. Thus the block is subdivided at most once when a
new line segment, which intersects it, enters the structure. Clearly, this may not be
enough to ensure that the number of line segments stored in each leaf node is q or
less.

Note that since the PMRq quadtree depends on the order in which the line seg-
ments are inserted into it, we must specify some order. We assume that the M infinite
lines are generated in one step, followed by the insertion of the O(M2) line segments
in an arbitrary order. For the case that q ≥ 4, we may use the upper bound (41)
that we obtained on the number of nodes in a bucket PMRq quadtree to also bound
the number of nodes in a PMRq quadtree. First, note that the node set associated

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 45

with the Bucket PMRq quadtree is a superset of the node set associated with the
PMRq quadtree, provided that the maximal depth of the tree is high enough, since
the number of times a node in the Bucket PMRq quadtree is split upon insertion is
at least as large as the number of times it is split in the PMRq quadtree. Second,
observe that the maximal depth of the PMRq quadtree for i line segments is i− q, as
the first split happens when the q+1st line segment is inserted. Therefore, the PMRq

quadtree representation of the O(M2) line segments created by the M infinite random
lines is of a maximal finite depth O(M2)− q. Thus, we can construct a bucket PMRq

quadtree with a maximal depth N = M2 so that, regardless of the order in which
the O(M2) line segments are inserted into the PMRq quadtree t, the nodes in t will
always be a subset of the nodes in the bucket PMRq quadtree v for the O(M2) line
segments. Recall that the bound on the number of nodes in a bucket PMRq quadtree
that we obtained was independent of the depth N of the bucket PMRq quadtree as we
let N go to infinity when we computed

∑
4 in (40). Thus the bound that we obtained

in (41) is also good for bucket PMRq quadtrees of any depth. Therefore, it is also
applicable to PMRq quadtrees subject to q ≥ 4.

Unfortunately, we cannot get a reasonable bound using this method for q < 4.
For q = 2, for example, recall that the number of nodes in the Bucket PMR2 quadtree
is similar to this number in the PM quadtree, which is given by (30). Therefore, the
upper bound on the number of nodes in the Bucket PMR2 quadtree is linear in the
maximum depth. The guarantee that the Bucket PMR2 quadtree is a superset of the
PMR2 quadtree requires setting the maximal depth of the Bucket PMR2 quadtree
higher than the maximal of the PMR2 quadtree. The latter, however, may be as
high as O(M2), where M is the number of infinite random lines, thus giving an
unrealistically high upper bound. Therefore, obtaining an upper bound on the number
of nodes in a PMR2 quadtree is an issue left for future research, although, as mentioned
before, the case of q ≥ 4 is more relevant from a practical standpoint, as we do not
want the common situation of a road junction (i.e., when four line segments meet at
a point) to cause an arbitrarily large amount of splitting. The same considerations
apply for q = 1 and q = 3.

4.5. A general discussion of the bounds. The bounds developed here lead
to the following asymptotic results on the expected number of nodes as a function of
the number of random lines M and the level of permitted subdivision N :

MX quadtree E [S] = O(M · 2N),(43)

PM quadtree E [S] = O(M2 ·N),

PMRq quadtree E [S] = O(M2) (q ≥ 4),

bucket PMRq quadtree E [S] = O(M2 ·N) (q = 2),

bucket PMRq quadtree E [S] = O(M2) (q ≥ 4).

These results were obtained by summing the expected number of nodes at each level
of the hierarchical structures. The differences are due to the different rates at which
the splitting probabilities decrease as the depth increases. For example, for the MX
quadtree, the probability that a node splits decreases with the depth, but does not
decrease fast enough, resulting in a tree of exponential size. On the other hand,
for the PM quadtree, the splitting probability decreases at a fast enough rate to
offset the exponential growth of the tree, thereby resulting in a tree whose size is
proportional to its depth. The same holds for the Bucket PMR2 quadtree. For q ≥ 4,
for both the PMRq quadtree and the bucket PMRq quadtree, the splitting probability

46 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

decreases at an even faster rate, thereby implying that the expected number of nodes
at each level decreases exponentially with the depth and that the sum converges (i.e.,
is independent of the depth of the tree).

The main conclusions that can be drawn from these results are as follows. For
the MX quadtree, the number of nodes is proportional to the total length of the
line segments. This conclusion confirms a similar result obtained by Hunter [22]
and Hunter and Steiglitz [23]. For both the PM and Bucket PMR2 quadtrees, the
number of nodes can be interpreted as being proportional to the product of the number
of intersections among the lines (i.e., the original lines in the random image model
or, alternatively, the vertices of the resulting line segments) and the maximal depth
of the tree. For both the PMRq quadtree and the Bucket PMRq quadtree with
node capacities q ≥ 4, the number of nodes is proportional to the number of line
segments (recall that there are O(M2) intersection points for the M lines, resulting in
O(M2) line segments). It also appears that, for the PMRq (q ≥ 4) quadtree, almost
everywhere, the subdivision stops before the maximal depth, provided, of course, that
the density of the lines (i.e., the M random lines) does not make the tree almost full.

To get the actual values of the bounds (in contrast to the orders of magnitude
summarized above) we use the exact upper bounds as given in (15), (30), and (41),
which depend on a parameter β. It is worth re-emphasizing that the values d0 and β
are not a part of the random image model. They are just parameters used to simplify
the expression of the bounds. In order to apply these bounds, it is required to choose a
value of β which minimizes them while satisfying relation (7) (with d0 being an integer
bounded by N). Fixing the value of β at some constant (e.g., 0.75) gives a bound,
which may not be the tightest but is still useful for understanding the behavior of
the size of the data structure. From a strict theoretical standpoint, such an arbitrary
choice of a value for β is not justified because it usually implies a noninteger value
for d0. Note also that the upper bounds contain negative terms which reduce the
bounds and make them tighter. These negative terms compensate for nodes which
are counted twice in other (positive) terms. For example, nodes in the PM quadtree

at a depth less than d0 are accounted for both by the
∑

1 = 4
3
M2

β2 term and also by

the M2 · N term. The negative term −M2 log2
M
β ≈ −M2d0 compensates for this

situation. Note also that these bounds hold for all values of M and N . However, they
become trivial when M ≥ 2N .

The bounds in this paper were computed under the assumption of a particular
image model. We conjecture that the results apply also to more general images. In
section 5 we examine several methods for inferring the size of quadtrees that represent
real maps and test them experimentally. In essence, we characterize the map by some
property, which may be the total length of its constituent line segments, the number
of vertices, etc., and use this property to specify a class of random images which share
the same property (in an expected value sense). Next, we conjecture that the number
of quadtree nodes required to represent the real map is equal to the expected number
of nodes required to represent a random map from that class.

4.6. Some experimental results for instances of the random model. We
conducted several experiments with synthetic and real data. In this section we de-
scribe the tests that were made with synthetic data. They were aimed at determining
how close the upper and lower bounds on the expected storage costs come to the
actual storage costs when using random data. Section 5 describes the results of tests
with real data.

In these experiments, we built the MX, PM, and Bucket PMR4 quadtrees of

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 47

Table 1

Comparison of the result of expression (3) in plain form (MODEL) and asymptotic form
(MODEL∞), upper bounds (UB), lower bounds (LB), and the actual (experimental) number of nodes
(ER) for M random lines and a maximal depth N in an MX, PM, and Bucket PMR4 quadtrees.

M N
MX PM

MODEL UB LB ER MODEL UB MODEL∞ ER

25 10 94.8K 97.5K 90.7K 94.9K 3.88K 5.35K 1.57K 2.58K
50 10 179K 189K 162K 181K 12.8K 19K 5.18K 9.43K
75 10 255K 269K 225K 256K 25.1K 43.2K 10.2K 19.3K

100 10 325K 365K 259K 325K 39.9K 64.9K 16.2K 32.2K
25 14 1.63M 1.63M 1.62M 1.62M 6.78K 8.27K 2.74K 2.94K
50 14 3.23M 3.24M 3.21M 3.24M 24.6K 30.9K 9.95K 11.7K
75 14 4.82M 4.83M 4.79M 4.80M 51.6K 70.2K 20.9K 25.5K

100 14 6.39M 6.43M 6.32M 6.37M 87K 113K 35.2K 45.2K

M N
Bucket PMR4

MODEL UB ER

25 10 0.846K 4.34K 0.669K
50 10 7.5K 32.5K 6.01K
75 10 3.38K 17.4K 2.73K

100 10 13.1K 69.5K 10.6K
25 14 0.863K 4.34K 0.681K
50 14 3.52K 17.4K 2.83K
75 14 7.97K 32.5K 6.35K

100 14 14.2K 69.5K 11.4K

several depths N , using random synthetic data created by the random image model
described in section 3. For each case, several instances of each random image were
created and the average quadtree size was calculated. The results are summarized in
Table 1 (see also Figure 5). They usually agree with the analytical predictions, and,
in particular, the nonasymptotic bounds for all of the quadtree variants always hold.

We also evaluated the expression (3) for the values of the number of lines M
and the maximum depth N of the quadtrees. We found that while this sum closely
approximates the actual expected number of nodes for the MX quadtree, it only
bounds the number of nodes for the PM and the Bucket PMR4 quadtrees. This is
expected because, for these trees, the P ′

d expressions, which we used, are bounds of
the probabilities and not the probabilities themselves. The PM quadtree asymptotic
approximation, which corrects every bound by the γ∞ factor (see subsection 4.2.2),
yields a more accurate estimate for trees with a high depth and a low number of lines
(as expected). For the Bucket PMR4 quadtree, the sum is a more accurate estimate
(as it errs only by about 25%).

The upper bounds obtained for the MX quadtree were consistently very close to
the observed node counts. In contrast, the upper bounds for the PM and Bucket
PMR4 quadtrees consistently exceed the observed node counts by factors as high as 3
and 7, respectively. This difference can be attributed to the simplifications made in the
bound derivation process. As mentioned above, we did not attach much significance
to obtaining tighter bounds, as they are not used for predictions but, instead, only for
performing a qualitative comparison between the different quadtree representations.

We also conducted some experiments to test the performance of the PM quadtree
under “asymptotic” conditions—that is, when N is relatively large and M is not
too high. These experiments were undertaken to determine whether or not the PM
quadtree grows linearly with the maximal depth N (like the upper bound that we
found). The results were still inconclusive; when examining the number of nodes,
we found that the average number (over 1000 random trials) increases slowly but
steadily with maximal depth, but the high variance still does not allow us to conduct
a decisive statistical test. We also examined histograms of the actual maximal depth

48 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

Table 2

Description of the TIGER files maps (see Figure 8) used in the experiments as well as the
corresponding actual storage requirements for the MX, PM, and Bucket PMR4 quadtrees.

Map Name Depth Vertices NSV NormL Segments
Number of nodes

MX PM PMR4

Falls Church 10 448 317 16.77 638 76869 4105 1317
Falls Church 12 448 317 16.77 638 336873 4477 1349
Falls Church 14 448 317 16.77 638 1387557 4633 1381
Falls Church 16 448 317 16.77 638 5600821 4681 1413
Alexandria 10 4074 2123 49.89 5380 191469 25249 9709
Alexandria 12 4074 2123 49.89 5380 915025 28929 10105
Alexandria 14 4074 2123 49.89 5380 3873949 30413 10429
Alexandria 16 4074 2123 49.89 5380 15774517 31061 10753
Arlington 10 6657 3978 67.91 9205 242373 43913 17637
Arlington 12 6657 3978 67.91 9205 1234449 54753 18677
Arlington 14 6657 3978 67.91 9205 5339437 58949 19481
Arlington 16 6657 3978 67.91 9205 21891973 61277 20281
Howard 10 15009 5283 57.58 17419 191861 63361 29321
Howard 12 15009 5283 57.58 17419 1031317 95945 32921
Howard 14 15009 5283 57.58 17419 4563069 111169 33937
Howard 16 15009 5283 57.58 17419 18866341 118305 34713
DC 10 12818 8805 107.99 19183 332589 73477 35377
DC 12 12818 8805 107.99 19183 1805965 92153 37813
DC 14 12818 8805 107.99 19183 7971497 99093 39685
DC 16 12818 8805 107.99 19183 32905753 103297 41533
Calvert 10 29174 4690 60.39 31143 213965 88769 44057
Calvert 12 29174 4690 60.39 31143 1094453 125053 48129
Calvert 14 29174 4690 60.39 31143 4734589 133141 48493
Calvert 16 29174 4690 60.39 31143 19402105 135241 48665
Prince George’s 10 50161 18055 117.55 59551 315289 157977 88485
Prince George’s 12 50161 18055 117.55 59551 1937553 277209 104993
Prince George’s 14 50161 18055 117.55 59551 8993017 318889 107889
Prince George’s 16 50161 18055 117.55 59551 37751493 334265 109825
Montgomery 10 79822 19793 118.74 90022 299601 186265 115693
Montgomery 12 79822 19793 118.74 90022 1927197 365701 145389
Montgomery 14 79822 19793 118.74 90022 9068057 424869 149613
Montgomery 16 79822 19793 118.74 90022 38212101 449905 151913

as a function of the allowed maximal depth. Here we found that even for depths
as large as 30 we still had trials (and corresponding random collections of 25 lines),
where the PM quadtree had nodes at this maximal depth. In contrast, this never
happened for the PMR quadtree.

5. Predicting storage requirements for real data. In this section we show
that the expected storage predictions, derived for the random image model, are also
useful when real data is considered.

We conducted our tests using real data corresponding to U.S. city and county road
maps that are part of the TIGER files used by the U.S. Census Bureau (see Figure 8).
We used maps ranging from a small map having only 585 road segments (Falls Church,
Virginia) to the largest map having 39,719 segments (Montgomery County, Maryland).
The actual data for the maps, such as the depth (N), number of vertices, segments,
nonshape vertices (abbreviated NSV and described below), the normalized length
(abbreviated NormL and equal to the total length of the line segments divided by
2N), and the number of nodes in the MX, PM, and Bucket PMR4 quadtrees, are
given in Table 2.

Our approach to applying the expected node count predictions to a real map r
depends on finding, for each map r, a class c of a random line image which shares
some property with r. The expected number of nodes required to represent a random
image from class c is taken to be the estimate for the number of nodes required to
represent the map r.

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 49

a)

c)

e)

g)

b)

d)

f)

h)

Fig. 8. Eight maps used to test the estimates on the number of nodes in the representing
quadtrees.

50 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

In most cases, the equivalent random image to a given map r is specified, as
in section 3, by the effective number of lines M̂ , which is inferred, in a number of
alternative ways (termed estimators and described below), from r. Another degree of
freedom in the specification of the equivalent random image is gained if we account
for sparse or empty image parts. Therefore, the equivalent random image is specified
in two stages. First, a random image is specified by M̂ . Second, only a fraction of this
image is retained, while the rest is considered to be empty. A normalization factor
is inferred from the image r and specifies the fraction that is retained. Thus, we
assume that the number of nodes is directly proportional to the portion of the area
that is nonempty, and we use this normalization factor to obtain the number of nodes
in the equivalent class. For most of the estimators, no normalization is done and
the images of the equivalent class are just random images resulting from the random
image model defined in section 3. The parameters specifying the class of random
images are estimated from other parameter values of the real map r such as the total
length Lmap, the total number of vertices Vmap, and the total number of segments
Smap.

The first estimator that we consider is termed an L-based estimator. This esti-
mator is based on measuring the total length Lmap of the line segments. Recall that,
for the random images created by the random image model, the expected total line
length E[L] is π/4 · M · 2N . This is the result of (16), which follows directly from
Theorem GP2. Therefore, the number of lines in every one of the random images
which share the “expected line length” property with the given map is estimated by
M̂ = (Lmap/2

N) · (4/π). For this estimator, there is no area normalization (that is,
the equivalent random image is assumed not to contain empty regions). For example,
the total length of the line segments in the smallest map (i.e., Falls Church, Virginia
shown in Figure 8(a)) that we used is 16.77 · 2N , which yields M̂ ≈ 21 (the length
is normalized relative to the side of the map). Note that this has the effect of con-
verting the line segments of the test image to a different number of infinite lines, the
intersection of which, with the space in which they are embedded, has the same total
length (in an expected value sense).

The second estimator that we consider is termed a V-based estimator. It uses
the number of vertices Vmap in the map to estimate the effective number of lines M̂
by treating all vertices as intersection points between random lines. Recalling that
the expected number of intersection points between the lines of the random image
model is E[V] = πM2/16, we have M̂ =

√
16Vmap/π. Here, again as in the case of

the L-based estimator, no area normalization is performed. Note, however, that most
vertices (termed shape points [7]) in a typical map image are the results of a piecewise
polygonal approximation of a curve, thereby implying that only two line segments
meet at them. This is in contrast to the intersection points in a random image, which
are true intersections (i.e., they correspond to the intersections of pairs of random
lines). A simple heuristic, which we use here, deletes these degree-2 vertices from
the total vertex count and yields the NSV estimator. Clearly, there are many cases
for which this heuristic is nonapplicable. For example, we could not apply it to a
non–self-intersecting curve (e.g., a spiral), as vertex deletion would predict that the
representation requires just a single node (which is clearly erroneous).

The third estimator that we consider is termed an S-based estimator. Like the L-
based and V-based estimators, it is based on replacing the given map with a random
line image of the same size, and no area normalization is performed. Again, we
calculate an effective number of random lines M̂ , but this time it is based on the

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 51

number of line segments. We assume that each vertex corresponds to the intersection
of two random lines, and hence results in four line segments (also termed edges or
segments). Therefore, each vertex has degree 4. Each line segment is incident at two
vertices. This is approximately true, as only a small fraction of the line segments
(i.e., 2M) are incident at just one vertex, as the other endpoint of the line is on the
boundary of the image. Therefore, set the number of incidences (i.e., the sum of the
degrees of the vertices), which is four times the expected number of vertices (i.e.,
4 · πM2/16), to two times the number of edges (i.e., 2 · Smap) and solve for M̂ , which

is equal to
√

8Smap/π.
The fourth estimator that we consider is termed a d-based estimator. This esti-

mator is based on replacing the given map with a (usually smaller) random line image
having the same number of vertices and average line segment length (termed density
here). The expected segment length in the random line image is crudely approximated
as the ratio between the expected length of the part of a random line included in the
image and the expected number of vertices on the line. Using Theorem GP2 from
geometric probability, we know that the expected length of the part of a random line
included in the image is π · 2N/4, while the expected number of vertices in the map is
πM2/16. Since each vertex corresponds to the intersection of two lines and hence lies
on two lines, the expected number of vertices per line is (πM2/16)/(2M) = πM/8.
Therefore, the expected segment length is (π · 2N/4)/(πM/8) = 2 · 2N/M . Equat-
ing this expected segment length to the average segment length of the given map,
calculated simply as the ratio between the total length Lmap and the number of seg-

ments Smap (i.e., Lmap/Smap), and solving for M yield an estimate M̂ on the effective
number of lines, which is equal to 2 · Smap · 2N/Lmap.

Unlike instances of the random image model, real maps tend to be highly nonuni-
form, and, in particular, to have a large proportion of short segments and large empty
“white” regions. This implies that the value of the effective number of lines M̂ calcu-
lated for the d-based estimator above leads to node number estimates which are much
higher than the actual ones. Therefore, we have chosen to compensate for this devi-
ation by imposing the additional natural constraint that the total number of NSVs
in the actual map is equal to the expected number of vertices in the random line
images. This constraint, which was also used to obtain the effective number of lines
for the V-based estimator, is now used as an area normalization factor to specify the
nonuniform class of random images. In particular, every one of these images is equal
to the random lines image in one region and is empty in the rest of it. The area of
the “busy” part is specified to be

NSVmap

(π·M̂2/16)
and is usually smaller than 1. Note that

the expected density remains the same. Since the random image model defined in
section 3 is uniform, we can assume that the expected number of nodes representing
every region is proportional to its area, and thus the node count is reduced by the
aforementioned factor.

In order to estimate the number of nodes in the quadtrees representing the actual
maps, we round the different values of the estimate M̂ and insert this estimate into
the basic sum (3) for the expected number of nodes together with the appropriate
node splitting probability (which depends only on the quadtree type). These results
are tabulated in Table 3. Notice that we do not tabulate the S-based estimator, as it
is very similar to the V-based estimator, and the data bears this out. In particular,
the S-based estimator relies on the number of line segments. This number is related
to the number of vertices, which is the basis of the V-based estimator. Upper bounds,
which have a more compact form and do not require the evaluation of a sum, may be

52 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

Table 3

Predicted storage requirements for the MX, PM, and bucket PMR4 quadtrees using the three
estimators. The numbers given in the table are the ratios between the predicted requirements using
the estimator and the actual ones given in Table 2.

Map Name Depth
L-estimator V-estimator d-estimator

MX PM PMR4 MX PM PMR4 MX PM PMR4

Falls Church 10 1.05 0.50 0.45 1.90 1.57 1.65 0.94 1.31 1.63
Falls Church 12 1.00 0.61 0.45 1.88 1.98 1.65 0.97 1.75 1.67
Falls Church 14 0.99 0.73 0.44 1.87 2.44 1.63 0.98 2.23 1.65
Falls Church 16 0.98 0.86 0.43 1.87 2.94 1.59 0.99 2.74 1.62
Alexandria 10 1.16 0.57 0.57 1.75 1.28 1.45 0.71 0.95 1.32
Alexandria 12 1.09 0.72 0.57 1.72 1.70 1.49 0.78 1.40 1.47
Alexandria 14 1.06 0.89 0.56 1.71 2.17 1.47 0.81 1.89 1.48
Alexandria 16 1.06 1.07 0.54 1.71 2.66 1.44 0.82 2.39 1.44
Arlington 10 1.18 0.54 0.55 1.77 1.22 1.44 0.78 0.91 1.30
Arlington 12 1.07 0.64 0.55 1.70 1.55 1.50 0.83 1.29 1.47
Arlington 14 1.03 0.79 0.54 1.69 1.97 1.47 0.87 1.73 1.47
Arlington 16 1.02 0.95 0.52 1.68 2.40 1.42 0.88 2.18 1.43
Howard 10 1.30 0.28 0.24 2.50 1.06 1.14 0.40 0.50 0.78
Howard 12 1.09 0.27 0.23 2.32 1.13 1.13 0.51 0.73 1.03
Howard 14 1.03 0.31 0.22 2.27 1.35 1.13 0.57 1.00 1.10
Howard 16 1.01 0.36 0.22 2.25 1.63 1.11 0.60 1.30 1.11
DC 10 1.26 0.69 0.67 1.74 1.37 1.51 0.86 1.03 1.33
DC 12 1.12 0.86 0.69 1.67 1.83 1.63 0.93 1.55 1.57
DC 14 1.09 1.10 0.67 1.66 2.41 1.61 0.97 2.14 1.59
DC 16 1.08 1.33 0.65 1.66 2.99 1.55 0.98 2.73 1.54
Calvert 10 1.22 0.22 0.18 2.15 0.70 0.68 0.13 0.19 0.32
Calvert 12 1.08 0.23 0.17 2.08 0.79 0.69 0.22 0.39 0.57
Calvert 14 1.04 0.29 0.17 2.07 1.02 0.70 0.27 0.64 0.67
Calvert 16 1.03 0.35 0.17 2.07 1.28 0.71 0.30 0.90 0.70
Prince George’s 10 1.42 0.37 0.32 2.32 1.08 1.14 0.35 0.42 0.63
Prince George’s 12 1.14 0.34 0.30 2.12 1.11 1.18 0.48 0.68 1.01
Prince George’s 14 1.06 0.40 0.30 2.07 1.41 1.20 0.56 1.03 1.16
Prince George’s 16 1.03 0.49 0.29 2.06 1.78 1.20 0.60 1.41 1.19
Montgomery 10 1.50 0.32 0.25 2.51 0.98 0.94 0.20 0.24 0.35
Montgomery 12 1.15 0.26 0.22 2.22 0.91 0.93 0.30 0.45 0.71
Montgomery 14 1.05 0.30 0.22 2.15 1.15 0.95 0.38 0.74 0.89
Montgomery 16 1.02 0.37 0.21 2.13 1.43 0.95 0.42 1.05 0.94

obtained by inserting the rounded estimate M̂ directly into the upper bounds (15),
(30), and (41), although we do not tabulate them here.

The particular estimators described have a number of inherent limitations. For
example, suppose that the scale of the line segments (roads) of the map is lowered by
a factor of 2 so that all the roads are totally embedded in the NW quadrant of the
original map image, while the rest of the scaled map image is empty. In this case, if
the depth is high enough, it is likely that the number of leaf nodes in PM and Bucket
PMR4 quadtrees will stay the same, while that in the MX quadtree will decrease
significantly. However, the total length of the lines in the quadtree of the scaled-
down map will be off by a factor of 2, thereby implying that the L-based estimator is
likely to be inaccurate for the PM and bucket PMR4 quadtrees. This is most relevant
for maps containing many line segments in a small area and appears to dampen the
suitability of the L-based estimator for arbitrary images, although it does seem to
work for images that span most of the space in which they are embedded.

From our experiments, the L-based estimator seems to perform best for the MX
quadtrees, while the V-based estimator seems to work best for the PM and PMR4

quadtrees. We constructed the d-based estimator to try to improve further on the
estimates for the PM and PMR4 quadtrees but found that it does not improve on
the V-based estimator, and sometimes even does worse. The good performance of the
L-based estimator for the MX quadtree was not surprising, as it confirms the original
result of the analysis of Hunter [22] and Hunter and Steiglitz [23], who found a propor-

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 53

tionality to the perimeter of the image. The correlation between the estimated and
actual values that we observed is noteworthy, considering that the number of nodes in
the maps ranged between 77,000 and 38 million (i.e., a factor of 500). Nevertheless,
we believe that a more detailed examination of the differences between the actual
and predicted storage requirements, as well as other properties, of hierarchical spatial
data structures is an extremely interesting open problem.

We were also interested in testing the validity of the asymptotic results given in
(43) on the expected number of nodes as a function of the number of line segments
in real images and the level of permitted subdivision. To do that, we interpret these
results in terms of an actual map parameter—for example, by replacing the number
of infinite lines M with its estimate, as done above. For example, using the S-based
estimator indicates that the size of the PMR quadtree should be proportional to the
number of map segments and independent of the maximal depth (as long as both are
large). Note that this expectation is verified (or refuted) only on the basis of the real
map data and not on the basis of any modeling assumptions, although we were indeed
led to it by the random line model analysis.

We first examine the MX quadtree. Figure 9 shows the ratios of the node count to
the length of a side of the image (i.e., 2N) as a function of the depth (i.e., N) for the
different maps, which are close to being constant (i.e., horizontal lines) as expected.
Figure 10 shows the ratios of the node count to the square root of the number of
line segments as a function of the number of line segments (i.e., M2) for the different
depths. These curves are close to being constant (i.e., horizontal lines) when the
number of line segments is large enough. This is expected when the S-estimator
(which stipulates that the number of nodes is proportional to the square root of the
number of segments) is used for M and implies that the asymptotic estimate is useful
for predicting the quadtree size for a wide range of maps. We used a logarithmic scale
in Figure 10 to illustrate a similar relative deviation in the ratios for the different
depths as the size of the data increases.

Next, we examine the PM quadtree. Figures 11 and 12 show the ratio of the
node count to the NSVs and to the number of line segments (i.e., M2), respectively,
as a function of the depth for the different maps, which are close to being constant
(i.e., horizontal lines). This means that the node count is independent of the depth.
This is contrary to the prediction of the asymptotic analysis and to the existing worst
cases that arise when the vertices of the line segments are constrained to lie on grid
points [47]. This difference may be explained by observing that, for images generated
using the random image model, factors that lead to the maximum depth (e.g., two
vertices or nonintersecting lines being very close to each other, or a vertex and a line
being very close [49]) are more likely to arise. For road networks, on the other hand,
it is unlikely that a pair of intersections 10 cm from each other will be specified. In
such a case, these intersections will be merged to a higher degree vertex, which is not
split for the PM quadtree. Thus, it seems that there is room for a better model for
road networks (and maybe for other types of real data), which takes such merging
processes into account. This subject is left for future research.

Finally, we examine the PMR4 quadtree. Figures 13 and 14 show the ratio of the
node count to the NSVs and to the number of line segments (i.e., M2), respectively,
as a function of the depth for the different maps, which we expect to be constant (i.e.,
horizontal lines), especially for the larger maps. At lower depths, the ratios increase
with depth for a particular map since the segment counts are constant and the number
of nodes does increase with depth until converging once the decomposition rule can

54 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

0

100

200

300

400

500

600

10 12 14 16

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

Fig. 9. Ratio of MX quadtree nodes
to side length.

100

1000

10000

100000

1e+06

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
at

io

Segment Count

Depth = 10
Depth = 12
Depth = 14
Depth = 16

Fig. 10. Ratio of MX quadtree nodes
to square root of segment count.

5

10

15

20

25

30

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

Fig. 11. Ratio of PM quadtree nodes
to NSV.

2

3

4

5

6

7

8

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

Fig. 12. Ratio of PM quadtree nodes
to the segment count.

no longer be applied. It is interesting to observe that the lines in Figures 13 and 14
are not quite horizontal (i.e., representing a constant function) in the sense that they
have a small positive slope. This is because the line segments in the maps are not
really formed by random infinite lines. Thus, it is not true that the probability that
more than two infinite lines intersect at a point is zero. In particular, we find that in
our maps there are instances when more than four line segments meet at a point, and
hence the number of nodes really grows linearly with depth (since the decomposition
rule is still applicable, and, in fact, will always be applicable in this case), although
this growth is not substantial in our graphs at higher depths. Experiments with
larger values of q verified that the number of nodes does in fact converge as the depth
increases. This can be seen in Figure 15 for q = 12. Figure 5 shows the ratio of the
node count to the segment count (i.e., M2) versus the segment count at depth 16 for
q = 4 and q = 12. The ratios are all within 6% of their average value. Figure 5 also
reveals a general trend in which the ratios decrease as the maps get larger. We used a
logarithmic scale to illustrate a similar relative deviation in the ratios for the different
values of q as the size of the maps increases.

To more clearly see the effect of the existence of points, where more than four line
segments intersect, consider the map of Washington, D.C. (Figure 8). From Figure
11, we can see that the number of nodes increases by a ratio of about 7:4 when the
depth is changed from 10 to 40. From Table 2, we can see that this amounts to an
increase of about (7/4 − 1) · 35, 000 = 26, 250 vertices. Now, let W be the number of

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 55

4

5

6

7

8

9

10

11

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

Fig. 13. Ratio of PMR quadtree
nodes to NSV, q = 4.

1

1.5

2

2.5

3

3.5

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

Fig. 14. Ratio of PMR quadtree
nodes to segment count, q = 4.

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

Fig. 15. Ratio of PMR quadtree
nodes to segment count, q = 12.

0.1

1

10

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
at

io

Segment Count

q = 4
q = 12

Fig. 16. Ratio of PMR quadtree
nodes to segment count versus segment
count at a depth of 16.

vertices associated with the intersection of more than four roads. Each such vertex
leads to a split of its corresponding region until the maximal depth is reached. At
every depth, four nodes are added. Therefore, when the depth is changed from 10 to
40, the number of nodes that are added is W · (40 − 10) · 4 = 26, 250, implying that
the number of such high degree vertices is about 220. Given that the Washington,
D.C. map has 8805 NSVs (i.e., vertices of degree greater than 20), the fraction of such
high degree vertices is about 220/8805 = 0.025. While this number is larger than 0
(the value predicted by our model), it does not appear to change the predictions by
much, as is apparent from the relatively modest increase in the node count as the
depth increases. Note that for the other maps considered the relative increase in the
node count, as well as the fraction of high degree vertices, is much lower. Observe
also that the range of maximum tree depths considered in these graphs is much larger
than in any reasonable application. In particular, if the original map is embedded in
a 100 × 100 km square area, then a maximum depth of 40 amounts to a resolution
of 0.1 micron. Therefore, for a more reasonable maximum depth, the variation in the
predicted node count will be much lower even if, say, 0.025 of the vertices have high
degree.

56 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

6. Concluding remarks. The analysis of the space requirements of a number
of trie-based hierarchical geometric data structures for storing large collections of line
segments was investigated using a random image model. An appropriate model was
developed for each of these structures and estimates of E[S], the expected number
of nodes, were found for them. Future work includes the investigation of the use
of these estimates in a cost model by a query optimizer to generate an appropriate
query evaluation plan in a spatial database application. The analysis presented here
is also of interest because it uses a detailed explicit model of the image, instead
of relying on modeling the branching process represented by the tree and leaving the
underlying image unspecified. The behavior of these expected values is intuitively and
concisely expressed by analytic upper and lower bounds. Other directions for future
research include the application of the geometric probability approach to additional
data types besides line segments (e.g., points, polygons, surfaces, solids, etc.), as well
as alternative trie-based spatial data structures.

We have demonstrated that these estimates, derived for a particular random
image model, are applicable to real data. Specifically, in the case of line map images,
we provided estimators which are based on simple characterizations of the map data,
and which enabled us to successfully apply the results of the analytic model to real
data and to obtain reasonably accurate and useful results. This was verified, however,
only for map data, and characterizing collections of other types of line segments, or
even more general types of spatial information, is still an open problem, and thus a
subject for further research.

Our results can be used to justify claims on the qualitative differences between the
different alternative spatial data structures. For example, we showed that the bucket
(and conventional) PMRq quadtree for q ≥ 4 is superior to the PM quadtree in terms
of the number of nodes that are required. The problem with the PM quadtree is that,
although its behavior is usually acceptable, there are cases in which it requires much
space due to certain point and line configurations. This follows from our analysis and
simulations, as well as from confirming earlier observations on the possible worst-case
behavior of the PM quadtree [47].

Perhaps our most important result is showing that the space requirements of the
Bucket PMRq and PMRq (q ≥ 4) quadtrees are asymptotically proportional to the
number of line segments. This was shown theoretically for a random image model and
was also found to hold for random data and real map data. This is quite significant
as it enables us to predict the number of nodes required by this representation, and,
most important, to show that it is independent of the maximum depth of the tree. It
is thus not surprising that the PMRq quadtree is useful in experimental systems (e.g.,
QUILT [53]) as well as commercial systems (e.g., United Parcel Service (UPS) [4]).

Acknowledgments. We thank S. K. Bhaskar and Gary D. Knott for suggestions
about the evaluation of the sums.

REFERENCES

[1] C. H. Ang, Applications and Analysis of Hierarchical Data Structures, Tech. report TR-2255,
Department of Computer Science, University of Maryland, College Park, MD, 1989.

[2] W. G. Aref and H. Samet, Optimization strategies for spatial query processing, in Proceed-
ings of the 17th Annual International Conference on Very Large Data Bases (VLDB), G.
Lohman, ed., Barcelona, Spain, September 1991, pp. 81–90.

[3] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, The R∗-tree: An efficient
and robust access method for points and rectangles, in Proceedings of the ACM SIGMOD
Conference, Atlantic City, NJ, June 1990, pp. 322–331.

[4] R. Bonefas, Personal communication, 1991.

ANALYSIS OF TRIE-BASED SORTING OF LINE SEGMENTS 57

[5] R. de la Briandais, File searching using variable-length keys, in Proceedings of the
IRE/IEEE/ACM Western Joint Computer Conference, San Francisco, CA, 1959, pp. 295–
298.

[6] T. Brinkhoff, H. P. Kriegel, R. Schneider, and B. Seeger, Multi-step processing of spatial
joins, in Proceedings of the ACM SIGMOD Conference, Minneapolis, MN, June 1994, pp.
197–208.

[7] Bureau of the Census, TIGER/Line Census Files, 1990 Technical Documentation, Wash-
ington, DC, 1991.

[8] C. R. Dyer, The space efficiency of quadtrees, Comput. Graphics Image Process., 19 (1982),
pp. 335–348.

[9] C. Faloutsos and I. Kamel, Beyond uniformity and independence: Analysis of R-trees using
the concept of fractal dimension, in Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), Minneapolis, MN, May 1994, pp.
4–13.

[10] C. Faloutsos, H. V. Jagadish, and Y. Manolopoulos, Analysis of the n-dimensional
quadtree decomposition for arbitrary hyperectangles, IEEE Trans. Knowledge Data Engrg.,
9 (1997), pp. 373–383.

[11] C. Faloutsos, T. Sellis, and N. Roussopoulos, Analysis of object oriented spatial access
methods, in Proceedings of the ACM SIGMOD Conference, San Francisco, CA, May 1987,
pp. 426–439.

[12] R. A. Finkel and J. L. Bentley, Quad trees: A data structure for retrieval on composite
keys, Acta Inform., 4 (1974), pp. 1–9.

[13] P. Flajolet, G. Gonnet, C. Puech, and J. M. Robson, Analytic variations on quadtrees,
Algorithmica, 10 (1993), pp. 473–500.

[14] P. Flajolet and T. Lafforge, Search costs in quadtrees and singularity perturbation asymp-
totics, Discrete Comput. Geom., 12 (1994), pp. 151–175.

[15] P. Flajolet and C. Puech, Partial match retrieval of multidimensional data, J. ACM, 33
(1986), pp. 371–407.

[16] E. Fredkin, Trie memory, Comm. ACM, 3 (1960), pp. 490–499.
[17] G. Graefe, Query evaluation techniques for large databases, ACM Comput. Surveys, 25 (1993),

pp. 73–170.
[18] A. Guttman, R-trees: A dynamic index structure for spatial searching, in Proceedings of the

ACM SIGMOD Conference, Boston, MA, June 1984, pp. 47–57.
[19] E. G. Hoel and H. Samet, Data-parallel spatial join algorithms, in Proceedings of the 23rd

International Conference on Parallel Processing, vol. 3, St. Charles, IL, 1994, pp. 227–234.
[20] E. G. Hoel and H. Samet, Performance of data-parallel spatial operations, in Proceedings of

the 20th Annual International Conference on Very Large Data Bases (VLDB), Santiago,
Chile, September 1994, pp. 156–167.

[21] M. Hoshi and P. Flajolet, Page usage in a quadtree index, BIT, 32 (1992), pp. 384–402.
[22] G. M. Hunter, Efficient Computation and Data Structures for Graphics, Ph.D. dissertation,

Department of Electrical Engineering and Computer Science, Princeton University, Prince-
ton, NJ, 1978.

[23] G. M. Hunter and K. Steiglitz, Operations on images using quad trees, IEEE Trans. Pattern
Anal. Mach. Intell., 1 (1979), pp. 145–153.

[24] C. L. Jackins and S. L. Tanimoto, Oct-trees and their use in representing three dimensional
objects, Comput. Graphics Image Process., 14 (1980), pp. 249–270.

[25] G. Kedem, The quad-CIF tree: A data structure for hierarchical in-line algorithms, in Pro-
ceedings of the ACM/IEEE 19th Annual Design Automation Conference, Las Vegas, NV,
June 1982, pp. 352–257.

[26] A. Klinger, Patterns and search statistics, in Optimizing Methods in Statistics, J. S. Rustagi,
ed., Academic Press, New York, 1971, pp. 303–337.

[27] K. Knowlton, Progressive transmission of grey-scale and binary pictures by simple, efficient,
and lossless encoding schemes, Proc. IEEE 68 (1980), pp. 885–896.

[28] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, vol. 3, 2nd ed.,
Addison-Wesley, Reading, MA, 1998.

[29] J. H. Lee, D. H. Kim, and C. W. Chung, Multi-dimensional selectivity estimation using com-
pressed histogram information, in Proceedings of the ACM SIGMOD Conference, Philadel-
phia, PA, June 1999, pp. 205–214.

[30] C. Mathieu, C. Puech, and H. Yahia, Average efficiency of data structures for binary image
processing, Inform. Process. Lett., 26 (1987), pp. 89–93.

[31] Y. Matias, J. S. Vitter, and M. Wang, Wavelet-based histograms for selectivity estimation,
in Proceedings of the ACM SIGMOD Conference, Seattle, WA, June 1998, pp. 448–459.

58 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

[32] D. Meagher, Geometric modeling using octree encoding, Comput. Graphics Image Process.,
19 (1982), pp. 129–147.

[33] B. Moon and J. H. Saltz, Scalability analysis of declustering methods for multidimensional
range queries, IEEE Trans. Knowledge Data Engrg., 10 (1998), pp. 310–327.

[34] M. Muralikrishna and D. J. DeWitt, Equi-depth histograms for estimating selectivity factors
for multi-dimensional queries, in Proceedings of the ACM SIGMOD Conference, Chicago,
IL, June 1988, pp. 28–36.

[35] R. C. Nelson and H. Samet, A consistent hierarchical representation for vector data, Comput.
Graphics, 20 (1986), pp. 197–206.

[36] R. C. Nelson and H. Samet, A Population Analysis of Quadtrees with Variable Node Size,
Tech. report TR-1740, Department of Computer Science, University of Maryland, College
Park, MD, December 1986.

[37] R. C. Nelson and H. Samet, A population analysis for hierarchical data structures, in Pro-
ceedings of the ACM SIGMOD Conference, San Francisco, CA, May 1987, pp. 270–277.

[38] J. A. Orenstein, Spatial query processing in an object–oriented database system, in Proceed-
ings of the ACM SIGMOD Conference, Washington, DC, May 1986, pp. 326–336.

[39] M. Ouksel and P. Scheuermann, Storage mappings for multidimensional linear dynamic
hashing, in Proceedings of the ACM SIGACT–SIGMOD Symposium on Principles of
Database Systems (PODS), Atlanta, GA, March 1983, pp. 90–105.

[40] B. U. Pagel, H. W. Six, H. Toben, and P. Widmayer, Towards an analysis of range query
performance in spatial data structures, in Proceedings of the 12th Annual ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Washington,
DC, May 1993, pp. 214–221.

[41] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed., McGraw Hill,
New York, 1991.

[42] C. Puech and H. Yahia, Quadtrees, octrees, hyperoctrees: A unified analytical approach to
three data structures used in graphics, geometric modeling and image processing, in Pro-
ceedings of the ACM Symposium on Computational Geometry, Baltimore, MD, June 1985,
pp. 272–280.

[43] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading,
MA, 1990.

[44] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing,
and GIS, Addison-Wesley, Reading, MA, 1990.

[45] H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann,
San Francisco, CA, 2006.

[46] H. Samet, A. Rosenfeld, C. A. Shaffer, R. C. Nelson, and Y. G. Huang, Application of
hierarchical data structures to geographical information systems: Phase III, Tech. report
TR-1457, Department of Computer Science, University of Maryland, College Park, MD,
1984.

[47] H. Samet, C. A. Shaffer, and R. E. Webber, Digitizing the plane with cells of non-uniform
size, Inform. Process. Lett., 24 (1987), pp. 369–375.

[48] H. Samet and M. Tamminen, Efficient component labeling of images of arbitrary dimension
represented by linear bintrees, IEEE Trans. Pattern Anal. Mach. Intell., 10 (1988), pp.
579–586.

[49] H. Samet and R. E. Webber, Storing a collection of polygons using quadtrees, ACM Trans.
Graphics, 4 (1985), pp. 182–222.

[50] L. A. Santalo, Integral Geometry and Geometric Probability, Encyclopedia of Math. Appl. 1,
Addison-Wesley, Reading, MA, 1976.

[51] C. A. Shaffer, A formula for computing the number of quadtree node fragments created by a
shift, Pattern Recognition Lett., 7 (1988), pp. 45–49.

[52] C. A. Shaffer, R. Juvvadi, and L. S. Heath, Generalized comparison of quadtree and bintree
storage requirements, Image Vision Comput., 11 (1993), pp. 402–412.

[53] C. A. Shaffer, H. Samet, and R. C. Nelson, QUILT: A geographic information system
based on quadtrees, Int. J. Geographical Inform. Systems, 4 (1990), pp. 103–131.

[54] M. Tamminen, Encoding pixel trees, Comput. Vision Graphics Image Process., 28, (1984), pp.
44–57.

[55] M. Tamminen, Comment on quad- and octtrees, Comm. ACM, 27 (1984), pp. 248–249.
[56] M. Vassilakopoulos and Y. Manolopoulos, Analytical results on the quadtree storage-

requirements, in Proceedings of the 5th International Conference on Computer Analysis
of Images and Patterns (CAIP ’93), D. Chetverikov and W. G. Kropatsch, eds., Lecture
Notes Comput. Sci. 719, Springer-Verlag, Berlin, 1993, pp. 41–48.

