
CS-TR-4102 IRI-97-12715
January 2000

Contractive Embedding Methods for Similarity
Searching in Metric Spaces

G��sli R. Hjaltason and Hanan Samet

Computer Science Department
Center for Automation Research

Institute for Advanced Computer Studies
University of Maryland

College Park, MD 20742-3275
grh@cs.umd.edu and hjs@cs.umd.edu

Abstract

Complex data types (e.g., images, documents, DNA sequences, etc) are becoming increasingly

important in database applications. The term multimedia database is often used to characterize

such databases. A typical query for such data seeks to �nd objects that are similar to some target

object, where (dis)similarity is de�ned by some distance function. Often, the cost of evaluating the

distance of two objects is very high. Thus, the number of distance evaluations should be kept at

a minimum, while (ideally) maintaining the quality of the result. One way to approach this goal

is to embed the data objects in a vector space, such that the distances of the embedded objects

approximates the actual distances. Thus, queries can be performed (for the most part) on the

embedded objects. In this paper, our focus is on embedding methods that allow returning the same

query result as if the actual distances of the objects are consulted, thus ensuring that no relevant

objects are left out (i.e., there are no false dismissals). Particular attention was paid to SparseMap,

a variant of Lipschitz embeddings, and FastMap, which is designed to be a heuristic alternative

to the KLT (and the equivalent PCA and SVD) method for dimensionality reduction. We show

that neither SparseMap nor FastMap guarantee that queries on the embedded objects have no false

dismissals. However, we describe a variant of SparseMap allows queries with no false dismissals.

Moreover, we show that with FastMap, the distances of the embedded objects can be much greater

than the actual distances. This makes it impossible (or at least impractical) to modify FastMap to

guarantee no false dismissals.

This work was supported in part by the National Science Foundation under Grant IRI-97-12715.

1 Introduction

Multimedia databases are becoming increasingly important for storing and retrieving data in a

wide range of applications including such �elds as computational biology, computer aided design

(CAD), image processing, etc. Examples of this type of data includes images, video, and text

documents, and even such exotic data as protein and DNA sequences. A common type of queries on

multimedia data is known as similarity searching (also termed content-based or similarity retrieval),

and seeks to �nd objects in the database that are similar to some target object. For such queries

to be meaningful, some measure of similarity between the objects in the database must be de�ned.

Usually, the query returns objects having at least some given level of similarity with the target

object (range query) or some given number of the most similar objects (nearest neighbor query).

1.1 Embedding

The level of similarity (or, actually, dis-similarity) between two objects is typically measured with

a distance function d. Since the data objects in multimedia databases are usually of a complex

nature, the distance function is often very expensive to compute. For example, computing the

similarity of two proteins, i.e., based on their amino acid sequences, has been reported as taking

several hundred milliseconds on typical workstations [19]. For this reason, it is desirable to make

as few distance calculations as possible when executing similarity queries, and preferably none. A

common approach to achieve this goal is to map the objects into a points in a low-dimensional

space and then conduct the search there with the help of multidimensional indexing methods [21].

In general, the mapping must be made solely in terms of the distance function d rather than using

information about the speci�c nature of the objects (i.e., d is a `black box'). Most mapping methods

require that d be a distance metric, i.e., that d satis�es the triangle inequality (or at least that only

a relative small number of distances violate the triangle inequality).

In some multimedia applications, the mapping of data objects into vectors1 is based on some

speci�c features of the objects. Each coordinate axis in the vector space represents one of the

features, and the data objects are termed feature vectors [8]. In image data, for example, a feature

may represent the color in a portion of an image, or some aspect of the shape of the object being

depicted [4, 8]. The distance function d is then usually de�ned with some weighted combination of

the features that make up the feature vectors. This article is concerned with the general case when

the data objects are arbitrary objects rather than feature vectors. Nevertheless, some of the tech-

niques we discuss may also be relevant for the case when objects are represented by feature vectors

since the dimensionality of the feature vectors may be too high to index e�ectively. Nevertheless,

we do occasionally refer to the result of mapping general objects into a vector space as a feature

vector, even though the coordinate axes do not really correspond to \features" of the object in this

case.

1.2 General Distance Metrics

(S; d) is said to be a �nite metric space if S is a �nite set of size N and d : S�S ! R+ is a distance

metric. A great deal of work has been done on embedding �nite metric spaces into low-dimensional

real-normed spaces; i.e., real-valued vector spaces with a norm (i.e., a measure of the length of

a vector) which serves as the basis of a distance metric. Such embeddings have been extensively

1We use the terms vectors and points interchangeabley as for our purposes these terms essentially have the same

meaning.

1

studied in pure mathematics [3, 14] (where the embedding is often performed into Hilbert spaces,

which are essentially abstractions of real-valued vector spaces with a dot product [25]), and have

found application in a variety of settings [5, 12, 16, 19, 23]. Usually, the norm is one of the Lp
norms, jjxjjp = (

P jxijp)1=p. Distance metrics based on such a norm are often termed Minkowski

metrics. The most common Minkowski metrics are the Euclidean distance metric (L2), the City

Block distance metric (L1), and the Chessboard distance metric (L1), denoted with dE , dA, and

dM , respectively. An important special case of metric space embedding is the one where the

original �nite metric space is a Euclidean space (i.e., a vector space with the Euclidean norm), or

a vector space with another norm, of higher dimensionality than the embedding space (e.g., the

original vectors might be feature vectors). This type of metric space embedding is referred to as

dimensionality reduction.

Formally, an embedding of a �nite metric space (S; d) into (Rk; d0) is a mapping F : S ! Rk,

where k is the dimensionality of the embedding space and d0 : Rk�Rk ! R+ is the distance metric

of the embedding space. If we denote the norm in Rk with jj � jj, the distance metric d0 is de�ned as

d0(x; y) = jjx� yjj. Ideally, the distance d0(F (o1); F (o2)) in the embedding space adheres closely to

the distance d(o1; o2) in the original space. However, it is often not possible and/or impractical to

achieve exact correspondence between the distances based on d and d0. If an embedding F exists

such that d0(F (o1); F (o2)) = d(o1; o2) for all o1; o2 2 S, then (S; d) and (Rk; d0) are said to be

isometric (strictly speaking, (S; d) is isometric to (F (S); d0) where F (S) � Rk is the range of S).

For similarity retrieval applications, it is often useful to consider a larger, potentially in�nite,

metric space (U; d), where S � U , and de�ne the domain of F as U rather than S. As a concrete

example, U might be the set of all possible protein sequences, while S � U is a particular data

set under study. The reason for generalizing F is that, typically, the query object q 2 U used

for similarity queries is not a member of S. Furthermore, in many applications, the database is

dynamic, so that objects may be inserted into it and removed from it over time. Note that even

though F can be applied on the entire set U , the embedding F is still usually constructed with the

goal of approximating the distances of only the objects in S. Thus, F may not be entirely suitable

for objects in U n S, although we would hope that it performs adequately. Nevertheless, if many

objects are added to the data set S, the quality of the embedding will tend to degenerate. Rather

than recompute F each time that the database S is updated, it is usually better to modify F only

infrequently. The reason is that if F is recomputed from scratch, the value of F (o) may change for

every existing object o 2 S. This recomputation would require rebuilding any index that has been

built on the embedding space, which is usually a very costly process. One alternative possibility

is to recompute the embedding F only when its quality (based on some measure, see Section 2.2)

falls below some threshold.

1.3 Similarity Searching

Unless the distance measured with the distance function d0 in the embedding space corresponds

exactly to the distances measured with the original distance function d, queries performed in the

embedding space clearly do not have the same accuracy as queries performed in the original metric

space. In particular, if RO is the set of objects resulting from a similarity query performed in the

original metric space, and RE is the set of objects resulting from the corresponding query in the

embedding space, then some of the objects in RO may not be present in RE , and vice versa. In

other words, some objects that should be in the result RO are not found in RE, while other objects

that shouldn't be in the result RO are found in RE. The assumption, of course, is that RO is the

correct result. The notion of precision captures the proportion of objects in RE that are in the

2

correct result RO, and is de�ned as
jRE\ROj

jREj
. The notion of recall, on the other hand, captures the

proportion of the correct result RO found in RE , and is de�ned as
jRE\ROj

jROj
. When the precision

is 100%, all the objects in RE are correct, However, note that a precision value of 100% does not

necessarily mean that RE contains every element of the correct result. What it means is that none

of the elements in RE is not in the correct result. On the other hand, when the recall is 100%, all

correct objects occur in RE (as well as possibly some that are not!).

There are two ways to make use of RE , the result from a query in the embedding space. One way

is to use it as-is and report RE to the user as the result of the query. Unfortunately, the precision

and recall of queries in the embedding space are often unknown, except perhaps experimentally. The

other way is to use a �lter and re�ne strategy, where the query in the embedding space, resulting

in RE, is used as a \�lter" and the actual distances, as measured by d, are used to \re�ne" the

result, thereby forming the set RF . In practice, the �lter and re�ne steps are often interleaved (see

Section 2.3). A �lter and re�ne strategy allows the removal of all irrelevant objects from the result

and thus enables bringing the precision up to 100%. However, unless the recall of queries in the

embedding space is 100%, it is impossible to achieve 100% recall even with re�nement (unless we

resort to the expensive strategy of restarting the query in the embedding space with less selective

criteria). In other words, if there are objects in RO that are missing in RE (i.e., RE has less than

100% recall), then they will also be missing in RF .

1.4 Outline

In this paper, our focus is on identifying the characteristics of embeddings F and/or the distance

function d0 in the embedding space that make it possible to achieve 100% recall. The rest of this

paper is organized as follows. Section 2 discusses the properties of an embedding F , speci�cally

ones that allow 100% recall, and methods for measuring the quality of F . Next, we survey a number

of existing embedding methods. In particular, we describe multidimensional scaling (Section 3),

Lipschitz embedding (Section 4) which also includes SparseMap, and FastMap (Section 5). Most of

these embedding methods are applicable for general metric spaces, but some are dimension reduc-

tion methods, i.e., are speci�c to Euclidean space, or other normed-vector spaces. The explanation

of some of the methods is quite detailed since this is necessary to see their limitations as this

information was not obvious from their original presentation (e.g., for SparseMap and FastMap).

Section 6 describes for each of the embedding methods whether (or under what conditions) they

have the properties that result in 100% recall, and suggest modi�cations to the embedding if rele-

vant. Section 7 contains concluding remarks and directions for future research.

2 Properties of Embeddings

In this section, we �rst describe basic properties of embeddings and why we want to perform an

embedding (Section 2.1). Next, we outline a number of di�erent ways of measuring the quality of

embeddings (Section 2.2). We conclude with a discussion of important properties of embeddings

that a�ect similarity queries, and sketch how these properties can be exploited for both range

queries and nearest neighbor queries (Section 2.3). What we �nd is that the property that an

embedding is contractive is su�cient to guarantee 100% recall of queries in the embedding space.

How to make an embedding satisfy this property is the subject of the subsequent discussion in

Section 6.

3

2.1 Basic Properties

As mentioned in Section 1, embedding multimedia data objects into low-dimensional vector spaces

facilitates similarity queries in an environment where we are given a set S of N objects and a

function d indicating the distances between them. At times, this distance function is represented by

an N�N similarity matrix containing the distance between every pair of objects. The justi�cation

for applying embeddings is that for any �nite metric space (S; d), we can usually �nd a function

F that maps the N objects into a vector space of dimensionality k, given su�ciently high value

of k, so that the distances between the points are approximately preserved when using a distance

function d0 in the k-dimensional space. In other words, for any pair of objects i and j, we have

d(i; j)� d0(F (i); F (j)). In practice, our goal is to use a relatively low value for k in the mapping (i.e.,

k � N), thereby allowing e�ective use of multidimensional indexing methods, while still achieving

reasonable distance preservation. Since distance computation can be expensive, the mapping F

should ideally be fast to calculate (i.e., require O(N) or O(N logN) distance computations for

the N objects instead of O(N2) distance computations), should preserve distances to a reasonable

extent, and provide a fast way of obtaining the k-dimensional point corresponding to a query object

(usually an object not in S).

At times, the mapping F can be chosen so that the distances between the objects are preserved

exactly by F | that is, d(i; j) = d0(F (i); F (j)). For example, this is possible when the data objects

are originally drawn from a vector space, and d and d0 are both Euclidean distance metrics. In that

particular case, distance preservation among the N objects is ensured when k = N�1 or sometimes

even for lower values of k. However, usually the distance values cannot be preserved exactly for

an arbitrary combination of d and d0, regardless of the value of k (i.e., there is no guarantee that a

distance-preserving mapping F exists).

For example, suppose that we are given four objects a, b, c, and e with a distance function d

such that the distance between each pair in fa; b; cg is 2, while the distance from e to each of a, b,

and c is 1.1. This distance function d satis�es the triangle inequality. However, these four objects

cannot be embedded into a three-dimensional Euclidean space (i.e., d0 is the Euclidean distance

metric). In other words, we cannot position the objects in a three-dimensional space so that the

Euclidean distance d0 between the positions corresponds to the distance between the objects given

by d. On the other hand, if the distance between e and the three remaining objects is at least

2=
p
3, then such a positioning is possible by placing a, b, and c in a plane p and placing e on the

line perpendicular to p that passes through the centroid of the triangle in p formed by a, b, and c.

Interestingly, the above embedding can be achieved if we use the City Block distance metric

(L1). In particular, this is the case when we position objects a, b, and c at locations (0,0,0), (2,0,0),

and (1,1,0), respectively, and e at (1,0,0.1). This example illustrates that we may often obtain better

distance correspondence by being exible in choosing the distance function d0. In fact, it is always

possible to achieve exact distance preservation when d0 is the Chessboard metric (L1). In one such

embedding, there is one dimension for each object oi, where o1; o2; : : : ; oN is an enumeration of the

objects. Each object o is mapped by F into the vector fd(o; o1); d(o; o2); : : : ; d(o; oN)g. For any

pair of objects oi and oj , their distance in the embedding is d0(F (oi); F (oj)) = dM(F (oi); F (oj)) =

maxfjF (oi)� F (oj)jg = maxlfjd(oi; ol)� d(oj; ol)jg. Observe that for any l, jd(oi; ol)� d(oj; ol)j �
d(oi; oj) by the triangle inequality, while equality is reached for l = i and l = j, and thus distances

are indeed preserved by F when using the Chessboard metric. Notice that the number of dimensions

in this distance preserving embedding is rather high, i.e., k = N . Thus, another choice of d0 may

be preferred if we want lower values of k, at the risk of lower quality in the embedding as distances

may not be preserved.

4

2.2 Measuring Quality

A number of di�erent ways have been proposed for measuring the quality of an embedding procedure

(i.e., a method that constructs a mapping F) or of a particular embedding F produced by such

a procedure. The concept of distortion (e.g., [19]) is frequently used for this purpose. Distortion

measures how much larger or smaller the distances in the embedding space d0(F (o1); F (o2)) are with

respect to the corresponding distances d(o1; o2) in the original space. In particular, the distortion

is de�ned as c1c2 when we are guaranteed that

1

c1
� d(o1; o2) � d0(F (o1); F (o2)) � c2 � d(o1; o2); (1)

for all pairs of objects o1; o2 2 S, where c1; c2 � 1. In other words, the distance values d0(F (o1); F (o2))

in the embedding spaces may be as much as a factor of c1 smaller and a factor of c2 larger than

the actual distances d(o1; o2). Note that for a given embedding procedure, there may be no upper

or lower bound on the distance ratio for the embeddings that it constructs, so c1 and/or c2 may

be in�nite in this case. Of course, the distortion is always bounded when considering any given

embedding F and �nite metric space (S; d). A number of results are known in general about em-

beddings, e.g., that any �nite metric space can be embedded in Euclidean space with O(logN)

distortion [19].

Another common measure of a particular embedding F with respect to a data set S is stress [16].

Stress measures the overall deviation in the distances, and is typically de�ned asP
o1;o2

(d0(F (o1); F (o2))� d(o1; o2))
2P

o1;o2
d(o1; o2)2

:

Alternative de�nitions of stress may be more appropriate for certain applications. For example,

the sum in the denominator may be on d0(F (o1); F (o2))
2, or the division by d(o1; o2)

2 may occur

inside the sum (instead of in a separate sum).

A measure of the quality of embeddings that has been proposed in clustering applications [12] is

termed Cluster Preservation Ratio (CPR). This measure can be applied on data sets when a known

clustering exists for the objects. In this case, CPR indicates the average ratio of cluster preservation

over all objects in the data set. In other words, for each object o whose cluster is of size s, we �nd

the s nearest neighbors in the embedding space and compute the fraction of cluster objects that

are among the s neighbors. For an example where the clustering of the objects is known, consider

the situation of proteins in a computational biology application [12]. In particular, a number of

proteins have been studied extensively in terms of their biochemical function, so proteins having

a similar function can be grouped together. Therefore, we can test whether amino acid sequences

representing these known proteins follow this grouping.

Finally, we also want to point out that precision and recall (as de�ned in Section 1) of a similarity

query performed in the embedding space can also be used as measures of the quality of embeddings.

Ideally, both measures should be close to 100%, but poor distance preservation will lower both.

Notice that precision and recall di�er from the other measures in that the query object q is not

in S, and thus q was not taken into account when the embedding F was constructed (although F

can be applied on q once F has been constructed). Thus, we may get drastically di�erent precision

and recall depending on the choice of q. This means that a reasonable measure of quality requires

that we typically average together the result of several queries using some likely distribution in the

choice of q.

5

2.3 Properties A�ecting Similarity Queries

An embedding induced by a map F is said to be contractive if d0(F (o1); F (o2)) � d(o1; o2) for all

o1; o2 2 S. In other words, c2 = 1 in Equation 1, and thus the distortion is just c1. Contractiveness

of the embedding is a very useful property in similarity search, and many other, applications as it

has implications for pruning the search. For example, consider a range query with a radius of r

with respect to object q, where we wish to identify objects o 2 S such that d(q; o) � r. Given that

the embedding is contractive, we are ensured that d(q; o) > r if d0(F (q); F (o)) > r. Thus, we can

safely prune all objects o from the search for which d0(F (q); F (o))> r without any false dismissals

| that is, no relevant object is dropped from the query result, and thus we have 100% recall. For

this reason, we sometimes refer to the contractive property as the pruning property.

Another useful, but rarely satis�ed, property of a mapping F is proximity preservation, i.e., the

property that d(o1; o2) � d(o1; o3)) d0(F (o1); F (o2)) � d0(F (o1); F (o3)). If this property holds,

we can perform nearest neighbor queries in the embedding space and be assured that the result is

valid in the original space. In other words, if q is a query object and o 2 S is its nearest neighbor,

i.e., d(q; o) � d(q; o0) for all objects o0 2 S, then we know that F (o) is also the nearest neighbor

of F (q) with respect to d0. Thus, we simply perform the nearest neighbor query using F (q). Since

the proximity preservation property is rarely satis�ed, it is interesting to ask if we can derive a

relaxed version of it from other properties, such as distortion. This is indeed possible, and yields

the following relaxed form given a distortion of c1c2 (see Equation 1):

d(o1; o2) � d(o1; o3)) 1=c2 � d0(F (o1); F (o2)) � d(o1; o2) � d(o1; o3) � c1 � d0(F (o1); F (o3))
) d0(F (o1); F (o2)) � c1c2 � d0(F (o1); F (o3)):

In other words, d0(F (o1); F (o2)) can be no more than a factor of c1c2 larger than d
0(F (o1); F (o3)).

Thus, if a nearest neighbor query is performed in the embedding space, with the result that F (o0)

with o0 2 S is the nearest neighbor of F (q), then d0(F (q); F (o0)) can be smaller than d0(F (q); F (o))

by as much as a factor of c1c2, where o is the true nearest neighbor of q in S. Equivalently, d(q; o0)

may be larger than d(q; o) by a factor as large as c1c2. In many applications, exact results to nearest

neighbor queries are not crucial and approximate results are satisfactory, at least if the error is not

too high (e.g., see [1, 2, 13]). Unfortunately, the worst case distortion is often fairly high (e.g.,

O(logN)), so the relaxed proximity preservation property may yield too large an error for nearest

neighbor queries.

Nevertheless, if the mapping F is contractive, e�cient nearest neighbor query algorithms can

be implemented that give an exact result (variants that allow a small error in the result are also

possible if we wish to trade o� accuracy for possible increase in e�ciency). Such algorithms use a

�lter and re�ne strategy [9, 15, 22] (as described in Section 1). In particular, in the `�lter' step,

the embedding space is used as a �lter to produce a set of candidates. The satisfaction of the

contractive property makes it possible to guarantee that the correct result is among the candidates.

For example, if o is the actual nearest neighbor of the query object q, then the �lter step must at

the very least produce as candidates all objects o0 such that d0(F (q); F (o0)) � d(q; o). In the `re�ne'

step, the actual distance must be computed for all the candidates to determine the actual nearest

neighbor.

To elaborate on how such a query is implemented, suppose that we want to �nd the nearest

object to a query object q. We �rst determine the point F (q) corresponding to q. Next, we

examine the objects in the order of their distance from F (q) in the embedding space. When

using a multidimensional index, this can be achieved by using an incremental nearest neighbor

algorithm [10, 11]. Suppose that point F (a) corresponding to object a is the closest point to

6

F (q) at a distance of d0(F (a); F (q)). We compute the distance d(a; q) between the corresponding

objects. At this point, we know that any point farther from F (q) than d(a; q) cannot correspond to

the nearest neighbor of q, since the contractive property guarantees that d0(F (x); F (q)) > d(a; q)

means that d(x; q) > d(a; q) for any object x. Therefore, d(a; q) now serves as an upper bound

on the nearest neighbor search in the embedding space. We now �nd the next closest point F (b)

corresponding to object b subject to our distance constraint d(a; q). If d(b; q) < d(a; q), then b

and d(b; q) replace object a and d(a; q) as the current closest object and upper bound distance,

respectively; otherwise, a and d(a; q) are retained. This search continues until encountering a point

F (x) with distance d0(F (x); F (q)) greater than the distance to the current closest object, which is

now guaranteed to be the actual closest object to q.

3 Multidimensional Scaling

Multidimensional scaling [16, 24] (MDS) is a method of constructing an embedding F that works

for arbitrary metric spaces. The method has been widely used for many decades, in both the

social and physical sciences, for the purpose of visualizing and clustering the data resulting from

experiments and studies, as well as other purposes. MDS is de�ned in many ways, some of which

even allow non-metric distances (i.e., satisfaction of the triangle inequality is not required). One of

the more common variants seeks to minimize stress, as de�ned in Section 2.2, i.e.,P
o1;o2

(d0(F (o1); F (o2))� d(o1; o2))
2P

o1;o2
d(o1; o2)2

:

Minimizing stress is essentially a non-linear optimization problem, where the variables are the N �k
coordinate values corresponding to the embedding (i.e., k coordinate values for each of the N

objects). Typically, solving such a problem involves starting with an arbitrary assignment of the

variables, and then trying to improve on it in an iterative manner using the method of steepest

descent (e.g., [16]). The result of the optimization is not always the embedding that obtains the

absolute minimum stress, but instead it is one that achieves a local minimum (i.e., the minimization

can be pictured as �nding the deepest valley in a landscape by always walking in a direction that

leads downhill; the process can thus get stuck in a deep valley that is not necessarily the deepest).

In principle, it is possible to make multidimensional scaling result in a contractive embedding,

by constraining the minimization of the stress with O(N2) contractive conditions, one for each

pair of objects. Unfortunately, multidimensional scaling has a limited applicability in similarity

search, regardless of whether the resulting embedding is contractive or not. This is partly due to

the high cost of constructing the embedding, both in terms of the number of distance computations

(i.e., O(N2), one for each pair of objects) and due to the inherent complexity of the optimization

process. More seriously, when performing similarity queries, we must compute the embedding of

the query object q, again, by minimizing stress subject only to varying the coordinate values of

F (q). Although the minimization process is itself expensive, the most serious drawback is that

the distances of all objects in S from q must be computed in order to evaluate the stress. This

completely defeats the goal of performing similarity queries in terms of the embedding space, namely

that of avoiding as many distance computations as possible. In fact, after computing the distances

of all objects in S from q, we can immediately tell what the result of the query should be, thereby

making the embedding of q unnecessary.

7

4 Lipschitz Embeddings

A powerful class of embedding methods is known as Lipschitz embeddings [3, 14]. They are based

on de�ning a coordinate space where each axis corresponds to a reference set which is a subset

of the objects. This is the subject of this section, which is organized as follows. Section 4.1

contains a de�nition of a Lipschitz embedding. Section 4.2 describes how to select the reference

sets. Section 4.3 explains SparseMap, which is an instance of a Lipschitz embedding that attempts

to reduce the computational cost of the embedding. Section 4.4 presents an example Lipschitz

embedding.

4.1 De�nition

A Lipschitz embedding is de�ned in terms of a set R of subsets of S, R = fA1; A2; : : : ; Akg. The

subsets Ai are termed the reference sets of the embedding. Let d(o; A) be an extension of the

distance function d to a subset A � S, such that d(o; A) = minx2Afd(o; x)g. An embedding with

respect to R is de�ned as a mapping F such that F (o) = (d(o; A1); d(o; A2); : : : ; d(o; Ak)). In other

words, what we are doing is de�ning a coordinate space where each axis corresponds to a subset

Ai � S of the objects, and the coordinate values of object o are the distances from o to the closest

element in each of Ai. Notice that the distance preserving L1 embedding that we described in

Section 2.1 is a special case of a Lipschitz embedding, where R consists of all singleton subsets of

S (i.e., R = ffo1g; fo2g; : : : ; foNgg).
The intuition behind the embedding is that if x is an arbitrary object in the data set S, some

information about the distance between two arbitrary objects o1 and o2 is obtained by comparing

d(o1; x) and d(o2; x), i.e., the value jd(o1; x)�d(o2; x)j. This is especially true if one of the distances

d(o1; x) and d(o2; x) is small. Observe that due to the triangle inequality we have jd(o1; x) �
d(o2; x)j � d(o1; o2), as illustrated in Figure 1. This argument can be extended to a subset A. In

other words, the value jd(o1; A)�d(o2; A)j is a lower bound on d(o1; o2). This can be seen as follows.

Let x1; x2 2 A be such that d(o1; A) = d(o1; x1) and d(o2; A) = d(o2; x2). Since d(o1; x1) � d(o1; x2)

and d(o2; x2) � d(o2; x1), we have jd(o1; A) � d(o2; A)j = jd(o1; x1) � d(o2; x2)j. Accounting for

the case that d(o1; x1) � d(o2; x2) is positive or negative, we have that jd(o1; x1) � d(o2; x2)j �
maxfjd(o1; x1)�d(o2; x1)j; jd(o1; x2)�d(o2; x2)jg. Finally, from the triangle inequality we have that

maxfjd(o1; x2)� d(o2; x2)j; jd(o1; x1)� d(o2; x1)jg � d(o1; o2). Thus jd(o1; A)� d(o2; A)j is a lower

bound on d(o1; o2). By using a set R of subsets, we increase the likelihood that the distance d(o1; o2)

between two objects o1 and o2 (as measured relative to other distances) is captured adequately by

the distance in the embedding space between F (o1) and F (o2) (i.e., d
0(F (o1); F (o2))).

4.2 Selecting Reference Sets

With a suitable de�nition of R, the set of reference sets, we can establish bounds on the distance

d0(F (o1); F (o2)) for all pairs of objects o1; o2 2 S, where d0 is one of the Lp metrics. Such a

de�nition was provided by Linial, London, and Rabinovich [18, 19], based in part on previous work

by Bourgain [3]. In particular, in their de�nition [19], R consists of O(log2N) randomly selected

subsets of S, where each group of O(logN) subsets is of size 2i, where i = 1; : : : ; O(logN). More

concretely, the value O(logN) is typically approximately blog2Nc (or perhaps blog2(N�1)c). Thus,
R = fA1; A2; : : : ; Akg where k = blog2Nc2 and Ai is of size 2j with j = b(i � 1)=(log2N) + 1c.
The embedding proposed by Linial et al [19] is a variant of the basic Lipschitz embedding, where

each coordinate value is divided by a factor that depends on k. In particular, if d0 is the Lp metric,

8

x

o1

o2

|d(o1,x)–d(o2,x)|

d(o1,o2)

Figure 1: Demonstration of the distance bound jd(o1; x) � d(o2; x)j � d(o1; o2).

The objects o1, o2, and x are represented as points, and the distance between them

with the length of the line segments between them.

F is de�ned such that F (o) = (d(o; A1)=q; d(o; A2)=q; : : : ; d(o; Ak)=q), where q = k1=p. Given this

de�nition, Linial, London and Rabinovich [19] prove that F satis�es

c

blog2Nc
� d(o1; o2) � d0(F (o1); F (o2)) � d(o1; o2): (2)

for any pair of objects o1; o2 2 S, where c > 0 is a constant2. Thus, the distortion in distance

values, i.e., the relative amount of deviation of the distance values in the embedding space with

respect to the original distance values, is guaranteed to be O(logN) (with high probability). The

proof for the bound c=blog2Ncd(o1; o2) � d0(F (o1); F (o2)) is rather sophisticated [3, 19], and is

beyond the scope of this paper. However, the bound d0(F (o1); F (o2)) � d(o1; o2) is easy to show.

In particular, for each Ai 2 R, we have jd(o1; Ai)� d(o2; Ai)j � d(o1; o2), as shown in Section 4.1.

Thus, when d0 is an arbitrary Lp distance metric,

d0(F (o1); F (o2)) =

kX
i=1

�
d(o1; Ai)� d(o2; Ai)

k1=p

�p!1=p

(3)

�
�
k � d(o1; o2)

p

k

�1=p

= d(o1; o2) (4)

A distortion of O(logN) may seem to be rather large, and may render the embedding ine�ec-

tive at preserving relative distances. For example, if the range of distance values is less than the

distortion, then the relative order of the neighbors of a given object may be completely scrambled.

However, note that O(logN) is a worst case (probabilistic) bound. In many cases, the actual be-

havior is much better. For example, in a computational biology application [12, 17], the embedding

de�ned above was found to lead to good preservation of clusters, as de�ned by biological functions

of proteins.

Notice that the mapping F as de�ned by Linial et al [19] is contractive (i.e., satis�es the pruning

property), which is advantageous for the purpose of similarity search. In many other situations,

only relative di�erences in distances are important in the embedding space, while the contractive

property is immaterial. In other words, the crucial property that we wish to retain is which objects

are close to each other and which are far (i.e., a weak form of proximity preservation). An example

of applications of this sort is cluster analysis [12, 17]. In such situations it may be more convenient

to use the regular Lipschitz embedding de�nition of F with respect to the set of reference sets R

2More accurately, since the sets Ai are chosen at random, the proof is probabilistic and c is a constant with high
probability.

9

de�ned in [19] (i.e., without dividing by k1=p). Recall that k = blog
2
Nc2 thereby implying thatp

k = blog
2
Nc. Therefore, when the Euclidean distance metric is being used, this embedding

guarantees distance bounds of

c � d(o1; o2) � dE(F (o1); F (o2)) � blog
2
Nc � d(o1; o2)

for any pair of objects o1; o2 2 S, where c > 0 is a constant (with high probability).

Unfortunately, the embedding of [19] described above is rather impractical for similarity search-

ing for two reasons. First, due to the number and sizes of the subsets in R, there is a high probability

that all N objects appear in some set in R. Thus, when computing the embedding F (q) for a query

object q (which generally is not in S), we would need to compute the distances between q and

practically all objects in S, which is exactly what we wish to avoid. Second, the number of subsets

in R, and thus the number of coordinate values (i.e., dimensions) in the embedding, is relatively

large | that is, blog
2
Nc2. Even with as few as 100 objects, the number of dimensions is 36, much

too high to index on e�ciently with multidimensional indexing methods. These drawbacks were

acknowledged in [19], but addressing them was left for future work (the only suggestion that was

made was to drop the sets Ai of largest sizes).

4.3 SparseMap

SparseMap [12] is an embedding method originally proposed for mapping a database of proteins

into Euclidean space. It is built on the work of Linial et al [19] in that the same set of reference

sets R is used. The SparseMap method [12] comprises two heuristics, each aimed at alleviating

one of the drawbacks discussed in Section 4.2 | that is, the potentially high cost of computing

the embedding in terms of the number of distance computations that are needed, and the large

number of coordinate values. The �rst heuristic reduces the number of distance computations by

calculating an upper bound d̂(o; Ai) instead of the exact value d(o; Ai), while the second heuristic

reduces the number of dimensions by using a \high quality" subset of R instead of the entire set as

de�ned in Section 4.2. Both heuristics have the potential of reducing the quality of the embedding,

in terms of the correspondence of distances in the original metric space and in the embedding

space, but their goal [12] is to maintain the quality to the greatest extent possible. Note that the

embedding used in SparseMap employs the regular Lipschitz embedding with respect to R, rather

than the embedding proposed in [19] (i.e., which divides the distances d(o; Ai) by k1=p), and uses

the Euclidean distance metric.

A drawback of SparseMap is that the resulting embedding cannot be shown to satisfy any

guarantees with respect to the distortion. In other words, when the SparseMap method is applied,

dE(F (o1); F (o2)) can be arbitrarily smaller or larger than d(o1; o2). In Section 6 we address the

question of whether this shortcoming can be recti�ed, especially in terms of the contractive property.

In SparseMap, the coordinate values of the vectors are computed one by one. In other words, if

R = fA1; A2; : : : ; Akg is the sequence of reference sets in order of size, we �rst compute the d(o; A1)

for all objects o 2 S, next d(o; A2) for all objects o, etc. Since evaluating d(o; Ai) for any given

object o can be very expensive in terms of distance computations, SparseMap adopts a heuristic

that instead computes d̂(o; Ai), which is an upper bound on d(o; Ai). This heuristic exploits the

partial vector that has already been computed for each object, and calculates only a �xed number

of distance values for each object (as opposed to jAij distance values). In particular, for each object

x 2 Ai, it computes dE(Fi�1(o); Fi�1(x)), where Fi�1 is the embedding based on A1; : : : ; Ai�1. On

the basis of this approximate distance value, a �xed number l of objects in Ai having the smallest

approximate distance value from o is picked, and the actual distance value d(o; x) for each such

10

object x is computed. The smallest distance value among those serves as the upper-bound distance

value d̂(o; Ai), which becomes the ith coordinate value of the vector corresponding to o in the

embedding.

The second heuristic involved in SparseMap reduces the dimensionality of the result, and is

termed greedy resampling in [12]. Greedy resampling is applied after the entire k coordinate axes

have already been determined, and its goal is to reduce the number of coordinate axes down to

k0 < k. Essentially, this means eliminating of some of the reference sets Ai. A natural question

is whether we cannot eliminate a poor reference set Ai before computing all the approximate

distances d̂(o; Ai). However, the problem is that we cannot know whether or not a set Ai is good

before evaluating d̂(o; Ai) (or d(o; Ai)) for each object o. The basic idea of greedy resampling is

to start with a single \good" coordinate axis and then incrementally add coordinate axes that

maintain \goodness". In particular, initially, the coordinate axis whose sole use leads to the least

stress [16] is determined (this is somewhat analogous in spirit to basing the �rst coordinate axis on a

pair of objects that are far apart in the FastMap method as described in Section 5). Unfortunately,

calculating the stress requires computing distances for all pairs of objects, which is prohibitively

expensive. Instead, the heuristic computes the stress based on some �xed number of object pairs

(e.g., 4000 in experiments in [12], which constituted 10% of the total number of pairs). Next,

the coordinate axis that leads to the least stress when used in conjunction with the �rst axis is

determined. This procedure is continued until the desired number of coordinate axes have been

obtained.

In order to study the validity of the SparseMap method, various experiments are presented

in [12], in which the data sets consist of proteins (or more accurately, the amino acid sequences that

comprise each protein). The focus of the presentation is mainly on comparing the performance of

SparseMap with that of FastMap [5], another embedding method proposed for similarity searching

described in greater detail in Section 5. Both methods are based on heuristics where some parameter

controls the number of distance computations that are performed. In SparseMap, this is the number

of actual distance computations performed in evaluating d̂(o; Ai), while in FastMap this is the

number of iterations used when trying to determine the two objects having the greatest distance

from each other. Thus, the two methods can be made to perform approximately the same number of

distance computations for obtaining a given number of coordinate axes. In the experiments reported

in [12], when this is done, the embedding produced by SparseMap is of a higher quality than that of

FastMap, in terms of the stress as well as how well clusters are retained (these clusters were de�ned

by the biological function of the proteins). Furthermore, for a small number of coordinate axes, the

embedding produced by SparseMap was of higher quality (as de�ned above) than that produced

by FastMap. In addition, SparseMap was found to scale up better than FastMap, in terms of the

time to perform the mapping, as the pattern in which the database is accessed leads to fewer disk

I/Os.

4.4 Example

Figure 2 shows the inter-object distances between ten objects (these distance values were con-

structed by positioning ten two-dimensional points and measuring the L1 distance between them).

In this case, blog2Nc = 3, so we could have three reference sets of each of three di�erent sizes

(2, 4, and 8), for a total of 9 dimensions. Since a set of size 8 contains nearly all the objects,

we instead choose to use only reference sets of sizes 2 and 4, and two sets of each size. Choosing

objects at random, we arrive at the sets A1 = fo2; o8g, A2 = fo1; o5g, A3 = fo6; o8; o9; o10g, and
A4 = fo1; o4; o7; o8g. The resulting four-dimensional coordinates are given in Figure 3. Here, we

11

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
o1 0 2 13 7 3 8 11 4 9 10

o2 2 0 11 9 3 10 9 2 11 8

o3 13 11 0 6 10 9 4 9 6 3

o4 7 9 6 0 6 3 8 9 2 5

o5 3 3 10 6 0 7 8 3 8 7

o6 8 10 9 3 7 0 9 10 3 6

o7 11 9 4 8 8 9 0 7 10 3

o8 4 2 9 9 3 10 7 0 11 6

o9 9 11 6 2 8 3 10 11 0 7

o10 10 8 3 5 7 6 3 6 7 0

Figure 2: Distance matrix for ten sample objects.

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
A1 2 0 9 9 3 10 7 0 11 6

A2 0 2 10 6 0 7 8 3 8 7

A3 4 2 3 2 3 0 3 0 0 0

A4 0 2 4 0 3 3 0 0 2 3

Figure 3: Four-dimensional coordinate values for the ten objects based on the

distances in Figure 2, as determined by a Lipschitz embedding with the four ref-

erence sets A1 = fo2; o8g, A2 = fo1; o5g, A3 = fo6; o8; o9; o10g, and A4 =

fo1; o4; o7; o8g.

use the regular Lipschitz embedding (which is used in SparseMap) where coordinate value j for

object i is d(oi; Aj), rather than d(oi; Aj)=k
1=p as speci�ed by Linial, London and Rabinovich [19].

For example, d(o4; A2) = minfd(o4; o1); d(o4; o5)g = minf7; 6g = 6.

We now give an example of how to compute the distance between two objects in the embedding

space, when d0 is the Euclidean distance metric. In particular, for objects o3 and o8 we have

from Figure 3 that F (o3) = (9; 10; 3; 4) and F (o8) = (0; 0; 3; 0). Therefore, d0(F (o3); F (o8)) =p
(9� 0)2 + (10� 3)2 + (3� 0)2 + (4� 0)2 =

p
81 + 49 + 9 + 16 =

p
155 � 12:4. In comparison,

their actual distance is d(o3; o8) = 9. Notice that in this case the distance in the embedding

space is greater than their actual distance. In contrast, when using the embedding of Linial et

al [19], the distance in the embedding space would have been about 12:4=
p
4 = 6:2. Also, if d0 had

been the Chessboard distance metric (L1), the distance in the embedding space would have been

maxf9; 7; 3; 4g= 9, which happens to equal d(o3; o8).

5 FastMap

FastMap [5] is designed to provide a heuristic alternative to dimensionality reduction methods

for Euclidean space that are based on linear transformations. The Karhunen-Lo�eve transform

(KLT) [6], as well as the equivalent principal component analysis (PCA) [6] and the singular value

decomposition (SVD) [7] methods, are widely used examples of such methods. In this section we

review the motivation (Section 5.1) for its development, outline how it works (Sections 5.2{5.6),

and give an example of its usage (Section 5.7). In particular, Section 5.2 explains the general

12

principles behind FastMap by outlining how the coordinate axes that make up the mapping are

constructed. Section 5.3 describes how the pivot objects that anchor the lines that form the

newly-formed coordinate axes are chosen. Section 5.4 shows how the �rst coordinate value is

determined. Section 5.5 presents the modi�ed distance function for computing the remaining

coordinate values, while Section 5.6 applies this modi�ed distance function to actually compute the

remaining coordinate values.

5.1 Motivation

For a set S of points in am-dimensional Euclidean space, the Karhunen-Lo�eve transform (KLT) [6],

as well as the equivalent principal component analysis (PCA) [6] and the singular value decomposi-

tion (SVD) [7] methods, identify a new set of m coordinate axes, represented by unit length vectors

V = fv1; v2; : : : ; vmg, termed basis vectors. The origin of the new coordinate system is taken to be

the center of gravity for the points in S, and the new coordinate values are obtained by projecting

each point in S onto the basis vectors. Observe that this amounts to a linear transformation of the

set S, involving translation and rotation. The basis vectors are ordered in decreasing order of the

variance along them, so that v1 has the most variance, then v2, etc. The variance along an axis

indicates how spread out the projections of the data points on the axis are, and is equal to the sum

of the squared coordinate values along the axis (this de�nition of variance assumes that the mean

of the coordinate values is zero, which is the case here). Loosely speaking, the set V is chosen such

that the variance is as great as possible along each basis vector in turn. More precisely, for any

other basis W = fw1; w2; : : : ; wmg, there exists some i such that the variance is greater along vi
than wi, while the variance is equal for vj and wj where j < i (of course, for j > i, the variance

along wj may be greater).

Once the set S has been linearly transformed in the manner described above, it is easy to reduce

the dimensionality of the points in S to k by dropping all but the �rst k coordinate values of the

transformed points. Since the variance along the �rst k coordinate axes is as great as possible, this

results in the least loss of distance information, in terms of the mean square error (i.e., the sum

of the squares of the Euclidean distances between each m-dimensional point and its corresponding

k-dimensional point). To be more precise, KLT (as well as the equivalent PCA and SVD) yields the

linear transformation with minimum mean square error. Some non-linear transformations, e.g., one

produced by multidimensional scaling (see Section 3), may lead to a smaller error. For example,

if all the points lie on curved line in two-dimensional space, then a non-linear transformation may

exist that leads to perfect distance preservation when reducing the dimensionality to one, while

this would not be the case for any linear transformation. On the other hand, if the points lay on a

straight line, a linear transformation would indeed exist that leads to perfect distance preservation.

Notice that these transformation methods are only applicable for vector spaces, and not arbi-

trary metric spaces, since they are inherently de�ned in terms of matrices composed of the vector

data (i.e., the matrix has the size N �m, where N is the number of vectors and m is the number of

dimensions). Moreover, they are only really meaningful if d is the Euclidean distance metric, and

not for the other Minkowski metrics. The reason is twofold. First, the other Minkowski metrics

are not invariant under rotation. In other words, the distance between some pairs of points may

increase or decrease, depending on the direction of the rotation. Second, variance is de�ned in

terms of second powers, just like the Euclidean distance metric. Thus, the variance criteria that

determine the rotation, and in turn what axes to drop when reducing the dimensionality, are in-

herently related to the Euclidean distance metric. In particular, the sum of the variance over all

coordinate axes corresponds to the sum of the squared Euclidean distances from the origin to each

13

point (recall that we are assuming that the mean along each dimension is at the origin). Therefore,

dropping the axes having the least variance corresponds to reducing as little as possible the sum of

the squared Euclidean distances from the origin to each point.

FastMap is an attempt to generalize the principles of the KLT (as well as the equivalent PCA and

SVD) method for obtaining embeddings of arbitrary metric spaces (rather than just of Euclidean

spaces) into k-dimensional Euclidean space. Besides the motivation of generalizing KLT (and

the equivalent PCA and SVD) to arbitrary metric spaces, FastMap is designed to be faster than

KLT which takes O(N �m2) time. In contrast, FastMap requires O(N � k) distance computations,

each of which is O(m) assuming that we start out with m-dimensional vector data. Thus a more

accurate assessment of the execution time complexity of the FastMap method is O(Nmk) in this

setting. Nevertheless, as we shall see, in the remainder of this section as well as in Section 6, this

generalization is not without its limitations.

5.2 General Principles

In the following, we explain how the FastMap method works in some detail. Many of the derivations

used in the development of the method make an implicit assumption that (S; d) is a Euclidean space

of some dimensionality, or in other words, that d is the Euclidean distance metric3. Nevertheless,

FastMap can be applied with varying success with other distance metrics. In particular, as we will

see in Section 6, use of the FastMap method with other distance metrics will often mean that some

desirable key aspects such as the contractive property will not necessarily hold, nor will we always

be able to obtain as many as k coordinate axes (even as small as just 1)4. Similarly, due to the

nature of the FastMap method, the best result is obtained when d0, the distance function in the

embedding space, is the Euclidean distance metric. Thus, unless otherwise stated, we assume d0 to

be the Euclidean distance metric.

The FastMap method works by imagining that the objects are points in a hypothetical high-

dimensional Euclidean space of unknown dimension | that is, a vector space with the Euclidean

distance metric. However, the various implications of this Euclidean space assumption are not

explored by Faloutsos and Lin [5] in their development of the method. In the sequel, the terminology

reects the assumption that the objects are points (e.g., a line can be formed through two objects,

etc.). The coordinate values corresponding to these points are obtained by projecting them on k

mutually orthogonal directions thereby forming the coordinate axes of the space in which the points

are embedded. The projections are computed using the given distance function d. The coordinate

axes are constructed one-by-one, where at each iteration two objects (termed pivot objects) are

chosen, a line is drawn between them that serves as the coordinate axis, and the coordinate value

along this axis for each object o is determined by mapping (i.e., projecting) o onto this line.

Assume, without loss of generality, that the objects are actually points (this makes it easier to

draw the examples that we use in our explanation), and that they lie in an m-dimensional space.

We obtain the next coordinate axis by determining the (m� 1)-dimensional hyperplane H that is

perpendicular to the line that forms the previous coordinate axis, and project all of the objects

onto H . The projection is performed by de�ning a new distance function dH that measures the

distance between the projections of the objects on H . In particular, we will see that dH is derived

3More precisely, the assumptions made by FastMap are valid if (S; d) is isometric to some Euclidean space. Below,

when we say that a property applies (or not) when d is a Euclidean metric, we also mean that it applies (or not) in
this isometric case.

4Of course, this would not be a problem if the \intrinsic" dimensionality [20] of the data is low, but this need not

be the case.

14

from the original distance function d and the coordinate axes determined so far. At this point, the

problem has been replaced by a recursive variant of the original problem with m and k reduced

by one, and a new distance function dH . This process is continued until the necessary number of

coordinate axes have been determined.

Figure 4 helps to illustrate how the �rst coordinate axis is determined, and how the distance

function dH is used to determine the second coordinate axis. Figure 4a shows the result of the

projection that yields the �rst coordinate axis where the pivot objects are r and s. In particular,

the �rst coordinate value xi for object i (i.e., the �rst coordinate value in the vector F (i)) is the

distance from r to the projection of i onto the line through r and s. We postpone for now the

discussion of Figure 4b, which illustrates how dH and the next set of coordinate values is determined.

i

r s
xi

(a)

(b)

u

r
s

|xt-xu|

t

xt

u’

t’

j’

i’
yi

yj

H

C

A
B

Figure 4: Examples of projections of objects with the FastMap method on (a) the

�rst coordinate axis and (b) the second coordinate axis.

5.3 Choosing Pivot Objects

As we saw, the pivot objects that are chosen at each step serve to anchor the line that forms

the newly-formed coordinate axis. Ideally, there should be a large spread of the projected values

on the line between the pivot objects, where spread is de�ned as maxi;j jxi � xj j. The reason is

that a greater spread generally means that more distance information can be extracted from the

projected values, i.e., more information can be gleaned from jxi � xj j for any pair of objects i and

j. This principle is similar to that used in the KLT (as well as the equivalent SVD and PCA)

method, described in Section 5.1. The di�erence, here, is that spread along an axis is a weaker

notion than that of variance, which is used by KLT (as well as the equivalent SVD and PCA).

The reason why spread is a weaker notion is that a large spread may be caused by a few outliers

while most of the other values may be clustered within a small range. On the other hand, a large

variance genuinely means that the values are widely scattered around a large range. Nevertheless,

spread usually provides a reasonably good estimate of the level of variance. In order to maximize

the likelihood of obtaining a large spread, the pivot objects should be as far as possible from each

other. Unfortunately, determining the furthest pair of objects among a given set of N objects is

15

computationally expensive. In particular, it takes O(N2) distance computations as we need to

examine the distance between each pair of objects.

Faloutsos and Lin [5] propose a heuristic for computing an approximation of the furthest pair

of objects. This heuristic �rst arbitrarily chooses one of the objects i. Next, it �nds the object r

which is furthest from i. Finally, it �nds the object s which is the furthest from r. The last step

can be iterated a number of times (e.g., 5 [5]) in order to obtain a better estimate of the pair that

is the furthest apart. In fact, it can be shown that for a given set of N objects, the procedure for

�nding the furthest pair of objects can be iterated a maximum of N � 1 steps for a total of O(N2)

distance computations. The heuristic process of �nding the pivot objects requires O(N) distance

computations as long as the number of iterations is �xed. Unfortunately, the O(N) cost bound for

the heuristic may not always hold, as shown in Section 6.2. Note that the original distance function

d is used only when determining the �rst coordinate axis. However, the modi�ed distance functions

(i.e., resulting from successive projections on hyperplanes) used for subsequent coordinate axes are

based on d, and thus an evaluation of d is also required for any distance computations in later

steps.

Choosing pivot objects r and s in this way guarantees that for any objects i and j we have

d(i; j) � 2d(r; s), or d(r; s) � 1

2
d(i; j). In other words, d(r; s) is at least half of the distance

between the most distant pair of objects. This follows directly from the triangle inequality and

the assumption that s is the object farthest from r. In particular, d(i; j) � d(r; i) + d(r; j) �
d(r; s) + d(r; s) = 2d(r; s). However, this bound is only guaranteed to hold for the �rst pair of

pivot objects, as shown in Section 6.2, since the distance functions used to determine the second

and subsequent coordinate values may not satisfy the triangle inequality. Notice that a tighter

lower bound for d(r; s) cannot be guaranteed regardless of the number of iterations in the heuristic,

unless the number of iterations is N � 1. As an example, one pair of objects may have a distance

of 2 while all other pairs have a distance of 1. Determining the pair having a distance of 2 requires

O(N2) distance computations on the average, since the number of distinct pairs is O(N2).

5.4 Deriving the First Coordinate Value

In order to understand better how and why the FastMap mapping process works, let us examine

its mechanics in greater detail as we compute the �rst coordinate value. Initially, we project the

objects on a line between the pivot objects, say r and s, as shown in Figure 5 for an object i. Note

that the projection of an object i may actually lie beyond the line segment between r and s as

shown in Figure 5b. This does not pose problems, but may cause xi to be negative. The actual

value of xi is obtained by solving the following equation for xi:

d(r; i)2� x2i = d(s; i)2� (d(r; s)� xi)
2: (5)

Expanding terms in 5 and rearranging yields:

xi =
d(r; i)2+ d(r; s)2� d(s; i)2

2d(r; s)
: (6)

Observe that Equation 5 is obtained by applying the Pythagorean theorem on each half of

the triangle in Figure 5a (a similar interpretation applies to the case in Figure 5b). Since the

Pythagorean theorem is speci�c to Euclidean space, we have here an instance where Faloutsos and

Lin [5] in their development of the method make the implicit assumption that d is the Euclidean

distance metric. Thus, the equation is only a heuristic when used for general metric spaces (the

16

i

r s
xi

(a)

d(r,s)

d(r,i) d(s,i)

(b)

i

s
xi d(r,s)

d(r,i)
d(s,i)

r

Figure 5: Examples of two possible positions for the projection of an object on the

line joining the points corresponding to the pivot objects.

implications of the heuristic are explored in Section 6.2; namely, we �nd that the embedding

produced by FastMap is not contractive, and this may cause the mapping process to terminate

prematurely).

A number of observations can be made about xi, based on Equation 6 and the selection of pivot

objects. First, xr = 0 and xs = d(r; s), as would be expected. Second, note that jxij � d(r; s),

implying that the maximum di�erence between two values xi and xj (i.e., the spread for the �rst

coordinate axis as de�ned earlier) is 2d(r; s), which is equal to the maximum possible distance

between any pair of objects as shown in Section 5.3. In fact, it can be shown that the spread is

never larger than the distance between the farthest pair of objects. Since the spread is at least

d(r; s) when r and s serve as the pivot objects (as xr = 0 and xs = d(r; s)), this implies that

the spread obtained by pivots r and s is at least half of the maximum obtainable spread which is

2d(r; s). Below, we show that no choice of other pair of pivot objects can have a larger spread.

Lemma 1 Let t and u be the two objects that are farthest apart for all the objects in S. The spread

is never more than d(t; u) for any choice of pivot objects.

Proof Assume that d(t; u) = �d(r; s) where we observe that 1 � � � 2 when r and s are chosen

according to the heuristic presented in Section 5.3. An upper bound on the value of xi for any

object i is easily derived given the upper bound of d(r; s) for d(r; i) and the lower bound of 0 on

d(s; i):

xi =
d(r; i)2+ d(r; s)2� d(s; i)2

2d(r; s)

� 2d(r; s)2

2d(r; s)
= d(r; s):

To determine a lower bound on xi, we appeal to the triangle inequality, which yields jd(r; s) �
d(s; i)j � d(r; i). Raising both sides to the second power yields

(d(r; s)� d(s; i))2 = d(r; s)2+ d(s; i)2� 2d(r; s)d(s; i)� d(r; i)2:

In other words, we have

d(r; i)2� d(s; i)2 � d(r; s)2� 2d(r; s)d(s; i)� (1� 2�)d(r; s)2

since d(s; i) � d(t; u) = �d(r; s). Substituting this lower bound into Equation 6 yields

xi =
d(r; i)2+ d(r; s)2� d(s; i)2

2d(r; s)

17

� (2� 2�)d(r; s)2

2d(r; s)
= (1� �)d(r; s):

Combining the upper and lower bounds on the value of xi and the fact that � � 2 yields the desired

bound jxij � d(r; s). Furthermore, for any � � 1 we can derive the maximum spread as

jxi � xj j � d(r; s)� (1� �)d(r; s) = �d(r; s) = d(t; u):

Thus, we are guaranteed that the maximum spread is at most d(t; u) for any choice of pivots, as

desired.

Unfortunately, as we show in Section 6.2, the distance functions used in subsequent iterations

of FastMap may not satisfy the triangle inequality if d is not the Euclidean distance metric. Thus,

the above bounds may not hold when determining the subsequent coordinate values.

5.5 Projected Distance

Before we can determine the second coordinate value for each object, we must derive dH , the dis-

tance function for the distances between objects when projected on the hyperplane H , as mentioned

in Section 5.2. Figure 4b illustrates how dH is formed and used to determine the second coordinate

axis. For expository purposes, assume that the underlying space is three-dimensional. In this case,

points A and B are the projections of objects t and u, respectively, on the �rst coordinate axis

(formed by the line joining the pivot objects r and s) with a separation of jxt � xuj. Points t0 and
u0 are the projections of objects t and u, respectively, on the plane H that is perpendicular to the

line between r and s that forms the �rst coordinate axis. Point C is the projection of u onto the

line through t and t0, parallel to the line through r and s. Thus, the distance between t0 and u0

equals the distance between C and u. The latter can be determined by applying the Pythagorean

theorem since the angle at C in the triangle tuC is 90 deg. Therefore, we have

dH(t
0; u0)2 = d(u; C)2 = d(t; u)2 � d(t; C)2 = d(t; u)2� (xt � xu)

2: (7)

Note that this equation applies to any pair of objects t and u and not just the ones that serve as

pivots in the next iteration, as is the case in Figure 4b.

Observe that this is another occasion where Faloutsos and Lin [5] in their development of the

method make the implicit assumption that d is the Euclidean distance metric (or behaves like one,

i.e., if (S; d) is isometric to a Euclidean space). This assumption has some undesirable side-e�ects.

For example, as we show in Section 6.2, if d is not a Euclidean distance metric, then dH may fail

to satisfy the triangle inequality, which in turn may cause Equation 6 to produce coordinate values

that violate the contractive property. Furthermore, violation of the contractive property in earlier

iterations of FastMap, may cause negative values of dH(i
0; j0)2. This complicates the search for

pivot objects as the square root of a negative value is a complex number, which in this case means

that i and j (or, more precisely, their projections) cannot serve as pivot objects.

5.6 Subsequent Iterations

Each time we recursively invoke the FastMap coordinate determination method, we must deter-

mine the distance function dH for the current set of projections in terms of the current distance

function (i.e., the one that was created in the previous recursive invocation). Thus the original

distance function d is only used when obtaining the �rst coordinate axis. In subsequent iterations,

18

d is the distance function dH from the previous iteration. At this point, it is instructive to gener-

alize Equations 6 and 7 to yield a recursive de�nition of the distance functions and the resulting

coordinate values for each object. Before we do so, we must de�ne a number of symbols, each

representing the ith iteration of FastMap. In particular, xio is the ith coordinate value for object

o, Fi(o) = fx1o; x2o; : : : ; xiog denotes the �rst i coordinate values of F (o), di is the distance function
used in the ith iteration, and pi

1
and pi

2
denote the two pivot objects chosen in iteration i (with

the understanding that pi
2
is the farthest object from pi

1
). Now, the general form of Equation 6 for

iteration i is

xio =
di(p

i
1
; o)2 + di(p

i
1
; pi

2
)2 � di(p

i
2
; o)2

2di(p
i
1
; pi

2
)

; (8)

given the recursive distance function de�nition

d1(a; b) = d(a; b) (9)

di(a; b)
2 = di�1(a; b)

2� (xi�1a � xi�1b)2

= d(a; b)2� dE(Fi�1(a); Fi�1(b))
2:

Notice that in this presentation of the projected distance functions, we use the original objects as

arguments, rather than using a0 and b0, as is done in Equation 7 (i.e., that equation uses t0 and u0

for the projections of t and u, respectively).

The process of mapping the N objects to points in a k-dimensional space takes O(k �N) distance

computations as there are O(N) distance calculations at each of k iterations. It requires O(k �N)

space to record the k coordinate values of each of the points corresponding to the N objects. It

also needs a 2 � k array to record the identity of the k pairs of pivot objects as this information

is needed to process queries. Note that query objects are transformed to k-dimensional points by

applying the same algorithm that was used to construct the points corresponding to the original

objects except that we use the existing pivot objects. In other words, given query object q, we

obtain its k-dimensional coordinate values by projecting q on the lines formed by the corresponding

pivot objects using the appropriate distance function. This process is facilitated by recording the

distance between the points corresponding to the pivot objects so that it need not be recomputed

for each query, although it could be done if we don't want to store these distance values. The entire

process of obtaining the k-dimensional point corresponding to the query object takes O(k) distance

computations (which is actually O(1) if we assume that k is a constant) in contrast to the size of

the database which is O(N).

5.7 Example

Referring back to the table in Figure 2, we now show how FastMap obtains two-dimensional coor-

dinate values for the objects. Seeing that the largest distance in the table is between o1 and o3, we

choose these objects as pivots. The result is shown as the �rst dimension in Figure 6 (i.e., in the

�rst row), where the values are given to a precision of one fractional digit. As an example of how

these values are determined, we derive the �rst coordinate value of o5:

d(o1; o5)
2 + d(o1; o3)

2 � d(o3; o5)
2

2d(o1; o3)
=

32 + 132 � 102

2 � 13 = 78=26 = 3:

Figure 7 shows the (squared) projected distances dH(oi; oj)
2 for the ten objects obtained by

projecting them on the hyperplane H perpendicular to the line through the pivot objects o1 and

19

Dim. o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
1 0.0 2.0 13.0 7.0 3.0 5.8 10.5 4.0 8.2 10.0

2 4.4 1.0 4.4 8.5 3.7 9.7 0.7 0.0 10.2 2.8

Figure 6: Two-dimensional coordinate values for the ten objects based on the

distances in Figure 2, as determined by FastMap using o1 and o3 as pivot objects

for the �rst coordinate axis, and o8 and o9 for the second coordinate axis.

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
o1 0.0 0.0 0.0 0.0 0.0 29.8 9.9 0.0 13.3 0.0

o2 0.0 0.0 0.0 56.0 8.0 85.2 8.1 0.0 82.2 0.0

o3 0.0 0.0 0.0 0.0 0.0 29.8 9.9 0.0 13.3 0.0

o4 0.0 56.0 0.0 0.0 20.0 7.7 51.5 72.0 2.5 16.0

o5 0.0 8.0 0.0 20.0 0.0 40.9 7.2 8.0 36.6 0.0

o6 29.8 85.2 29.8 7.7 40.9 0.0 59.0 96.6 3.3 18.7

o7 9.9 8.1 9.9 51.5 7.2 59.0 0.0 6.2 94.7 8.7

o8 0.0 0.0 0.0 72.0 8.0 96.6 6.2 0.0 103.1 0.0

o9 13.3 82.2 13.3 2.5 36.6 3.3 94.7 103.1 0.0 45.9

o10 0.0 0.0 0.0 16.0 0.0 18.7 8.7 0.0 45.9 0.0

Figure 7: Distances of the ten sample objects as determined by the �rst projected

distance function, dH . The values in the table are actually the squared distances,

dH(oi; oj)
2.

o3. Again, the distance values are only given to a precision of one fractional digit. As an example

of how these distance values are computed, we derive dH(o5; o6)
2 with the help of Figure 6:

dH(o5; o6)
2 = d(o5; o6)

2 � jx5 � x6j2 � 72 � j3� 5:8j2 = 49� 2:82 � 41:2:

This value does not exactly match the value dH(o5; o6)
2 � 40:9 found in Figure 7 due to round o�

error.

The largest distance value is dH(o8; o9)
2 � 103:1, so the objects o8 and o9 (or, more precisely,

their projected versions) get chosen as the second pair of pivot objects used to determine the values

along second dimension as given in Figure 6. Again, let us show how the coordinate value for o5 is

determined, this time along the second coordinate axis:

dH(o8; o5)
2 + dH(o8; o9)

2 � dH(o9; o5)
2

2dH(o8; o9)
� 8 + 103:1� 36:6

2
p
103:1

� 74:5=20:3� 3:7:

5.8 Heuristic for Non-Euclidean Metrics

When d is not a Euclidean metric, the value dH(t
0; u0)2 in Equation 7 may be negative, as mentioned

above. More generally, for the formulation in Equation 9, this implies that di(a; b)
2 may be negative

for i � 2. Such a situation is undesirable since it means that di(a; b) becomes complex-valued, which

precludes the choice of a and b as the pair of pivot objects in iteration i of FastMap. Furthermore,

since di(a; b)
2 can become a large negative value, such values can cause a large distortion in the

distances between coordinate values determined by Equation 8, as detailed in Section 6.2.3.

20

In [23], a heuristic was introduced for alleviating this situation. The heuristic de�nes di(a; b)

(i � 2) in such a way that it is always real-valued, but possibly negative:

di(a; b) =

8<
:
q
di�1(a; b)2� (xi�1a � xi�1b)2; if di�1(a; b)

2 � (xi�1a � xi�1b)2;

�
q
(xi�1a � xi�1b)2 � di�1(a; b)2; otherwise:

(10)

Equivalently, we can use the de�nition di(a; b) = sign(di(a; b)
2) �

p
jdi(a; b)2j, where di(a; b)

2 is

de�ned as in Equation 9. Although this heuristic apparently resolves the drawbacks of negative

di(a; b)
2 values, it does not correct the fundamental problem with Equation 9, namely the fact that

di may violate the triangle inequality if di�1 is not the Euclidean distance metric. Furthermore,

notice that this formulation also means that di(a; b)
2 = d(a; b)2� dE(Fi�1(a); Fi�1(b))

2 no longer

holds if dj(a; b) is negative for 2 � j � i.

Notice that when di(a; b) is de�ned according to Equation 10, the value of di(a; b)
2 is always

non-negative, regardless of whether di(a; b) is negative or not. Thus, in situations where Equation 9

leads to negative values, the coordinate value xio for an object o as determined by Equation 8 can

be di�erent depending on which de�nitions of di is used (i.e., Equations 9 or 10). If we focus on

the result of just one iteration of FastMap, neither de�nition of di is always better than the other,

in terms of how well distances are preserved (i.e., it is sometimes better to use Equation 9 and

sometimes better to use Equation 10). However, the advantage of the de�nition in Equation 10 is

that the value of di(a; b)
2 tends to decrease as i increases (i.e., as more iterations are performed).

In particular, Equation 10 implies that di(a; b)
2 = jdi�1(a; b)2� (xi�1a � xi�1b)2j, so di(a; b)2 is only

larger than di�1(a; b)
2 if (xi�1a � xi�1b)2 > 2di�1(a; b)

2. In contrast, according to Equation 9, the

value of di(a; b)
2 is monotonically non-increasing in i, so it can become a large negative value. In

Section 6.2.3, we explore further the implications of these properties.

With the heuristic described above, two objects a and b can be used as a pivot pair even

when di(a; b) is negative. In contrast, when using Equation 9, such pairs could not be utilized.

However, it is not clear how appropriate such a choice is, in terms of resulting in good distance

preservation. Furthermore, the fact that di(a; b) is negative implies that the distance between

Fi�1(a) and Fi�1(b) is greater than d(a; b), so using a and b as pivots further increases the distance

distortion in d0(F (a); F (b)).

6 Contractive Property

In this section, we show that the embeddings resulting from SparseMap (Section 6.1) and FastMap

(Section 6.2) are not contractive. More importantly, we demonstrate that a contractive embedding

can be obtained by modifying one of the heuristics of SparseMap. Unfortunately, FastMap cannot

be modi�ed to always result in a contractive embedding.

6.1 SparseMap

A drawback of the embedding that forms the basis of SparseMap (i.e., the regular Lipschitz embed-

ding on the reference sets, without taking the heuristics into account) is that it is not contractive,

and thus fails to satisfy the pruning property. In particular, the distance value in the embedding

may be as much as a factor of log2N larger than the actual distance value. Two methods can be

applied to obtain a contractive embedding. First, the embedding proposed in [19] can be employed

(i.e., where the coordinate values are divided by k1=p), which is indeed contractive. Second, the

21

distance function d0 can be modi�ed to yield the same e�ect. In particular, if dp(F (o1); F (o2))

is one of the Minkowski metrics, we can de�ne d0(F (o1); F (o1)) = dp(F (o1); F (o2))=(k
1=p). The

advantage of modifying the distance function d0 rather than the embedding itself is that it allows

modifying the number of coordinate axes (which occurs, for example, during the construction of the

embedding and in the second SparseMap heuristic), without changing existing coordinate values.

With either method, the embedding would satisfy Equation 2, for any distance metric Lp (i.e.,

subject to modi�cation when using the second method).

Unfortunately, the heuristics applied in SparseMap do not allow deriving any practical bounds

(in particular, bounds that rely on N and/or k) on the distortion resulting from the embedding.

In particular, the �rst heuristic can lead to larger distances in the embedding space, thus possibly

causing the contractive property to be violated (in contrast, the second heuristic can only reduce

distances in the embedding space). This is because the value of jd̂(o1; Ai) � d̂(o2; Ai)j may not

necessarily be a lower bound on d(o1; o2). To see why, note that the upper bound distances d̂(o1; Ai)

and d̂(o2; Ai) can be larger than the actual distances d(o1; Ai) and d(o2; Ai) (which are the minimum

distances from o1 and o2 to an object in Ai) by an arbitrary amount. In particular, we cannot

preclude a situation where d̂(o1; Ai) > d̂(o2; Ai) + d(o1; o2), in which case jd̂(o1; Ai)� d̂(o2; Ai)j >
d(o1; o2).

Thus, we see that in order to be able to satisfy the contractive property, we must use the

actual values d(o; Ai) in the embedding, rather than an upper bound thereof as done in SparseMap.

Fortunately, there is a way to modify the �rst heuristic of SparseMap so that it computes the actual

value d(o; Ai), while still (at least potentially) reducing the number of distance computations. We

illustrate this for the case when the Chessboard distance metric, dM , is used as d0 in the embedding

space. Note that dM(F (o1); F (o2)) � d(o1; o2) as shown in Section 4.2 (the key observation is that

jd(o1; Ai) � d(o2; Ai)j � d(o1; o2) for all Ai). Furthermore, if Fi is the partial embedding for the

�rst i coordinate values, we also have dM(Fi(o1); Fi(o2)) � d(o1; o2). In this modi�ed heuristic

for computing d(o; Ai), instead of computing the actual distance value d(o; x) for only a �xed

number of objects x 2 Ai, we must do so for a variable number of objects in Ai. In particular,

we �rst compute the approximate distances dM(Fi�1(o); Fi�1(x)) for all objects x 2 Ai, which are

lower bounds on the actual distance value d(o; x). Observe that in SparseMap, the approximate

distances dE(Fi�1(o); Fi�1(x)) are computed for each x 2 Ai, which has the same cost complexity

as evaluating dM(Fi�1(o); Fi�1(x)), although the constants of proportionality are lower for dM than

for dE. Next, we compute the actual distances of the objects x 2 Ai in increasing order of their

lower bound distances, dM(Fi�1(o); Fi�1(x)). Let y 2 Ai be the object whose actual distance value

d(o; y) is the smallest distance value computed so far following this procedure. Once all lower bound

distances dM(Fi�1(o); Fi�1(x)) of the remaining elements x 2 Ai are greater than d(o; y), we are

assured that d(o; Ai) = d(o; y).

Even though we described our modi�ed heuristic in terms of the Chessboard distance metric, by

using a suitable de�nition of the distance function d0 the heuristic can be applied to any Minkowski

metric Lp. In particular, if k0 is the current number of coordinate axes (at the completion of the

process, k0 = k), the distance function d0 based on Lp is de�ned as

d0(Fk0(o1); Fk0(o2)) =
(
P

i jd(o1; Ai)� d(o2; Ai)jp)1=p
(k0)1=p

: (11)

For any choice of p, this distance metric makes F contractive (e.g., note the similarity with Equa-

tion 4).

Moreover, observe that for �xed values of o1, o2, and Fk0 , the function d0 as de�ned by Equa-

tion 11 increases with increasing values of p. For example, for p = 1, d0(Fk0(o1); Fk0(o2)) is the

22

average among the coordinate value di�erences, while for p = 1, it is the maximum di�erence.

Thus, the use of the Chessboard metric L1 would lead to the largest values of d0(Fk0(o1); Fk0(o2))

for any given choice of the sets Ai. For similarity queries, given a �xed set of reference sets Ai, this

would therefore lead to the best possible pruning during search, as well as for the modi�ed heuristic

described above. To see why this is the case, suppose that we are performing a range query with

query object q and query radius r, and we wish to report all objects o such that d(q; o)� r. Let o0

be an object that is too far from q, i.e., d(q; o0) > r. However, if d0(F (q); F (o0)) � r, then o0 will

be a part of the result set when performing a query in the embedding space. Thus, the situation

can easily arise that d0(F (q); F (o0)) � r when basing d0 on the City Block or Euclidean distance

metrics (i.e., L1 or L2) but d
0(F (q); F (o0)) > r when d0 is based on the Chessboard distance metric

L1. Such a hypothetical example is illustrated in Figure 8.

q o’

r

L2 L∞

L1

Figure 8: A hypothetical range query example where an object o0 is outside the

distance range r from the query object q. The distance d0(F (q); F (o0)) from q to

o0 in the embedding space will lie somewhere on the line between q and o0. Thus,

this distance may lie inside the query range if d0 is based on L1 or L2, but outside

if d0 is based on L1.

Although the modi�ed heuristic presented above will likely lead to a higher number of distance

computations than the SparseMap heuristic, the higher cost of the embedding (which mainly a�ects

pre-processing) may be justi�ed as the resulting embedding is contractive. This allows e�ective

pruning in similarity queries, while obtaining accurate results as we get 100% recall and thus do

not miss any relevant answers.

6.2 FastMap

If the metric space (S; d) is actually a Euclidean space (or isometric to a Euclidean space), then

the embedding F produced by FastMap is contractive (Section 6.2.1). Unfortunately, if (S; d)

is not isometric to any Euclidean space, then the embedding produced by FastMap is no longer

guaranteed to be contractive (Section 6.2.2). In fact, it is more likely than not that the embedding

is not contractive, at least for a few pairs of objects. Moreover, the distortion in the distances, as

de�ned in Section 2.2, can be very high. In other words, the distances in the embedding space can

be much smaller or much larger than in the original space (Section 6.2.3). Not only is the lack of

the contractive property undesirable for similarity searching purposes, but, as we point out, it can

also severely degrade the performance of FastMap. In particular,
(N2) distance computations

may now be needed to �nd an appropriate pair of pivot objects, instead of O(N) which is the case

when the contractive property is satis�ed. In addition, failure to satisfy the contractive property

also reduces the extent to which distances can be preserved (Section 6.2.4).

23

6.2.1 Contractiveness of FastMap

The embedding F produced by FastMap is contractive when the metric space (S; d) is actually a

Euclidean space (or isometric to a Euclidean space). This is not surprising since key aspects of

FastMap are based on a property unique to Euclidean spaces, namely the Pythagorean theorem.

In particular, both Equation 6, that computes a single coordinate value, and Equation 7, that

computes the projected distance dH used in the next iteration, are based on the Pythagorean

theorem. To see why contractiveness is satis�ed, we point out that FastMap can be used to extract

m coordinate values for each object from the distance function d, assuming that the vectors in S

are m-dimensional5 .

Each coordinate value extracted by FastMap is equivalent to rotating and translating the set of

data points in such a way that the pivot objects have a certain alignment along the given coordinate

axis. Furthermore, note that the projected distance function dH used to determine the second pair

of pivots measures distances along a hyperplane H that is perpendicular to the line through the

�rst pair of pivot objects r and s. Therefore, the line through r and s is orthogonal to the line

through the second pair of pivot objects (which are de�ned in terms of dH), and by extension, all

subsequent pairs of pivot objects. The same argument can be applied recursively to the other pairs

of pivot objects, thereby showing that the coordinate axes are all mutually orthogonal. Notice

that d0 = d, since both are Euclidean distance metrics for m-dimensional space. Thus, we see that

the result of FastMap is equivalent to applying a linear transformation involving translation and

rotation, just like in KLT as discussed in Section 5, which are distance-preserving operations under

the Euclidean distance function (i.e., d(o1; o2) = d(F (o1); F (o2))). Hence, if we omit some of the

m coordinate values, the distances among the resulting vectors can only be smaller, and thus the

mapping is contractive.

6.2.2 Non-Contractiveness of FastMap

Figure 9 illustrates how FastMap would map objects i and j having determined just one coordinate

value, assuming that r and s are the pivot objects. Notice how it is intuitively obvious that

the distance from F (i) to F (j) is smaller than that between i and j. Unfortunately, intuition

is misleading, here, as it tends to be based on Euclidean geometry, and we perceive the three-

dimensional world around us as obeying Euclidean geometry. In particular, the relative lengths of

the line segments between points in Figure 9 can only arise if d is the Euclidean distance metric (or

if (S; d) is isometric to a Euclidean space). Thus, we see that in the �gure, d(i; j)2 = (xi�xj)2+D2

(according to the Pythagorean theorem), so we clearly have d(i; j)� jxi�xj j. In general, we cannot
assume that this relationship holds.

The satisfaction of the contractive property is only guaranteed when both d and d0 are the

Euclidean distance metric (i.e., the original objects are points in a multidimensional space). There

are two general scenarios where the contractive property does not hold. The �rst takes place when

d is the Euclidean distance metric while d0 is a non-Euclidean distance metric (Lemma 2). The

second takes place when d is not the Euclidean distance metric (and (S; d) is not isometric to a

Euclidean space), regardless of the nature of d0 (Lemmas 3{5), and is due to the implicit assumption

in Equations 6 and 7 that d is the Euclidean distance metric. The �rst scenario is captured in the

following lemma.

5Actually, if the vectors in S lie on a m0-dimensional subspace, m0
< m, then FastMap will only be able to extract

m
0 coordinate values. However, in this case, the missing coordinate values can simply be set to 0 (if they are indeed

desired).

24

i

r s
xi

j

xj

d(r,i)
d(s,j)d(r,j)

d(s,i)

d(r,s)

D d(i,j)

|xi-xj|

F(i) F(j)

Figure 9: Example projection of two objects on the line joining the points corre-

sponding to the pivot objects.

Lemma 2 If d is a Euclidean metric and d0 is some Minkowski metric Lp, the embedding F

produced by FastMap is only guaranteed to be contractive if p � 2.

Proof We showed in Section 6.2.1 that FastMap leads to a contractive embedding if d0 is the Eu-

clidean metric (i.e., L2). Let x = fx1; : : : ; xmg and y = fy1; : : : ; ymg be some arbitrary points in S.

The Lp distance between x and y, dp(x; y) = (
Pm

i=1 jxi � yijp)1=p, can be shown to be non-increasing
as a function of p. Thus, if dA is the L1 metric, then dA(F (o1); F (o2)) � dE(F (o1); F (o2)), so we

may have dA(F (o1); F (o2)) > d(o1; o2) � dE(F (o1); F (o2)). Therefore, is not guaranteed to be

contractive if d0 is L1 (i.e., p = 1). This situation cannot arise if d0 is some other Minkowski metrics

Lp where p � 2 since d0(F (o1); F (o2)) � dE(F (o1); F (o2)) � d(o1; o2) for such d0.

The second, and more serious, scenario of contractive property violation occurs when d is not a

Euclidean metric, regardless of the choice of d0. The reason why this is serious is that the contractive

property may be violated after determining any number of coordinate axes. In particular, this

means that the value of di(a; b)
2 in Equation 9 can be negative (or zero) for any i � 2, which

precludes using a and b as the pivot pair in iteration i of FastMap. Thus, the situation can arise

that di(a; b)
2 � 0 for all pairs of objects a and b, in which case no more coordinate values can be

determined. This dilemma is avoided by using the heuristic discussed in Section 5.8, but possibly

at the price of even more distortion of the distance values.

There are two possible causes for the violation of the contractive property: Equation 6 and

Equation 7. Both are due to the implicit assumption made in deriving these equations that the

Pythagorean theorem applies to the distance metric d. However, the Pythagorean theorem is unique

to Euclidean spaces.

Lemma 3 Let (S; d) be a �nite metric space that is not isometric to a Euclidean space. In one

iteration of FastMap, Equation 6 may result in values that violate the contractive property.

Proof As an example where Equation 6 causes the contractive property to be violated, consider

objects a, b, c, and e, with the following distance matrix for which satisfaction of the triangle

inequality can be easily veri�ed:

a b c e

a 0 10 4 5

b 10 0 8 7

c 4 8 0 1

e 5 7 1 0

25

Since objects a and b are the objects which are the furthest apart, they are selected as the pivot

objects in FastMap when determining the �rst coordinate axis. Following Equation 6, the values

of the �rst coordinate of the points derived from objects c and e are as follows:

xc = (42 + 102 � 82)=(2 � 10) = 52=20 = 13=5

xe = (52 + 102 � 72)=(2 � 10) = 76=20 = 19=5

Thus, the distance between these one-dimensional points corresponding to objects c and e used in

the �rst iteration of FastMap is xe � xc = 6=5 = 1:2, which is higher than the original distance

between them, obtained from the distance matrix, which is 1. Thus the contractive property does

not hold for c and e.

The contractive property is not directly violated by Equation 7, but instead indirectly. In

particular, if d is not a Euclidean distance metric, Equation 7 may lead to a de�nition of dH such

that dH does not satisfy the triangle inequality (thereby failing to be a distance metric), and this,

in turn, causes the pruning property to be violated in the next iteration of FastMap.

Lemma 4 Let (S; d) be a �nite metric space that is not isometric to a Euclidean space. The

distance function dH as de�ned by Equation 7 (which uses the values computed in Equation 6) may

not satisfy the triangle inequality. In other words, it is possible for dH to not be a distance metric.

Proof Consider objects a, b, c, and e, with the following distance matrix for which satisfaction of

the triangle inequality can be easily veri�ed:

a b c e

a 0 6 5 4

b 6 0 3 4

c 5 3 0 6

e 4 4 6 0

Following Equation 6, the values of the �rst coordinate of the points derived from c and e using a

and b as the pivot objects are obtained as follows:

xc = (52 + 62 � 32)=(2 � 6) = 13=3

xe = (42 + 62 � 42)=(2 � 6) = 3

The projected distances between a0, c0, and e0 follow from Equation 7:

dH(a
0; c0) =

p
52 � (0� 13=3)2 � 2:494

dH(a
0; e0) =

p
42 � (0� 3)2 � 2:647

dH(c
0; e0) =

p
62 � (13=3� 3)2 � 5:850

Thus we see that dH(a
0; c0) + dH(a

0; e0) � 5:141 which is less than dH(c
0; e0), thereby violating the

triangle inequality.

We next show how the violation of the triangle inequality causes the pruning property to be

violated.

26

Lemma 5 If d does not satisfy the triangle inequality, the contractive property may possibly not

be satis�ed.

Proof Assuming that a and b are the pivot objects, the contractive property is violated if d(a; i) <

jxa � xij = xi (since xa = 0) for some object i. Now, let us explore what conditions are equivalent

to d(a; i)< xi, and thus give rise to a violation of the contractive property.

d(a; i)< xi , d(a; i)<
d(a; i)2+ d(a; b)2� d(b; i)2

2d(a; b)

, 2d(a; i)d(a; b)< d(a; i)2+ d(a; b)2� d(b; i)2

, d(b; i)2 < d(a; i)2� 2d(a; i)d(a; b)+ d(a; b)2 = (d(a; i)� d(a; b))2

, d(b; i)< j(d(a; i)� d(a; b))j
, d(a; i) + d(b; i)< d(a; b)_ d(a; b)+ d(b; i)< d(a; i)

Similarly, it can be shown that d(b; i)< jxb�xij i� d(a; i)+d(b; i)< d(a; b)_d(a; b)+d(a; i)< d(b; i).

Thus, we see that the contractive property is violated (for d(a; i), d(b; i), or both) if and only if the

triangle inequality is violated for any of the distances among the two pivot objects a and b and an

arbitrary object i.

Thus, in Lemmas 3 through 5, we have established the following:

Theorem 1 Let (S; d) be a �nite metric space that is not isometric to a Euclidean space. Both

Equation 6 and Equation 7 (and by extension, the general forms in Equations 8 and 9) may cause

the contractive property to be violated.

Observe that the non-Euclidean heuristic discussed in Section 5.8, embedded in Equation 10,

does not a�ect this result, as the proofs did not make use of the fact that dH(i; j)
2 is negative.

6.2.3 Large Distortion with FastMap

In the previous section, we showed that the embedding F produced by FastMap may fail to satisfy

the contractive property. In this section, we are concerned with the question of how much larger

the distances in the embedding space can be compared to the original distances. We call this the

expansion of F , de�ned as maxo1;o2fd
0(F (o1);F (o2))

d(o1;o2)
g. Naturally, if the expansion is no more than

1, then F is contractive. Furthermore, if we can derive an upper bound c on the expansion, then

any embedding F produced by FastMap can be made to be contractive by de�ning d0(o1; o2) =

dE(F (o1); F (o2))=c such that the expansion with respect to this d
0 is no more than 1. Unfortunately,

as we shall see, the expansion of embeddings produced by FastMap when determining just one

coordinate is already relatively large, and for additional coordinates the expansion can be very

large, especially if the heuristic discussed in Section 5.8 is not employed. Below, we �rst treat the

case when the non-Euclidean heuristic is not used (Section 6.2.3.1), and then describe how our

results are a�ected when using the heuristic (Section 6.2.3.2). This is followed by a brief summary

(Section 6.2.3.3).

27

6.2.3.1 Original Approach

First, we derive an upper bound on the expansion when determining just one coordinate with

FastMap.

Lemma 6 The expansion after determining one coordinate with FastMap is at most 3. This bound

is tight.

Proof Using Equation 6, we can derive an upper bound on the expansion, with the help of the

triangle inequality and the upper bound d(r; s) on d(r; i) and d(r; j):

jxi � xj j
d(i; j)

=

����d(r; i)2� d(s; i)2� d(r; j)2+ d(s; j)2

2d(r; s)d(i; j)

����
=

����(d(r; i)� d(r; j))(d(r; i)+ d(r; j))+ (d(s; j)� d(s; i))(d(s; j)+ d(s; i))

2d(r; s)d(i; j)

����
� jd(r; i)� d(r; j)j(d(r; i)+ d(r; j))+ jd(s; j)� d(s; i)j(d(s; j)+ d(s; i))

2d(r; s)d(i; j)

� d(i; j)(d(r; i)+ d(r; j))+ d(i; j)(d(s; j)+ d(s; i))

2d(r; s)d(i; j)

=
d(r; i)+ d(r; j)+ d(s; j) + d(s; i)

2d(r; s)

� d(r; i)+ d(r; j)+ d(r; s) + d(r; j)+ d(r; i)+ d(r; s)

2d(r; s)
� 6d(r; s)

2d(r; s)
= 3:

We now show that this bound is tight. Consider the following assignment of the distances

among the objects i, j, r, and s, where d(r; s) is left as a variable:

d(r; i) = d(r; s) d(s; i) = (2� 2�)d(r; s)

d(r; j) = (1� �)d(r; s) d(s; j) = (2� �)d(r; s)

d(i; j) = �d(r; s)

The resulting distances clearly satisfy the triangle inequality for 0 < � < 1. Using these distance

values leads to the following value of jxi � xj j:

jxi � xj j =

����d(r; s)2� (2� 2�)2d(r; s)2� (1� �)2d(r; s)2+ (2� �)d(r; s)2

2d(r; s)

����
=

����12(1� 4� 4�2 + 8� � 1� �2 + 2�+ 4 + �2 � 4�)d(r; s)

����
=

����12(�4�2 + 6�)d(r; s)

����= d(r; s)(3�� 2�2):

Thus, dividing by d(i; j) = �d(r; s) gives the expansion on d(i; j), namely 3 � 2�. Clearly, as �

approaches 0, the expansion approaches the value of 3.

The example provided in the proof of the tightness of the bound uses an arbitrarily small value

of d(i; j). A more realistic assumption is that there is some bound on the ratio between any two

distance values, e.g., that the largest distance value is no more than 10 times larger than the smallest

distance value, or equivalently, the smallest distance value is no smaller than d(r; s)=5 (since the

28

largest distance value is at most 2d(r; s)). However, even for such a small range of values, the

distortion can be as much as 3 � 2 � 1
5
= 2:6 (actually, the ratio between the smallest and largest

distance value in the example is then 9, as the smallest distance value is d(i; j) = 1

5
d(r; s) while the

largest distance value is d(s; j) = (2� 1

5
)d(r; s) = 9

5
d(r; s)).

As we showed in Section 6.2.2, the triangle inequality does not necessarily hold for the distance

functions used in the second and subsequent iterations of FastMap. This means that the upper

bound on the expansion derived in Lemma 6 only holds for the �rst coordinate value obtained by

FastMap. The basic problem is that for iteration i > 1 the value of di(r; s)
2, as de�ned in Equation 9,

may be less than or equal to zero for all objects s, even after several iterations of the pivot �nding

heuristic (see Section 5.3). Moreover, even when di(r; s)
2 is found to be strictly positive, it can be

arbitrarily close to zero, thereby yielding an arbitrarily large expansion. One solution is to set a

strict lower bound on the distance between the pivot objects, based on the distance between the

�rst pair of pivot objects. In other words, if r and s are the �rst two pivot objects, then any pivot

objects t and u chosen in any subsequent iteration i must obey di(t; u) � d(r; s)=�, where � > 1

is some constant. Unfortunately, this requirement means that the pivot �nding heuristic may no

longer succeed in �nding a legal pair of pivots in a constant number of iterations, and the number

of distance computations may become O(N2). An alternative solution is to terminate FastMap

if a legal pivot pair is not found in O(1) iterations of the pivot �nding process (see Section 5.3).

This means that we may obtain fewer coordinate axes than desired. However, this is usually not a

problem as a low number of coordinate axes is preferrable for most applications. Nevertheless, it

is still not clear that relative distances are adequately preserved in cases when legal pivots cannot

be found in O(N) distance computations. This is a subject for further study.

Based on the distance range limitation d2(t; u) � d(r; s)=� (� > 1), we now derive an upper

bound on the expansion in the second iteration of FastMap, i.e., when �nding the second coordinate

value for each object.

Lemma 7 The expansion after determining two coordinates with FastMap is no more than 36�2,

where d(r; s)=� is the minimum distance value for the pivots used in the second iteration (using the

projected distance function) as well as for the distances between any two pairs of objects (using the

original distance function), where � > 1 is some constant.

Proof Below, we derive an upper bound for
jx2a�x

2

b
j

d(a;b)
, using the de�nitions from Section 5.6. Notice

that the formula for jx2a � x2b j is symmetric in a and b, so we can use it without the absolute value

operator. In the derivation, we make use of the lower bound d(r; s)=� and the upper bound 2d(r; s)

on any distance values. Furthermore, we use the bound obtained in Lemma 6. In particular, for

any objects u and v we obtain

d2(u; v)
2 = d(u; v)2� jxu � xvj2 � d(u; v)2� (3d(u; v))2 = �8d(u; v)2: (12)

Thus, applying Equation 8 (with i = 2), the lower bound on d2(u; v)
2 in Equation 12, its upper

bound d2(u; v)
2 � d(u; v)2, and the bounds on the original distances, we obtain

x2a � x2b
d(a; b)

=
d2(p

2

1
; a)2 � d2(p

2

2
; a)2 � d2(p

2

1
; b)2+ d2(p

2

2
; b)2

2d2(p
2

1
; p2

2
)d(a; b)

� d(p2
1
; a)2� (�8d(p2

2
; a)2)� (�8d(p2

1
; b)2) + d(p2

2
; b)2

2(d(r; s)=�)(d(r; s)=�)

� 4d(r; s)2+ 8 � 4d(r; s)2+ 8 � 4d(r; s)2+ 4d(r; s)2

2d(r; s)2=�2

29

=
18 � 4d(r; s)2
2d(r; s)2=�2

=
72

2=�2
= 36�2:

The upper bound in Lemma 7 is not tight. The reason is that the triangle inequality on the

original distances and the pivot criteria for p2
1
and p2

2
prevent all the upper bounds utilized in the

proof from being realized simultaneously. It is di�cult to derive a tighter bound that takes into

account all of these criteria. Nevertheless, we attempted to construct an example exhibiting large

expansion, through the use of a non-linear optimization tool. The objective function describing

the expansion involved 14 variables and the number of constraints (incorporating all the relevant

criteria) was about 80. Due to this relatively large number, the optimizer frequently got stuck at

local maxima rather than �nding the true maximum. However, it was clear that the maximum

expansion is at least proportional to �. For example, for � = 5 (which meant that the largest

distance value was never more than ten times larger than the smallest one), the optimizer was able

to discover a legal assignment of distance values that yielded an expansion of about 30. For � = 50,

it yielded an expansion of about 300, and for � = 100, it yielded an expansion of about 600.

A general formula for k > 2 coordinate values can be derived in a recursive fashion in a similar

way as we derived Lemma 7, which would yield an upper bound of O(�2(k�1)) for the expansion.

Again, this upper bound is not attainable. By implementing a similar non-linear optimization

model as we described above for k = 3, we obtained anecdotal evidence that the upper bound

is O(�k�1). This time, the model had 27 variables and over 200 conditions, and it yielded an

expansion as large as 75 for � = 21
2
, and 340 for � = 5, a di�erence by a factor close to 4 when �

was increased by a factor of 2. Admittedly, the largest values for the expansion result from a large

number of signi�cant digits (since this allows for very small relative di�erences in distance values).

Still, with only �ve signi�cant digits for the distance values, the expansion can be as high as several

hundred.

6.2.3.2 Non-Euclidean Heuristic

The upper bound of 3 on the expansion in the �rst coordinate value established in Lemma 6

also applies when the heuristic described in Section 5.8 is employed since the heuristic does not

a�ect the �rst iteration of FastMap. However, the expansion due to the second and subsequent

coordinate values will typically be less when the heuristic is used, as discussed in Section 5.8. The

reason is that the worst case expansion due to an iteration of FastMap is roughly proportional to

the magnitude of the (squared) distance values in Equation 8. Without the heuristic (i.e., when

using Equation 9), the value of di(a; b)
2 is monotonically non-decreasing in i. Thus, di(a; b)

2 can

become a large negative value (i.e., much smaller than �d(a; b)2), even if the expansion due to

each individual iteration of FastMap is minor. In contrast, when using Equation 10, the value of

di(a; b)
2 is always non-negative, and unless the expansion is more than 2 for coordinate axis i (i.e.,

(xi�1a � xi�1b)2 > 2di�1(a; b)
2), di(a; b)

2 is no larger than di�1(a; b)
2.

Since the expansion after the �rst iteration is at most 3, d2(a; b) � �
p
9d(a; b)2� d(a; b)2 =

�
p
8d(a; b), so 0 � d2(a; b)

2 � 8d(a; b)2 when using Equation 10. Proceeding as in Lemma 7, we

can show that the expansion due to the second iteration of FastMap is no more than 32�2 (where

d(r; s)=�, � > 1, is the minimum distance for the second pivot pair). This is nearly as much as

when not using the heuristic (where we established the upper bound 36�2). However, as before,

this upper bound is not attainable. Modifying the non-linear optimization model to account for

the heuristic, we obtained an expansion of up to 7 for two iterations of FastMap, and 14 for three

iterations. Unfortunately, the optimizer appeared to have di�culty converging on solutions for the

30

complicated formulas that result, so it is possible that it missed solutions with larger expansion

values. Nevertheless, even though these values are much smaller that we saw before, they constitute

a signi�cant distortion in distance values.

When the heuristic is used, it is actually possible to use r and s as the pivot pair even when

di(r; s) is negative. Therefore, any pair of objects can be used as pivots, unlike in the case without

the heuristic (i.e., when di(r; s)
2 is negative). However, it is not obvious what e�ect it has on the

quality of the mapping when di(r; s) is negative for the pivot objects r and s, so it is not clear

whether it is advisable to allow such pivot objects. Furthermore, if jdi(r; s)j is very small, then the

expansion can potentially get very large. Thus, in order to keep the expansion from becoming too

large, we still must be careful about how the pair of pivot objects is chosen.

6.2.3.3 Summary

A very large expansion, as we have seen is possible with FastMap, is problematic in similarity

search (potentially causing a large number of false dismissals), and also in other applications such

as clustering. In particular, FastMap may cause two nearby objects to appear to be far apart,

thereby resulting in these objects not being clustered together as they should be. Of course, it could

be argued that expansion as we have de�ned it is a worst-case quality measure over all pairs of

objects, and that the large upper bounds on the expansion are not often encountered. Nevertheless,

determining the expected expansion for some distribution of distance values is di�cult, and thus

remains an open question. Perhaps a more practical approach to the evaluation of the expansion

in FastMap is to apply it to a suite of realistic data sets and measure the average expansion. Such

a study is left for future work.

6.2.4 Distance Preservation

An interesting question is the extent to which FastMap preserves distances, i.e., when d(a; b) equals

d0(F (a); F (b)). Is it possible to achieve distance preservation for su�ciently large values of k?

Below, we examine these questions, and �nd that distance preservation is possible when d is the

Euclidean metric, but not otherwise. Recall that we assume that d0 is the Euclidean distance metric.

Unless otherwise mentioned, also assume below that Equation 9 is used to compute distances.

Lemma 8 shows that pivot objects are indistinguishable in subsequent iterations of FastMap.

Thus, the pivot objects in iteration i � 1 have identical coordinate values for coordinate axes i

through k.

Lemma 8 Let r and s be the pivot objects in iteration i � 1 of FastMap. Then, di(r; s) = 0 and

di(r; t) = di(s; t) for an arbitrary object t, regardless of whether or not di�1 satis�es the triangle

inequality.

Proof The �rst part, di(r; s) = 0, is obvious, since

xi�1r =
di�1(r; r)

2+ di�1(r; s)
2� di�1(r; s)

2di�1(r; s)
= 0

and

xi�1s =
di�1(r; s)

2+ di�1(r; s)
2� di�1(s; s)

2di�1(r; s)
= di�1(r; s):

31

Now, let t be an arbitrary object. Using Equations 8 and 9, we can compute the values of di(r; t)
2

and di(s; t)
2:

di(r; t)
2 = di�1(r; t)

2� jxi�1r � xi�1t j2 = di�1(r; t)
2� (xi�1t)2

= di�1(r; t)
2�

�
di�1(r; t)

2+ di�1(r; s)
2� di�1(s; t)

2di�1(r; s)

�2

=
4di�1(r; s)

2di�1(r; t)
2� (di�1(r; t)

2+ di�1(r; s)
2� di�1(s; t)

2)2

4di�1(r; s)2

=
1

4di�1(r; s)2
(4di�1(r; s)

2di�1(r; t)
2� di�1(r; s)

4

�di�1(r; s)2(di�1(r; t)2� di�1(s; t)
2)� (di�1(r; t)

2� di�1(s; t)
2)2)

=
�di�1(r; s)4+ 2di�1(r; s)

2(di�1(r; t)
2+ di�1(s; t)

2)� (di�1(r; t)
2� di�1(s; t))

2

4di�1(r; s)2
;

and

di(s; t)
2 = di�1(s; t)

2 � jxi�1s � xi�1t j2 = di�1(s; t)
2 � jdi�1(r; s)� xi�1t j2

= di�1(s; t)
2 �

�
di�1(s; t)

2 + di�1(r; s)
2� di�1(r; t)

2di�1(r; s)

�2

=
4di�1(r; s)

2di�1(s; t)
2 � (di�1(s; t)

2 + di�1(r; s)
2� di�1(r; t)

2)2

4di�1(r; s)2

=
1

4di�1(r; s)2
(4di�1(r; s)

2di�1(s; t)
2 � di�1(r; s)

4

�di�1(r; s)2(di�1(s; t)2 � di�1(r; t)
2)� (di�1(s; t)

2 � di�1(r; t)
2)2)

=
�di�1(r; s)4+ 2di�1(r; s)

2(di�1(s; t)
2 + di�1(r; t)

2)� (di�1(s; t)
2 � di�1(r; t))

2

4di�1(r; s)2

Clearly, the �nal formulas for the two are the same, even if the triangle inequality is not satis�ed.

Next, we give the conditions under which distances between objects are preserved.

Lemma 9 Let r and s be some data objects, not necessarily pivot objects. If di(r; s) = 0 and

di(r; t) = di(s; t) for all objects t after i � 1 iterations of FastMap, then d0(F (r); F (s)) = d(r; s),

assuming that Equation 9 is used to compute distances for each iteration. In other words, the

distance between r and s is preserved by F .

Proof Since di(r; s) = 0, we have d(r; s) = dE(Fi�1(r); Fi�1(s)), where the notation Fi�1(v) means

the (i � 1)-dimensional partial vector for v determined in the �rst i � 1 iterations. Furthermore,

since di(r; t) = di(s; t) for all objects t, coordinate values i throught k will be the same for r

and s. Thus, d(r; s) = dE(F (r); F (s)), and since d0 is the Euclidean distance metric dE , we have

d(r; s) = d0(F (r); F (s)) as desired.

From Lemmas 8 and 9, we can see that the distances between pivot objects is preserved. We

can use the observation in Lemma 9 to de�ne equivalence classes for the data objects, which in

turn enables us to make a more general statement on conditions that ensure distance preservation

32

for a pair of objects. In particular, we say that two objects r and s (not necessarily pivot objects)

belong to the same equivalence class in iteration i if di(r; s) = 0 and di(r; t) = di(s; t) for all objects

t. Initially, each object belongs to a distinct equivalence class (except for objects having a distance

of zero from each other). Furthermore, each iteration of FastMap causes the merger of at least two

equivalence classes, namely the ones containing the two pivot objects. Thus, at the conclusion of

FastMap, the distances between all objects belonging to the same equivalence class are preserved,

assuming that d0 is the Euclidean distance metric. In other words, d(r; s) = d0(F (r); F (s)) if r and

s belong to the same equivalence class.

The maximum number of equivalence classes after i iterations is clearly N�i, as at each iteration
we merge at least two equivalence classes into one. This leads directly to the conclusion that the

maximum possible number of iterations is N �1, in which case the number of equivalence classes is

one. This means that all pairwise distances between the N objects are preserved by the embedding

| that is, d(r; s) = d0(F (r); F (s)) for all
�
N
2

�
pairs of objects r and s. However, it is important

to note that given N objects, it is not always possible to reduce the number of equivalence classes

to one. In particular, this is the case when the intermediate mapping Fi�1 is non-contractive after

some number i � 1 of iteration. When this occurs, some negative distance values di(r; s)
2 exist,

and because dj(r; s)
2 will also be negative for j > i, this means that equivalence classes for r and s

can never be merged. In other words, this shows that, in general, it is not possible to preserve all

distances with FastMap, no matter how many iterations are performed. Nevertheless, the reasoning

above is another proof that when d is the Euclidean metric, FastMap leads to a distance-preserving

embedding for su�ciently large value of k, since in this case, the squared projected distances are

never negative.

Until now, we have assumed that the heuristic described in Section 5.8 is not used. Lemma 8 can

be shown to also hold when using Equation 10 to compute the intermediate distance function di (i �
2). However, in this case, the observation in Lemma 9 may no longer hold if d is not the Euclidean

distance metric. In particular, the proof made use of the fact that d(r; s) = dE(Fi�1(r); Fi�1(s))

when di(r; s) = 0. This property does not hold if any of the values dj(r; s), 2 � j < i, is negative

for the objects r and s in Lemma 9. Therefore, if d is not Euclidean, then distance preservation

cannot be achieved whether or not the heuristic is used.

7 Concluding Remarks

We have examined a number of embeddings of �nite metric spaces and evaluated them in the con-

text of their usage for similarity searching in multimedia databases with 100% recall. 100% recall

is important in similarity search as it ensures that no relevant object is dropped from the query

result. Particular attention was paid to Lipschitz embeddings (as exempli�ed by SparseMap) and

FastMap which is designed to be a heuristic alternative to the KLT (and the equivalent PCA and

SVD) method for dimensionality reduction. 100% recall is achieved when the resulting mapping is

contractive (i.e., the pruning property is satis�ed). Although Linial, London and Rabinovich [19]

showed how to make the Lipschitz embeddings contractive, we showed that the speedup heuristics

that comprise the SparseMap adaptation make the resulting mapping non-contractive. Moreover,

we showed how to modify the SparseMap heuristics so that the resulting mapping is indeed con-

tractive.

In the case of FastMap, we �rst proved that it was contractive when the data is drawn from a

Euclidean space, and the distance metric in the embedding space is a Minkowski metric Lp (p � 2

which also includes the Euclidean distance metric). Although in their development of FastMap,

Faloutsos and Lin [5] claim that the advantage of FastMap over methods such as SVD is that

33

FastMap can work for data drawn from an arbitrary metric space (i.e., the only information about

the data objects are the interobject distances, which are required to satisfy the triangle inequality).

However, we showed that FastMap is only a heuristic when the data is drawn from a metric space

that is not Euclidean. In particular, we proved that in such a case it is possible for FastMap not

to be contractive. We showed that this was a direct result of the implicit assumption by Faloutsos

and Lin [5] of the applicability of the Pythagorean theorem, which in the case of a general metric

space can only be used as a heuristic in computing the projected distance values. In fact, this

led to de�nitions of distance functions at intermediate iterations that did not satisfy the triangle

inequality and thereby failed to be distance metrics. Non-contractiveness enabled us to prove the

following properties of FastMap for this situation:

1. Given a value k, application of FastMap may not always be possible in the sense that we are

not guaranteed to be able to determine k coordinate axes.

2. The distance distortion of the embedding can be very large as evidenced by the bounds that

we gave, some of which were attainable, on how much larger the distances in the embedding

space can be.

3. The fact that we may not be able to determine k coordinate axes limits the extent of achievable

distance preservation. However, more importantly, failure to determine more coordinate axes

does not necessarily imply that relative distances among the objects are e�ectively preserved.

4. The presence of many non-positive, or very small positive, distance values (which can cause

large distortion) in the intermediate distance functions (i.e., those used to determine the

second and subsequent coordinate axes) may cause FastMap to no longer satisfy the claimed

O(N) bound on the number of distance computations in each iteration of FastMap.

A heuristic for non-Euclidean distance metric in FastMap was proposed in [23]. This heuristic

alleviates some of the drawbacks listed above. In particular, it should reduce the amount of distance

distortion in the embedding, and the number of object pairs that do not qualify as pivots should

be lower, thus reducing the likelyhood of not satisfying the O(N) bound on the number of distance

computations in each iteration of FastMap. However, a detailed empirical study of the e�ect of the

heuristic on actual data sets remains to be performed.

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for

approximate nearest neighbor searching in �xed dimensions. Journal of the ACM, 45(6):891{

923, November 1998.

[2] M. Bern. Approximate closest-point queries in high dimensions. Information Processing Let-

ters, 45(2):95{99, February 1993.

[3] J. Bourgain. On Lipschitz embedding of �nite metric spaces in Hilbert space. Israel Journal

of Mathematics, 52(1{2):46{52, 1985.

[4] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz.

E�cient and e�ective querying by image content. Journal of Intelligent Information Systems,

3(3/4):231{262, 1994.

34

[5] C. Faloutsos and K. Lin. FastMap: A fast algorithm for indexing, data-mining and visualization

of traditional and multimedia datasets. In Proceedings of the ACM SIGMOD Conference, pages

163{174, San Jose, CA, May 1995.

[6] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, Boston, second

edition, 1990.

[7] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, third edition, 1996.

[8] J. Hafner, H. Sawhney, W. Equitz, and M. Flickner et al. E�cient color histogram indexing

for quadratic form distance functions. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 17(7):729{736, July 1995.

[9] G. R. Hjaltason and H. Samet. Incremental similarity search in multimedia databases. under

preparation.

[10] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Advances in Spatial Databases

| Fourth International Symposium, SSD'95, M. J. Egenhofer and J. R. Herring, eds., pages

83{95, Portland, ME, August 1995. (Also Springer-Verlag Lecture Notes in Computer Science

951).

[11] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transactions on

Database Systems, 24(2):265{318, June 1999.

[12] G. Hristescu and M. Farach-Colton. Cluster-preserving embedding of proteins. Technical

report, Rutgers University, 1999.

[13] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of di-

mensionality. In Proceedings of the 30th Annual ACM Symposium on the Theory of Computing,

pages 604{613, Dallas, TX, May 1998.

[14] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.

Contemporary Mathematics, (26):189{206, 1984.

[15] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast nearest neighbor

search in medical image databases. In Proceedings of the 22nd International Conference on

Very Large Data Bases, pages 215{226, Mumbai, India, September 1996.

[16] J. B. Kruskal and M. Wish. Multidimensional scaling. Technical report, Sage University Series,

Beverly Hills, 1978.

[17] M. Linial, N. Linial, N. Tishby, and G. Yona. Global self organization of all known protein

sequences reveals inherent biological signatures. Journal of Molecular Biology, 268(2):539{556,

May 1997.

[18] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic

application s. In Proceedings 35th IEEE Annual Symposium on Foundations of Computer

Science, pages 577{591, Santa Fe, NM, November 1994.

[19] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic

applications. Combinatorica, 15:215{245, 1995.

35

[20] K. W. Pettis, T. A. Bailey, A. K. Jain, and R. C. Dubes. An intrinsic dimensionality esti-

mator from near-neighbor information. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1(1):25{37, 1979.

[21] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,

MA, 1990.

[22] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. In Proceedings of

the ACM SIGMOD Conference, pages 154{165, Seattle, WA, June 1998.

[23] J. T.-L. Wang, X. Wang, K.-I. Lin, D. Shasha, B. A. Shapiro, and K. Zhang. Evaluating

a class of distance-mapping algorithms for data mining and clustering. In Proc. of ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 307{311,

San Diego, CA, August 1999.

[24] F. W. Young and R. M. Hamer. Multidimensional scaling: History, theory, and applications.

Lawrence Erlbaum Associates, Hillsdsle, NJ, 1987.

[25] N. J. Young. An introduction to Hilbert space. Cambridge University Press, 1988.

36

