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ABSTRACT

Geotagged tweet streams contain invaluable information about
the real-world local events like sports games, protests and traf-
�c accidents. Timely detecting and extracting such events has
various applications but yet unsolved challenges. In this paper,
we present DeLLe, a methodology for automatically Detecting
Latest Local Events from geotagged tweet streams. DeLLe �rst
�nds unusual locations which have aggregated unexpected num-
ber of tweets, and then ranks the unusual locations to select the
top ones that are likely to be local event candidates. We evalu-
ate DeLLe on the city of Sea�le, WA as well as a larger city of
New York. �e results show that the proposed method generally
outperforms competitive baseline approaches.
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1 INTRODUCTION

With people posting what is happening outside in the real world,
tweets in Twi�er encapsulate invaluable information on real-world
events as they break. Geotagged tweets are particularly interesting
in the sense that they provide the complement information about
the place of interest, e.g., where the events occur. In this paper,
we aim to detect the latest local events from live geotagged tweet
streams. A local event is de�ned as an unusual activity that appears
at some speci�c time and place and also shows topical coherence.
For instance, Figure 1 presents some examples of geotagged tweets
about a soccer game held in the city of Sea�le, WA. Timely discover-
ing such local events has a wide range of applications. For example,
people can acquire the latest information about local activities in
their living town., thereby enhancing their daily lives. It can also
be helpful for commuting alarms by reporting real-time tra�c jams
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Figure 1: Examples of geotagged tweets about the soccer game of

“Seattle Sounders” vs “D.C. United” at the stadium of “CenturyLink

Field” at 7:30 PM, 2017-07-19. All the tweets were located at the sta-

dium of “CenturyLink Field”.

or accidents. In such cases, a�er learning what is happening, com-
muters can actively make a decision to bypass the congested road
segments or avoid the accident sites .

It is, however, challenging to detect local events from live geo-
tagged tweet streams. For example, detecting local events by captur-
ing unusualness requires considering not only temporal historical
pa�erns but also spatial circumstances. Some studies [1–4] measure
the burstiness, intensity of increment in the number of tweets at
a place over a short time period, as signals of local events. But
burstiness does not always imply the occurrence of a local event.
For example, the burstiness of tweets at a shopping mall or a fa-
mous co�ee bar in the morning is o�en expected and not unusual.
Some work improves this measure to capture temporally routine
pa�erns by gathering time-aware statistics [5]. However, without
geographical consideration, occasional nation-wide events may
also accumulate a temporally unusual number of tweets at local
places. For example, on the presidential election night, one may
suddenly observe more tweets everywhere.

In this paper, we propose DeLLe to discover local events from
live geotagged tweets. �e contribution of DeLLe lies in its two
modules: seeker and ranker. Seeker �nds unusual locations which
exhibit spatiotemporal unusualness with respect to the number of
tweets and therefore potentially correspond to local events. For
this purpose, seeker employs a novel prediction-based anomaly
detection strategy. In particular, seeker �rst exploits convolutional
LSTMs (ConvLSTM [6]) to predict the expected number of tweets
in the future, which accounts not only for historical pa�erns but
also for neighboring locations. Next, seeker compares the predicted
value with the actual number of tweets to determine the existence of
unusualness. Unlike previous studies [2, 7] which claim anomalies
only based on the local time series data of a location, we also
consider the horizontal situation in other places simultaneously to
mitigate the e�ects of global events.
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Güting, E. Hoel, R. Tamassia, and L. Xiong, eds., pages 520-523, Sea�le, WA, November 2018.

Ranker suppresses the possibly noisy candidates of local events.
In practice, not all spatiotemporal burstinesses necessarily corre-
spond to an actual local event. We therefore bring order to the candi-
dates with a ranking procedure by considering temporal burstiness,
spatial burstines and topical coherence, and thereby select the top
ones likely to be corresponding to the occurrence of local events.

2 RELATEDWORK

�ere has been a lot of works on detecting local events using tweets
in Twi�er. Atefeh [8] and Abdelhaq [9] provide two excellent
surveys. In general, existing methods focusing on geotagged tweets
can be classi�ed into two strategies: model dimension extension
and geographical space tessellation. Model dimension extension
treats location as additional factors to existing models, e.g., latent
variables in the generative topic model [10–13].

Geographical space tessellation divides space into small and dis-
joint cells for aggregating geotagged tweets. �e motivation is that a
local event usually has a limited spatial impact and would fall in the
same or nearby cell(s). �e grid is the simplest yet most commonly
used way of tessellation [2, 14–17], although other structures have
also been explored including hierarchical triangular meshes [7].

A�er aggregating tweets to tessellation cells, a simple way for
event detection is to examine whether the number of the aggre-
gated tweets or the arriving rate exceeds a certain threshold [1, 5].
�is, however, is easily plagued by tweet distribution heterogeneity
both temporally and spatially. Various anomaly detection methods
are then explored. �e core idea is to use history data to build a
baseline (or make a prediction) and then compare with the actual
value to check for signi�cant discrepancies [2, 3, 7]. For example,
TwitInfo [18] uses the weighted average of historical tweet counts
to compute the expected frequency of tweets. But sole historical
data o�en neglect the e�ects exerted by nearby geographical re-
gions. Krumm and Horvitz [7] therefore include features like tweet
counts from adjacent regions in their anomaly detection method.
Our method is di�erent from the above methods in two senses:
1) our prediction model captures both spatial dependencies and
temporal pa�erns [19]; 2) when claiming an anomaly, we account
not only for the history of a location itself but also for the situation
at other places to mitigate the e�ect of unexpected global events.

�e most related work to our task are EvenTweet [2] , Eyewit-
ness [7]. EvenTweet [2] detect events by identifying and clustering
temporal bursty keywords. However, using words instead of tweets
as clustering elements, this method may group semantically irrele-
vant words together. Eyewitness [7] discretizes space and time and
�nds tweet volume spikes as potential local events by comparing
the predicted value with the observed value. However, it needs
to perform an exhaustive sweep through di�erent space and time
pieces and thereby is not easy to modify for online processing.

Due to the sparsity of geotagged tweets (1%), some methods try
to acquire more local tweets by tracking local people [20, 21] or
utilizing geotagging procedures [22–25] for location estimation.
�e location information in these methods, however, are usually
in a very coarse resolution (e.g., city-level) and rarely used when
grouping tweets together. Some methods try to �rst detect an event
and estimate its location a�erwards, e.g., Twi�erStand [26–30].
�ese methods are di�erent from our focus as we instead try to
extract local events from geotagged tweet streams.

3 METHOD

3.1 Problem

Given a geotagged tweet stream, our goal is to identify the latest lo-
cal events. Formally, suppose that t is the current (latest) time point
and ∆t is a short time interval, we de�ne Dt to be the geotagged
tweet stream up to t , and Dt−∆t→t be the geotagged tweet stream
from t − ∆t to t . In other words, Dt−∆t→t essentially represents
the latest geotagged tweets with respect to ∆t . For simplicity, a
geotagged tweet d can be seen as a tuple 〈timed , locd , txtd ,userd 〉
in which timed is the publication time, locd is the geographical lo-
cation (i.e., a pair of lat/long coordinates), txtd refers to the textual
content and userd is the user posting this tweet. �e latest local
event detection problem is then to extract from Dt−∆t→t all pos-
sible local events, where each event is a cluster of geographically,
temporally and semantically close tweets.

3.2 System

In order to detect the local events from Dt−∆t→t , we �rst dis-
cretize the geotagged tweet stream into a set of disjoint intervals,
i.e.,{· · · [t − 2∆t , t − ∆t ), [t − ∆t , t )}. We then utilize a uniform grid
to tessellate the spatial region into squares of size ∆l ×∆l , where ∆l
is the side length of the square. A�er discretizing space, the tweets
are subsequently fed into a pipeline of two modules: seeker and
ranker. Seeker �nds spatiotemporal unusualness in the number of
tweets as potential candidates of local events. Ranker selects which
set of unusualness are most likely to be local events.

3.2.1 Seeker. A�er tessellating the space into an M × N grid
and discretizing time into periods of length ∆t , the task of seeker is
to identify grid cells that show an unusual aggregation of tweets in
latest geotagged tweet stream Dt−∆t→t or DT where T denotes
the last time interval of length ∆t .

Tweet Count Prediction �e goal of tweet count prediction
is to use previously historical tweet count data in a local region
to forecast on the number of tweets to appear in the next time
step [19]. On an M × N grid map, the tweet count values in the
grid cells at time step τ can be wri�en in a tensor Xτ ∈ �

M×N

where Xτ (m,n) is the tweet count in the grid cell (m,n) at time step
τ . �erefore, the prediction problem is formulated as follows:

De�nition 3.1. �e tweet count prediction problem P is to gen-
erate a prediction YT , which is an estimation of XT , given a list of
historical observations {Xτ |τ = 0, · · · ,T − 1}.

In this paper, we utilize a residual Convolutional LSTM (ConvL-
STM [6]) based prediction model [19], which is reported to have
state-of-the-art accuracy. �e prediction model in [19] is made
up of three main branches: closeness, period and trend, to incor-
porate temporal pa�ern information at a di�erent scale in tweet
data, together with a meta-data branch to capture features such as
time-of-day (e.g., in minutes), day-of-week.

From Prediction To Unusualness We de�ne the prediction
error to be ET = YT − XT , where XT is the latest tweet count on a
spatialM×N grid andYT is the prediction ofXT . ET (m,n) indicates
the prediction error of the grid cell (m,n). Intuitively, a signi�cant
negative ET (m,n) indicates a local event as there were many more
tweets than usual. Following [7], we de�ne the precision of our
prediction model to be σET , where σET (m,n) is the standard de-
viation of the grid cell (m,n) w.r.t. its history of prediction errors
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ET (m,n) = {· · · ET−1(m,n),ET . To account for the precision of the
prediction model, we re-de�ne the prediction error as:

E′T = ET � σET (1)
where � denotes the element-wise division operation.

To detect unusual grid cells using E′T , we utilize an image
restoration framework called Deep Image Prior [31]. Our intu-
ition is that the unusualness in E′T is like spike noise in an image,
and Deep Image Prior can be used to denoise corrupted images
without prior knowledge of training data. Suppose that E′′T is the
restored image of E′T , and ∆E′T = E′′T − E′T , we claim a grid cell
(m,n) is unusual if

|∆E′T (m,n) − µ∆E′T |≥ k∆E′T · σ∆E′T (2)
where µ∆E′T and σ∆E′T are the mean and standard deviation of
grid cells in ∆E′T , respectively. k∆E′T is a prede�ned threshold for
determining the unusualness of a grid cell. Di�erent from [7], our
approach accounts for both history of a grid cell and information
of other cells on the whole region when detecting unusualness in a
location. �is is important in di�erentiating global events which
might cause an unusual number of tweets on a local grid cell.

3.2.2 Ranker. In this section, we make a ranking of these un-
usual locations to identify the top ones that are most likely corre-
sponding to the occurrence of local events, by addressing temporal
burstiness, spatial burstiness and topical coherence.

Temporal Burstiness For a grid cell (m,n), suppose thatYT (m,n)
represents a history of estimations on its number of tweets up to
the time step T , and is de�ned as:

YT (m,n) = {· · ·YT−1(m,n),YT (m,n)} (3)
�en we use z-score to quantify the grid cell (m,n)’s temporal
burstiness [32] at T , denoted as TBT (m,n) and de�ned as:

TBT (m,n) =
XT (m,n) − µYT (m,n)

σYT (m,n)
(4)

where µYT (m,n) and σYT (m,n) are the mean and standard deviation
of YT (m,n), respectively. Recall that XT (m,n) is the actual number
of tweets in grid cell (m,n) at time step T .

Spatial BurstinessGiven a grid cell (m,n), the spatial burstiness
is measured by the spatial density distribution of keywords of
the tweets in (m,n). �e intuition is that a low spatial density
distribution means that the keyword is widely spread over space
and a high distribution means that the keyword occurs only at a
few locations. �erefore, the keywords in local events should have
higher spatial density distribution to be spatially bursty.

Suppose thatDT (m,n) is the tweet set in grid cell (m,n) atT , and
WT (m,n) is the set of keywords (e.g., a�er removing stop words)
in (m,n), i.e.,WT (m,n) = {w | w ∈ txtd and d ∈ DT (m,n)}. Let
SDDw

T (m,n) be the spatial density distribution of keyword w in
grid cell (m,n) at T , i.e.,

SDDw
T (m,n) =

# of w in grid cell (m,n)∑
(m′,n′)∈M×N

# of w in grid cell (m′,n′) (5)

We now de�ne the spatial burstiness of grid cell (m,n) as:
SBT (m,n) =

∑
w ∈WT (m,n)

SDDw
T (m,n) (6)

Topical Coherence �e topical coherence captures the seman-
tic similarity of tweets in a grid cell. In other words, the tweets
posted on the same event should be discussing similar content
and probably using similar vocabularies. Twee2Vec [33] learns

the vector-space representations of tweets using a character-based
bi-directional recurrent neural network model, and has been demon-
strated to have good performance in the application of clustering
semantically similar tweets [34]. To measure the topical similarity
between tweets, we use Tweet2Vec to encode a textual tweet in
character sequence to a vector embedding with a default dimension
size of 500.

Let TS(d ′,d ′′) be the topical similarity between tweets d ′ and
d ′′. To measure the topical coherence of the tweets in cell (m,n),
we construct a graph, called Tweet In�uence Graph.

De�nition 3.2. (Tweet In�uence Graph). �e tweet in�uence
graph on the grid cell (m,n) at T , is an undirected graph GT =
(VT ,ET ) where VT is the set of all tweets in DT (m,n), ET is the set
of edges between tweets, and the weight of an edge between d ′ and
d ′′ is their topical similarity TS(d ′,d ′′).

We now employ PageRank [35], a random walk procedure, on
the tweet in�uence graph to bring order to the in�uence of tweets in
DT (m,n) and thus identify the top k tweets with the most in�uence,
denote by Dk

T (m,n). �e topical coherence is thus de�ned as:

TCT (m,n) =

∑
d ′∈Dk

T (m,n),d ′′∈Dk
T (m,n)

TS(d ′,d ′′)

k2 (7)
�e rationale is that if the tweets in DT (m,n) are about the same
local event, then the most topically in�uential tweets should have
higher topical similarity between each other. One may point out
that such a topical coherence measurement would suppress a grid
cell having multiple topically unrelated ongoing events. We argue
that such a case is very rare with a �ne space and time discretization.

3.2.3 Ranking Function. As the �nal step, we now de�ne the
ranking score of the grid cell (m,n) by aggregating its temporal
burstiness, spatial burstiness and topical coherence, a�er rescaling
them to [0, 1] with respect to other grid cells:

RT (m,n) = TB′T (m,n) · SB′T (m,n) ·TC ′T (m,n) (8)
where TB′T (m,n) = (TBT (m,n) − TBmin

T )/(TBmax
T − TBmin

T ) with
TBmax

T and TBmin
T being the maximum and minimum of topical

burstiness among all grid cells at T . Spatial burstiness and topical
coherence are rescaled in the same way, receptively. A�er the
ranking, we select the top-K and report them as the local events.

4 EVALUATION

DeLLe is implemented in Python and evaluated with on a computer
with an Intel Xeon E5 CPU, an Nvidia �adro P6000 GPU and a
64GB RAM.

4.1 Experimental Settings

4.1.1 Datasets. �e evaluation is performed on two sets of geo-
tagged tweets collected from 2015-07-09 to 2017-07-23 in two cities:
Sea�le, WA (SEA) and New York City (NYC) [19]. �eir geograph-
ical regions are two bounding boxes spanning from [47.579784, -
122.373135] to [47.633604, -122.293062] for SEA, and from [40.647984,
-74.111093] to [40.853945, -73.837472] for NYC. �e total number of
tweets a�er removing spam tweets [19], is 756, 457 and 9, 353, 721,
respectively. We take the data from 2017-06-23 to 2017-07-23 for
testing and local event detection, and its previous data for training
the tweet count prediction model.
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4.1.2 Baseline Approaches. �e two baseline approaches are:
• EvenTweet [2] �rst identi�es temporal bursty keywords and

spatial local keywords and then clusters them to �nd local events.
• Eyewitness [7] �nds tweet volume spikes in discretized time and

space as potential local events by comparing the actual number
of tweets with the predicted value using a regression model.
4.1.3 Parameter Se�ings. �e major parameters in DeLLe are

set as follows. For space and time, we set the side length of grid
cells ∆l = 500m and the length of time interval ∆t = 30 minutes
(by dividing a natural integral hour into two intervals) since such
values provide �ne enough resolution for local event detection as
well as yield good performance for tweet count prediction [19]. As
a result, we have a 12 × 12 grid map in SEA and 46 × 46 in NYC.
We set the threshold for determining the unusualness of a grid cell
k∆E′T = 3, a commonly used value for anomaly detection.

In each time interval, we select at most K = 5 unusual grid cells
as the local event candidates. Because not every time interval neces-
sarily has K local events happening, we apply a simple heuristic for
suppressing the negative candidates. It removes grid cells having
too few users (i.e., less than 5). For fairness, we also similarly �lter
out the event candidates with less than 5 users for the baseline
approaches as well in the evaluation.

4.2 E�ectiveness

Table 1: Comparison results using Precision, Recall and F-Score.

Method Sea�le, WA NYC
# P R F # P R F

EvenTweet 354 0.391 0.390 0.390 1665 0.146 0.131 0.138
Eyewitness 273 0.769 0.593 0.670 1204 0.614 0.398 0.483
DeLLe 269 0.862 0.655 0.745 1128 0.741 0.450 0.560

We evaluate the di�erent local event detection methods using pre-
cision, recall and f-score. For precision, we recruited 3 volunteers
to individually judge the detected events and collect the results
using the strategy of majority votes1. In lack of groundtruth on
the set of events happening in the real world, we build a pseudo
groundtruth by assembling a set of distinct true positive local events
reported in di�erent methods to calculate the recall and f-score.
�e comparison results are listed in Table 1. It shows that DeLLe
outperforms baseline approaches in most cases. In particular, a
signi�cant improvement is observed over EvenTweet.

5 CONCLUSIONS

In this paper, we presented DeLLe for detecting latest local events
in geotagged tweet streams. In essence, DeLLe �rst identi�es spa-
tiotemporal unusualness using a novel prediction-based anomaly
detection approach, and subsequently ranks them to identify po-
tential local events, by addressing both spatiotemporal burstiness
and topical coherence. �e evaluation results on two selected cities
show that DeLLe outperforms competitive baselines in most cases,
showing the e�ectiveness of the proposed method.

�e human evaluation yields a groundtruth of local events, and
therefore enables the exploration of learning to classify spatiotem-
poral unusualness into true/false local events using features like
burstiness and topical coherence. We leave this for our future work.
1�e instructions given to the judges are summarized at h�p://www.cs.umd.edu/∼hyw/
instructions-local-events.txt
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