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Abstract

Similarity search is a very important operation in multimedia databases and other database applica-
tions involving complex objects, and involves finding objects in a data set S similar to a query object q,
based on some distance measure d, usually a distance metric. Existing methods for handling similarity
search in this setting fall into one of two classes. The first is based on mapping to a low-dimensional vec-
tor space (making use of data structures such as the R-tree), while the second directly indexes the objects
based on distances (making use of data structures such as the M-tree). We introduce a general framework
for performing search based on distances, and present an incremental nearest neighbor algorithm that op-
erates on an arbitrary “search hierarchy”. We show how this framework can be applied in both classes
of similarity search methods, by defining a suitable search hierarchy for a number of different indexing
structures. Armed with an appropriate search hierarchy, our algorithm thus performs incremental simi-
larity search, wherein the result objects are reported one by one in order of similarity to a query object,
with as little effort as possible expended to produce each new result object. This is especially important
in interactive database applications, as it makes it possible to display partial query results early. The in-
cremental aspect also provides significant benefits in situations when the number of desired neighbors
is unknown in advance. Furthermore, our algorithm is at least as efficient as existing k-nearest neighbor
algorithms, in terms of the number of distance computations and index node accesses. In fact, provided
that the search hierarchy is properly defined, our algorithm can be shown to be optimal in the sense of per-
forming as few distance computations and node accesses as possible, given the available index structure.
An experimental study confirms our reasoning, and suggests that the overhead due to the incremental as-
pect is modest, especially if distance computations are expensive and/or the indexing structure or data
objects are stored on disk.

This work was supported in part by the National Science Foundation under Grant IRI-97-12715.



1 Introduction

Multimedia data are becoming increasingly important in modern database applications. Examples of
such data include images, video, and text documents, and even such exotic data as protein and DNA
sequences. One of the most common types of queries on multimedia data is similarity searching, also
termed content-based or similarity retrieval. This commonly involves finding the nearest neighbor to a
sample object, based on some similarity measure. Usually, what is desired is to retrieve several of the
nearest neighbors. In some applications, the number of desired neighbors is fixed in advance, in which
case we can use k-nearest neighbor algorithms. In other applications, the number of desired neighbors
is unknown in advance. This is where incremental nearest neighbor algorithms prove useful. By incre-
mental, we mean that such an algorithm computes the neighbors one by one, attempting to report the
next neighbor with as little effort as possible. An important area where incremental nearest neighbor
algorithms are beneficial is in computing complex queries where one of the conditions is a “nearest”
predicate. In this situation, we do not know how many neighbors must be retrieved before one is found
that satisfies all the conditions. Another advantage to incremental solutions is that in interactive user in-
terfaces they make it possible to quickly present some answer to the user, before the entire query result
has been computed.

A common feature of most kinds of multimedia data is that evaluating the similarity between two
objects is complicated, and thus time-consuming. Usually, some sort of distance metric is defined that
indicates the degree of similarity between two objects. Thus, we can view the objects as residing in
a metric space (S;d), where S is the finite set of objects and d is the distance metric. When evaluating
proximity queries, we can only rely on properties of distance metrics (i.e., non-negativity, symmetry, and
the triangle inequality). Contrast this with data residing in a coordinate space, where more information
is available (the locations and extents of the objects). Multimedia data objects are actually frequently
represented as points in a vector space (often termed feature vectors). For example, color and shape his-
tograms are commonly used to characterize images [23, 30]. However, indexing and search methods for
coordinate spaces usually work well only for low-dimensional spaces. Even indexing methods specifi-
cally designed to handle a higher number of dimensions (e.g., the X-tree [6], LSDh-tree [33], and hybrid
tree [13]) typically end up accessing nearly all index pages for any non-trivial query when the number
of dimensions exceeds 20 and often even when it is lower. In contrast, feature vectors for multimedia
objects are often of much higher dimensionality (e.g., color histograms often lead to 64, or even as high
as 256-dimensional vectors).

Two strategies have been proposed for handling proximity queries in metric spaces. The first is to
work directly within the metric space, often by building hierarchical distance-based index structures [9,
11, 19, 66]. Nearest neighbor and k-nearest neighbor algorithms have been proposed for many of these
structures. The second strategy maps the database objects into a low- to medium-dimensional vector
space and then makes use of efficient spatial indexing methods available there, such as the R-tree [29].
The index on the mapped objects serves as a filter in proximity queries, but the actual objects must be
consulted to compute the final answer; thus, algorithms based on this filter and refine [56] approach are
sometimes said to be multistep. A k-nearest neighbor algorithm for such a scenario was proposed in [41],
and later improved in [60].

In [35, 36] we proposed a general incremental nearest neighbor algorithm that works for virtually all
hierarchical spatial index structures. A similar algorithm was presented in [32], targeted for the LSD tree.
In this paper, we show how our earlier algorithm can be adapted to handle incremental nearest neighbor
search in metric spaces, whether the data set is represented in a distance-based index or has been mapped
into a vector space (and is represented in a spatial index). A key step is a formulation of the incremental
nearest neighbor algorithm in terms of an arbitrary search hierarchy, which is derived from the partic-
ular data structure used to organize a data set. The search hierarchy represents the decomposition of a
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proximity-related search problem on the data set. In most cases, the structure of the search hierarchy
is identical to (or easily derived from) the hierarchical nature of the data structure1, so the main chal-
lenge is to determine lower bounds on distances between a query object and the objects in subtrees of
the hierarchy. The incremental nearest neighbor algorithm is shown to be correct when this lower-bound
criterion is fulfilled. Also, we describe various useful extensions of the algorithm, such as finding the
farthest neighbor first, and we show how better performance can be gained when complete accuracy is
not crucial. We present search hierarchies both for the mapping-based approach and for various distance-
based indexes, and prove that correctness of the algorithm is ensured. During this discussion, we survey
a number of different mapping methods and distance-based indexing methods. When compared to exist-
ing nearest neighbor and k-nearest neighbor algorithms for these methods, our algorithm has the distinct
advantage of being incremental. This gives it much better performance for distance browsing queries,
wherein we browse through a database based on distance and may terminate the browsing at any time
— that is, the number of desired objects is unknown in advance. Moreover, even for a fixed number
of neighbors, our algorithm can be shown to be at least as efficient as existing k-nearest neighbor algo-
rithms, in terms of the number of distance computations (and I/O operations, if needed). Furthermore,
the overhead due to the incremental aspect of the algorithm is usually relatively modest, and is usually
overwhelmed by savings due to the better search pruning exhibited by our algorithm. An experimen-
tal study confirms these conclusions, where we perform experiments on various data sets using both the
mapping-based approach (with the R�-tree spatial index) and a distance-based index (with the M-tree).

The rest of the paper is organized as follows. In Section 2 we present a generalized version of our
incremental nearest neighbor algorithm. In Section 3 we give an overview of different types of mapping
methods, and show how the general incremental nearest neighbor algorithm can be applied to the map-
ping-based approach. In Section 4 we describe the main principles behind most distance-based indexes,
and show how to apply our algorithm to a number of representative indexing methods. In Section 5, we
compare our algorithm to existing k-nearest neighbor algorithms, in terms of the level of pruning that is
achieved. In Section 6 we report the results of our experiments, while conclusions are drawn in Section 7.

2 Generalized Incremental Nearest Neighbor Algorithm

In this paper, we will show how to perform incremental nearest neighbor (abbreviated INN) search based
on a variety of different data structures for similarity search. The nature of such search is to report the
objects in a data set S�U, one by one, in order of distance from a query object q 2Ubased on a distance
function d, whereU is the domain (usually infinite) from which the objects are drawn. In all cases, the
same basic algorithm is adapted to the specific nature of each data structure. Thus, in this section we de-
scribe a generalized version of the incremental nearest neighbor algorithm of [35, 36], that encompasses
all the specific instances presented in later sections. In order to make the discussion more concrete, we
use the R-tree, a commonly used spatial data structure, as an example data structure.

The rest of this section is organized as follows: In Section 2.1, we briefly describe the R-tree. In
Section 2.2, we introduce the basic framework for performing search, in the form of a search hierarchy.
In Section 2.3, we present a general incremental nearest neighbor algorithm, based on the abstract con-
cept of a search hierarchy. This algorithm can be adapted to virtually any data structure, by a suitable
definition of a search hierarchy, and we illustrate this in the case of the R-tree. In Section 2.4, we show
the algorithm can be extended in a variety of ways, including setting limits on the distances of the result
objects or on the number of result objects, and reporting the objects in reverse order of distance (i.e.,
finding the farthest neighbor first). Furthermore, in situations where complete accuracy is not critical,
we show how the performance of the algorithm can be improved at the risk of having the objects reported

1However, as we note in Section 4.6, a search hierarchy can be formalized even when the data structure is not hierarchical.
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somewhat out of order.

2.1 R-Tree

The R-tree [29] (see Figure 1) is an object hierarchy in the form of a balanced tree inspired by the B+-
tree [21]. Each R-tree node contains an array of (key, pointer) entries where key is a hyper-rectangle that
minimally bounds the data objects in the subtree pointed at by pointer. In an R-tree leaf node, the pointer
is an object identifier (e.g., a tuple ID in a relational system), while in a nonleaf node it is a pointer to a
child node on the next lower level. If the geometric description of the objects is simple (e.g., for points or
line segments) it is also possible to store the objects directly in the leaf nodes, instead of their bounding
rectangles. The maximum number of entries in each node is termed its node capacity or fan-out and may
be different for leaf and nonleaf nodes. The node capacity is usually chosen such that a node fills up one
disk page (or a small number of them).
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Figure 1: An R-tree index for a set of nine line segments. (a) Spatial rendering of the line

segments and bounding rectangles, and (b) a tree access structure for (a). The bounding

rectangles for the individual line segments are omitted from (a) in the interest of clarity.

2.2 Search Hierarchy

The incremental nearest neighbor algorithm is applicable whenever the search space can be represented
in a hierarchical manner, provided that certain conditions hold. In this section, we define what we mean
by “search hierarchy” and use the R-tree as a specific example.

The algorithm operates on a finite set S�Uof objects, a query object q2U, and a data structure T that
organizes the set S or provides information about it. The search hierarchy is composed of elements et of
several different types t, with t = 0; : : :; tmax. Figure 2 depicts the search hierarchy for a set of 14 objects,
A0 through N0, where there are three types of elements. As depicted in the figure, the search hierarchy
forms a tree, with the objects as leaves. Each element represents a subset of S, with an element e0 of type
0 representing a single object in S. An element et of type t can give rise to one or more “child” elements of
types 0 through tmax. Thus, the search problem for et is decomposed into several smaller subproblems.
Often, all child elements are of the same type, but this is not a requirement. In this presentation, we
assume that an element has only one “parent” in the search hierarchy and that each object is represented
only once in the hierarchy, but the algorithm can be adapted to handle multiple parents and duplicate
object instances as well.

At this point, it may seem superfluous to use different types of elements, when they all merely repre-
sent subsets of S. However, for any particular search problem, the various element types represent differ-
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Figure 2: A sample search hierarchy for objects A0 though N0.

ent kinds of entities, and therefore have different pieces of information attached to them. Furthermore,
each specific search hierarchy will have a different definition of what types of elements can be produced
from each element type. In the example in Figure 2, for instance, elements of type 2 produce elements of
types 2, 1, or 0, while elements of type 1 produce only elements of type 0. Elements of each type t have
an associated distance function dt(q;et) for measuring the distance from a query object q to the elements
of that type. Naturally, computation of dt(q;et) is based only on the specific information attached to the
parent element of et (since the computation occurs when the parent element is processed). Furthermore,
for the algorithm to be practical, this computation must be substantially less expensive than the total cost
of computing d0(q;e0) for all the objects e0 represented by et . As we shall see, it is sufficient for cor-
rectness that dt(q;et)� d0(q;e0) for any object e0 in the subset represented by et . Some of the variants
of the algorithm (e.g., farthest neighbors; see Section 2.4) make use of another set of distance functions,
d̂t(q;et), that bound from above the distances from q of the objects in a subtree (of course, d̂0 = d0, so
d̂0 is not really needed). In other words, d̂t(q;et)� d0(q;e0) for any object e0 in the subset represented
by et .

In most cases, the search hierarchy arises naturally from the hierarchical structure of T . In the search
hierarchy for the R-tree, for instance, we have three types of elements. Elements of type 0 are the spa-
tial objects themselves, elements of type 1 are minimum bounding rectangles for single objects, while
elements of type 2 represent R-tree nodes. The reason for distinguishing between the spatial objects and
their bounding rectangles will become clear later. The distance functions are typically based on a dis-
tance metric dp(p1; p2) defined on points in the space, such as the Euclidean metric. Thus, for arbitrary
spatial objects o1 and o2, we define d(o1;o2) = minp12o1;p22o2fdp(p1; p2)g

2. This definition serves as a
basis for the distance functions for all three types of elements, the only difference being the types of the
arguments. Given an object o and any rectangle r that bounds o (i.e., r can be the minimum bounding
rectangle of o or the rectangle associated with any ancestor of the leaf node containing o), this definition
guarantees that d(q;r)� d(q;o), thus ensuring correctness. In fact, according to this definition, the dis-
tance functions obey an even stricter condition, namely that dt(q;et)� dt0(q;et0) for any element et0 that
is a descendant of et in the search hierarchy.

2.3 Algorithm

The key to our incremental nearest neighbor algorithm [36] is that it traverses the search hierarchy in
a “best-first” manner, like the classic A*-algorithm [59], instead of the more traditional depth-first or
breadth-first traversals. In other words, at any step of the algorithm, the algorithm visits the element
with the smallest distance from the query object among all unvisited elements in the search hierarchy (or,

2In other words, if o1 and o2 have at least a point in common, then d(o1;o2) = 0. Otherwise, d(o1;o2) equals the smallest
distance between the boundaries of o1 and o2.
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more accurately, all unvisited elements whose parents have been visited). This is done by maintaining a
global list of elements, organized by their distance from the query object. A data structure that supports
the necessary operations (i.e., insert and delete minimum) is an instance of an abstract data type termed
a priority queue. In order to break ties among elements having the same distance, we give priority to
elements with lower type numbers, and among elements of the same type, priority is given to elements
deeper in the search hierarchy. This allows the algorithm to report neighbors as quickly as possible.

The general incremental nearest neighbor algorithm is shown in Figure 3, where q is the query object,
S the set of objects, and T a data structure that organizes S. Since we make no assumptions about the
objects or the data structure, the algorithm is presented in terms of the search hierarchy induced by them.
The algorithm starts off by initializing the priority queue with the root of the search space (lines 1–3). In
the main loop, the element et closest to q is taken off the queue. If it is an object, we report it as the next
nearest object (line 7). Otherwise, the child elements of et in the search hierarchy are inserted into the
priority queue (line 10). Letting ok be the kth object reported by the algorithm, observe that the non-object
elements on the priority queue (i.e., elements et with t > 0) essentially represent portions of the search
hierarchy that did not have to be explored to establish ok as the kth nearest neighbor. Thus, if ok is the last
neighbor requested, those portions are said to be pruned by the algorithm, and all distance computations
for objects descended from the non-object elements on the priority queue are avoided. As we show in
Section 2.5, the algorithm achieves maximal possible pruning with respect to the given search hierarchy.
Of course, if more neighbors are requested, some of those elements may be processed later. Nevertheless,
the fact that their processing is deferred means that ok is reported as quickly as possible.

INCNEAREST(q, S, T)

1 Queue NEWPRIORITYQUEUE()
2 et  root of the search hierarchy induced by q, S and T
3 ENQUEUE(Queue, et , 0)
4 while not ISEMPTY(Queue) do
5 et  DEQUEUE(Queue)
6 if t = 0 then /* et is an object */
7 Report et as the next nearest object
8 else
9 for each child element et0 of et do

10 ENQUEUE(Queue, et0 , dt0(q; et0))
11 enddo
12 endif
13 enddo

Figure 3: Generalized incremental nearest neighbor algorithm.

Interestingly, in the spatial domain, the algorithm can be viewed as having an initial phase that cor-
responds to an intersect query (or, if q is a point, a point-location query). In particular, the algorithm
first processes all elements e in the search hierarchy with d(q;e) = 0, namely those elements that q inter-
sects (fully or partially). Thus, at the conclusion of this initial phase, all leaf nodes in the spatial index
intersecting q have been processed and their contents inserted into the priority queue, and all objects in-
tersecting q have been reported. A similar observation also holds for many of the search hierarchies for
similarity search that we present in the remaining sections.

To get a better idea of how the algorithm functions, let us examine how it behaves when applied to the
R-tree for spatial data objects. Initially, the root of the R-tree (representing all the data objects) is placed
on the priority queue. At subsequent steps, the element at the front of the queue (i.e., the closest element
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not yet examined) is retrieved, and this is repeated until the queue has been emptied. Informally, we can
visualize the progress of the algorithm for a query object q as follows, when q is a point (see Figure 4).
We start by locating the leaf node(s) containing q. Next, imagine a circle centered at q being expanded
from a starting radius of 0; we call this circle the search region (for query objects other than points, the
search region will have a more complex shape). Each time the circle hits the boundary of a node region,
the contents of that node are put on the queue (and similarly for the bounding rectangle of an object), and
each time the circle hits an object, we have found the object next nearest to q. We can characterize the
contents of the priority queue based on their relationships with the search region. The elements still on
the queue are outside the search region (but they all have parents that intersect the search region), while
all elements that have been dequeued lie at least partially inside. Also, nodes whose bounding rectangles
are fully contained in the search region will have had their entire subtrees already taken off the priority
queue. Therefore, all the queue elements are contained in nodes whose bounding rectangles intersect
the boundary of the search region. Similarly, for all objects on the priority queue, their corresponding
bounding rectangles intersect the boundary of the search region.

q

o

Figure 4: The circle around query object q depicts the search region after reporting o as

next nearest object. For simplicity, the leaf nodes are represented by a grid; in most spatial

indexes, the shapes of the leaf nodes are more irregular. Only the shaded leaf nodes are

accessed by the incremental nearest neighbor algorithm. The region with darker shading

is where we �nd the objects in the priority queue.

It should be clear now why we choose to distinguish between the spatial objects and their bound-
ing rectangles in the R-tree implementation of the incremental nearest neighbor algorithm. Usually the
precise geometry of the objects is stored in a separate file on disk, whereas the bounding rectangles are
stored directly in the leaf nodes of the R-tree. Thus, computing the distance from the query object to the
bounding rectangle of an object is much less expensive than computing the distance to the object itself.
When a leaf node in the R-tree is visited by the algorithm, the bounding rectangles for the objects in the
leaf node are inserted on the priority queue. The actual distance from the query object to a data object is
computed only when its bounding rectangle reaches the front of the priority queue.

In fact, at times, we can report an object as a nearest neighbor without ever having to compute its
distance from the query object. Such a situation can arise when using an R-tree, where we recall that
elements of type 1 represent minimum bounding rectangles of objects — that is, each element e1 rep-
resents only one object. In particular, when processing such an element e1, we can sometimes use the
distance d̂1(q;e1) to immediately report the object o represented by e1, without computing the actual dis-
tance d(q;o). This can be done provided that d̂1(q;e1)� D, where D is the distance of the element at the
front of the queue (i.e., after e1 has been removed), since we then know that d(q;o) is also no larger than
D. This principle is generally applicable any time that one (or more) of the element types t > 0 represents
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single objects and the upper-bound distance function d̂t can be defined.
Deferring the computation of the actual distances usually leads to many fewer object distance compu-

tations, except when a large number of neighbors must be reported (i.e., k neighbors are required, where
k is a significant fraction of N, the size of the data set S). Hence, when the algorithm is terminated (i.e.,
enough neighbors have been obtained), any bounding rectangles present on the priority queue represent
distance computations that were avoided by their use. Of course, these benefits come at the cost of more
priority queue operations. Similar considerations apply to other search structures.

As a practical matter, we have observed that a careful implementation of the priority queue is often
crucial for achieving good performance; how important this is depends on the relative cost of priority
queue operations and other operations in the algorithm, such as distance computations. Typically, the al-
gorithm performs more enqueue operations than dequeue operations, and this should guide the selection
of what priority queue algorithm to use. Also, we have found that careful attention to memory allocation
is an important aspect. In particular, rather than relying on dynamic allocation for each individual queue
element, the implementation should manage the allocation from a pool of large memory blocks (this is
made easier if each type of queue element occupies the same amount of space; alternatively, separate
pools can be kept for each type). This way, all the elements remaining on the queue when the algorithm
is terminated can be deallocated inexpensively, since the pool consists only of a few blocks. In our ex-
perience [36], the size of the priority queue usually remains very modest compared to the size of the data
set, so it is unlikely that an external (i.e., disk-based) implementation is needed.

2.4 Algorithm Extensions

The algorithm is easily adapted to take advantage of imposed distance bounds (as in a range query) as
well as maximum result size (as in a k-nearest neighbor query). In particular, given a maximum distance
bound Dmax, we only enqueue elements having distances from q less than or equal to Dmax. A minimum
distance bound Dmin can be exploited in a similar way, but doing so requires the additional distance func-
tions d̂t(q;et) for each element type that provide an upper bound on the distances from q of the objects
in the subtree represented by et . Taking advantage of such distance bounds reduces the size of the pri-
ority queue (since fewer items will be enqueued) and, consequently, the average cost of priority queue
operations. However, the number of distance computations or the number of search hierarchy elements
visited is not decreased when using Dmax, and possibly not even when using Dmin, depending on its value
(in fact, utilizing Dmin may even lead to worse performance as it requires computing the d̂ distances).

The simplest way of exploiting a maximum result size, say k, is to simply terminate the algorithm
once k neighbors have been determined. Alternatively, the algorithm can be modified in such a way
that the distance of the kth candidate nearest neighbor is used to reduce the number of priority queue
operations. However, such a modification carries the cost of additional complexity in the algorithm. In
particular, we must use two priority queues, one for the objects and the other for the remaining types of
elements, and we must be able to identify and remove the element in the object priority queue with the
largest distance. In this way, we can keep track of ok, the current candidate kth nearest neighbor, whose
distance is used to prune the search in the same way we used Dmax above.

A useful extension of the algorithm is to finding the farthest neighbor of a query object, i.e., the object
in S that is farthest from q. This simply requires replacing dt(q;et) as a key for any element et on the
priority queue with�d̂t(q;et) (or, alternatively, ordering the elements on the priority queue in decreasing
order of key values, and using d̂t(q;et) as a key value). Thus, once an object o has reached the front of the
priority queue, we know that no unreported object has a greater distance from q. Observe that as in the
discussion of the nearest neighbor algorithm in Section 2.3 (by reversing the roles of d and d̂), at times,
we can even report an object as a farthest neighbor without ever having to compute its distance from the
query object.
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In many applications, obtaining exact results is not critical. Therefore, users are willing to trade off
accuracy for improved performance. This is another direction in which the algorithm can be easily ex-
tended. For approximate nearest neighbor search [2], a common criterion is that the distance between q
and the resulting candidate nearest neighbor o0 is within a factor of 1+ε of the distance to the actual near-
est neighbor o, i.e., d(q;o0) � (1+ ε)d(q;o). The incremental nearest neighbor algorithm can be made
approximate in this sense by multiplying the key values for non-object elements on the priority queue by
1+ε. In other words, for an element et , t > 0, we use (1+ε)dt(q;et) as a key. With this extension, for the
object o0k returned as the kth nearest neighbor by the algorithm and the actual kth nearest neighbor ok, we
have d(q;o0k) � (1+ ε)d(q;ok). However, notice that in this case, the result objects are not necessarily
reported by the algorithm in strictly increasing order of distance from q. Other methods for performing
approximate nearest neighbor search can often be integrated into the algorithm by similarly modifying
the distances used in the priority queue (e.g., the method of Chen et al. [16], which involves shrinking the
radii of bounding spheres when computing their distances). For approximate farthest neighbor search in
high-dimensional point data, Duncan et al. [22] suggest the criterion that o0 is an approximate farthest
neighbor of q if d(q;o0)� d(q;o)�εD, where o is the actual farthest neighbor and D is the diameter of
the point set (i.e., the distance between the two farthest points)3. This criterion can also be incorporated
into our incremental algorithm in a straightforward manner.

The version of the incremental nearest neighbor algorithm presented in this paper is actually slightly
less general than our earlier presentation [35, 36] in that duplicate instances of objects in the search hierar-
chy are not eliminated. Such duplicate detection is necessary for spatial indexing methods that represent
each spatial object in all leaf nodes whose mutually non-intersecting regions intersect the object (e.g., the
PMR quadtree [51] and the R+-tree [61]). Adding this feature to the algorithm in Figure 3 is straight-
forward and only requires a few extra lines [36]. However, this is not needed for the present purposes,
since none of the methods for similarity search presented below result in duplicate instances of objects
in the search hierarchy.

2.5 Correctness and Optimality of the Algorithm

As alluded to in Section 2.2, the correctness of the algorithm depends on the distance functions used on
the elements of the search hierarchy:

Lemma 1 Let et be an arbitrary element in the search hierarchy. The following correctness criterion
guarantees that the algorithm in Figure 3 reports neighbors in order of non-decreasing distance: for
any object e0 in the subtree represented by et , we have dt(q;et)� d0(q;e0).

Proof We prove the lemma by contradiction. Assume that the condition holds for all elements of the
search hierarchy and assume that e0 and e00 represent two objects, with d0(q;e0) < d0(q;e00), that are
reported out of order (i.e., e00 first). This implies that at some point, e00 is the element in the queue with
the smallest distance from q, while an element et that represents some subset that contains e0 is also on
the queue. In other words, dt(q;et)� d(q;e00). However, since dt(q;et)� d0(q;e0)< d(q;e00), we have
dt(q;et)< d(q;e00), contradicting the assumption that e00 is reported before e0. Thus, the lemma holds.

Some of the variants of our algorithm outlined in Section 2.4 make use of the upper-bound distance
functions d̂t . For these variants to be correct, these functions must indeed upper-bound the distances of

3The motivation for basing the criterion on an absolute error bound based on D rather than a relative error bound based on
d(q;ok) is that the absolute error bound gives a tighter bound in the farthest neighbor case. For example, all points in S would
tend to be the approximate farthest neighbor according to the relative error bound if the points in S were relatively close while
q is very far from these points [22].
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objects in a subtree — that is, for any object e0 in the subset represented by et , we must have d̂t(q;et)�
d0(q;e0).

Visiting an element in the search hierarchy and computing distances can both be expensive opera-
tions. For example, for the R-tree version, visiting an R-tree node involves node I/O, and computing the
distances of objects may also involve I/O (if stored outside the R-tree) in addition to potentially expen-
sive geometric computation (e.g., for polygons). Thus, our goal is to visit as few elements in the search
hierarchy as possible. This notion is captured in the notion of r-optimality (range optimality):

Definition 1 Let ok be the kth nearest neighbor to a query object q reported by a nearest neighbor algo-
rithm, which operates on a search hierarchy induced by a set of objects S, a data structure T, and the
query object q, using distance functions dt. The algorithm is r-optimal if for all visited elements et in the
search hierarchy, dt(q;et)� d(q;ok).

According to this definition, a nearest neighbor algorithm is r-optimal if it visits the same search hier-
archy elements as would a range query with query radius d(q;ok), implemented with a top-down traversal
of the search hierarchy. The incremental nearest neighbor algorithm is r-optimal, as shown below:

Lemma 2 If the distance functionssatisfy the correctness criterion, the algorithmin Figure 3 is r-optimal.

Proof Again, we proceed by contradiction. Let ok be the kth nearest neighbor to q, and assume that et

is an element that was visited before ok was reported, with dt(q;et)> d(q;ok). This assumption means
that when et was visited, some ancestor et0 of the element e0 representing ok in the search hierarchy ex-
isted in the priority queue, with dt(q;et) � dt0(q;et0). By the correctness criterion, we have dt0(q;et0)�
d0(q;e0) = d(q;ok) which implies that dt(q;et)> dt0(q;et0). This contradicts the initial assumption that
et was visited before ok was reported, so the lemma holds.

Underlying both lemmas is the premise that for any object e0 that has not been reported, there is a
representative et on the priority queue (i.e., et is an ancestor of e0 in the search hierarchy). This is clearly
true initially, since the root of the search hierarchy represents all the objects in S. The only actions of the
algorithm are to remove objects from the priority queue and to replace search hierarchy elements with
all their children. Thus, the algorithm never violates the premise.

Observe that the correctness criterion (i.e., dt(q;et)� d0(q;e0)) does not actually guarantee that all
search hierarchy elements are obtained from the priority queue in strict order of distance. In particular,
the criterion does not prevent the possibility that we may obtain the elements et and et0 in succession,
where dt(q;et) > dt0(q;et0) and neither element is an object4. The implication is that the algorithm has
not necessarily visited all elements et with dt(q;et)� d(q;ok) when the kth neighbor ok of q is reported.
However, this does not change the fact that object elements are obtained from the priority queue in order
of distance. Often, however, the distance functions satisfy the stricter criterion that dt(q;et)� dt0(q;et0)
for any element et0 that is a descendant of et in the search hierarchy. This was the case for the distance
functions defined for the R-tree in Section 2.2. This stricter criterion guarantees that elements are ob-
tained from the priority queue in order of increasing distance from the query object, regardless of their
type.

It is important to note that r-optimality does not imply that the incremental nearest neighbor algo-
rithm for the given search hierarchy is necessarily optimal in some absolute sense (whether we consider
only the number of distance computations required or the overall work). First, actual search performance
is highly dependent on the index structure that the search hierarchy is based on. Performance can suffer

4In other words, et 0 is a child of et that is closer to the query object than its parent is. Such a situation could arise, for example,
in the vp-tree (see Section 4.2.1).
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if the index structure poorly captures the inherent structure of the search space. Second, it is often possi-
ble to define more than one search hierarchy for a given index structure, each with different performance
characteristics. In some cases, different choices of a search hierarchy even represent a tradeoff between
the amount of work required to maintain the priority queue operations and to compute the various dis-
tance functions (e.g., see Section 4.6). Moreover, it is sometimes possible to tailor the algorithm more
closely to the given index structure than is achieved with our general notion of search hierarchy. Finally,
even for a specific search hierarchy, it is possible that a k-nearest neighbor algorithm is more efficient for
any fixed value of k. Thus, some sacrifice in performance can be expected for the flexibility offered by
the incremental aspect. However, when the number of desired neighbors is unknown prior to initiating
the search, an incremental algorithm provides much better performance on the average than algorithms
that require fixing the number of neighbors in advance (we observe this experimentally in Section 6).

3 Incremental Similarity Search with Mapping-Based Approaches

In mapping-based approaches, objects are mapped into multidimensional points (also known as feature
vectors) in such a way that distances in the mapped space approximate the distances among the original
objects. Formally, let S�Ube a finite set of data objects taken from a universeU, and let d :U�U!R+

be a distance function onU. The key to such methods is a mapping F :U!Rm and an accompanying
distance function δ :Rm�Rm!R+. Typically, δ is some Minkowski metric Lp, the most common being
the Euclidean (L2), the Cityblock (L1), and the Chessboard (L∞) distance metrics. F is often termed an
embedding of (S;d) into (Rm;δ), and a Euclidean embedding when δ is the Euclidean metric.

By applying F to all the elements of S, the result of a query on S with a query object q can be ap-
proximated by also mapping the query object q and then applying a corresponding query to F(S) with
F(q) as a query object. The advantage of doing so is that it allows replacing the expensive computations
of d(q;o), for o 2 S, by the much less expensive computations of δ(q0;o0), for q0 = F(q) and o0 2 F(S).
Most importantly, by using a spatial index to represent F(S), many points o0 in F(S) can be pruned from
the search without having to evaluate δ(q0;o0). As we shall see in Section 3.2, the property of F being
contractive is important for such queries, i.e., that δ(F(o1);F(o2))� d(o1;o2) for all o1;o2 2 S.

In principle, any spatial indexing method can be used to implement search with the mapping-based
approach. However, when the mapping results in m, the dimensionality of the mapped space, being high,
indexing methods specifically designed for high-dimensional spaces should be employed. Examples of
such methods include hierarchical spatial indexes such as the X-tree [6], LSDh-tree [33], and hybrid
tree [13] (typically applicable up to 20–30 dimensions). These methods break down for very high dimen-
sions in which case a linear scan is often faster. In such a case, attention has been focused on speeding
up the linear scan process by reducing the size of the data that is examined during the scan (via the use
of quantization), thereby, hopefully, pruning most irrelevant objects from further consideration. This is
the basis of the VA-file method [72, 25], and the hybrid IQ-tree method [5].

The remainder of this section is organized as follows: In Section 3.1, we present a brief overview
of mapping-based approaches, which are shown to fall into three classes. In Section 3.2, we go into the
background of how search is performed by using the mapping. In Section 3.3, we show how to per-
form incremental nearest neighbor search with mapping-based approaches. In Section 3.4, we demon-
strate that the result is a correct algorithm when F is contractive, and discuss the implications of non-
contractiveness.

3.1 Mapping Methods

Numerous methods have been proposed for mapping objects into multidimensional vectors. Such meth-
ods fall into three general categories:
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� Domain-specific mapping methods are derived using some special properties of the objects.

� Dimensionality-reduction methods apply when the data objects are already represented by multi-
dimensional points, but of too high a dimensionality for practical use of spatial indexes.

� General embedding methods perform the mapping based solely on the distance function d and its
properties.

Below, we briefly describe a few examples of methods from each category. Each method makes differ-
ent assumptions about S and d and their properties. In some cases of domain-specific mapping methods,
no explicit distance function d may exist, beyond the subjective judgments of human domain experts.
However, the vectors resulting from domain-specific mapping methods often have a much larger dimen-
sionality than is practical for spatial indexing, so it may be necessary to apply dimensionality reduction.

3.1.1 Domain-Specific Methods

Domain-specific methods exist for a wide variety of data types and applications, such as images, strings,
and time series. Such methods are often referred to as feature extraction, and their results as feature
vectors.

For images, a number of similarity measures have been proposed, based on different aspects of im-
ages, such as color [30], texture [46], and shape [1, 41]. The color histogram [30] is a common feature
extraction method that allows matching images by color. In its simplest form, such histograms are con-
structed by dividing the color spectrum into a number of intervals, and then counting the number of pixels
in the image whose colors fall into each interval. More accuracy is obtained by dividing the image into
several equal-sized parts, each of which has its own color histogram. Thus, the dimensionality of color
histogram feature vectors can be quite large, often ranging from 64 to 256. A feature extraction method
for shape matching in collections of 2D medical images, specifically tumor images, was presented by
Korn et al. [41]. Their method is based on applying a series of morphological operations to each image,
resulting in a series of derived images. The values of the components of the feature vector of an image
are then simply the numbers of black pixels in each of the derived images (including the original image).
The Chessboard distance (L∞) between the feature vectors of two images a and b is then a lower bound
on the distance d(a;b), where d is defined in terms of pixel-wise comparison between the derived images
of a and b.

3.1.2 Dimensionality-Reduction Methods

Dimensionality-reduction methods are applicable when S�U=Rn. The rationale for applying dimen-
sionality reduction is that the points in S often lie in a subspace of lower dimensionality than n. Thus,
the implicit goal of dimensionality-reduction methods is to identify a subspace V ofRn that contains S,
allowing all distances to be preserved. Of course, the dimensionality of V may still be high, so it may
be impossible to completely preserve the distances when reducing the dimensionality down to the tar-
get dimensionality m (which is usually significantly smaller than n). The reason why it is advantageous
to work with lower-dimensional point sets is that working with high-dimensional point sets can be very
expensive. Partly, this is due to the fact that the distance computations are more expensive. More impor-
tant, however, are various geometric effects that arise in high-dimensional spaces. For example, spatial
indexing becomes increasingly ineffective as the dimensionality increases, so that even simple queries
may result in examining all the points in S. Recall that the dimensionality of the vectors that result from
domain-specific methods is often very high, making it necessary to reduce their dimensionality.

The most common dimensionality-reduction methods are based on linear transformations of the vec-
tor set S. Examples of such methods are the essentially equivalent Karhunen-Loève transform (KLT),
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singular value decomposition (SVD), and principal component analysis (PCA) methods. Briefly, these
methods apply a linear transformation to S, yielding S0, that involves rotation and translation. Further-
more, the coordinate axes in S0 are ordered based on “importance”, as measured by variance. In partic-
ular, the linear transformation is such that the first axis in S0 is the axis that yields the greatest possible
variance for the vectors in S, etc. This enables us to keep only the first few dimensions of the vectors in S0

while retaining as much information as is possible with a linear transformation. The drawback of these
methods is that they are data-dependent, in that the mapping F is constructed based on all the objects in
S. Thus, they are most appropriate in situations where the database is static (e.g., stored on CD-ROM) or
changes little (at least in terms of data distribution). Nevertheless, some work has been done on adapting
them to situations where the database is dynamic [39].

Other dimensionality-reduction methods exist where the mapping F is independent of S, thus mak-
ing them more appropriate for dynamic databases. Examples of these methods are the discrete Fourier
transform (DFT), the discrete cosine transform (DCT), and wavelet transforms.

Most dimensionality-reduction methods result in a contractive mapping only for certain types of dis-
tance functions d. For example, the linear transformation-based methods require d (and δ) to be the Eu-
clidean metric, as it is the only metric that is invariant to rotation. For other choices of d, it is often
possible to derive a suitable δ that ensures contractiveness, but this may be at the cost of lower precision
of queries on F(S) (see Section 3.2).

3.1.3 General Embedding Methods

In many applications, evaluating distances according to the distance function d is very expensive, and
deriving a suitable domain-specific mapping is difficult or impossible. This is where general embedding
methods come to the rescue, as the mapping F that they produce is derived based purely on inter-object
distances as measured by d, rather than on any knowledge about the properties of the objects in S. Most
such methods require d to be a distance metric, thus satisfying the symmetry, non-negativity, and triangle
inequality properties. Clearly, such methods can also be used for dimensionality reduction, and may in
some cases be preferable to pure dimensionality-reduction methods. Examples of general embedding
methods are multidimensional scaling (MDS) [42, 75], FastMap [24], MetricMap [71], and Lipschitz
embeddings [43].

In MDS, the mapping F is obtained by minimizing some cost function that measures the quality of
the embedding. A common cost function is stress, defined as

∑o1;o22S(δ(F(o1);F(o2))�d(o1;o2))
2)

∑o1;o22S d(o1;o2)2 :

Minimizing stress is essentially a non-linear optimization problem, where the variables are the N �m co-
ordinate values corresponding to the embedding (i.e., m coordinate values for each of the N objects).
Unfortunately, MDS is virtually useless for similarity search applications, since deriving F(q) — for the
purpose of searching in F(S) — requires computing the distances of all objects in S from a query object
q. Thus, using MDS for similarity searching is just as expensive as applying brute force search, as both
require O(N) distance computations.

In contrast, other methods typically require O(m) distance computations (where m is the target di-
mensionality) to derive F(q). One such method is FastMap, which is based on the idea that we can imag-
ine that the objects represent points in some Euclidean space of unknown dimensionality. The coordi-
nate axes of this (imaginary) space are constructed one by one, in each iteration choosing two objects,
imagining a line passing through them and projecting the rest of the objects onto this line. This process
is continued until some fixed number of coordinate axes has been obtained. The operations performed
by FastMap are essentially equivalent to rotations and translations [37], so FastMap can be seen as a
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heuristic version of KLT/SVD/PCA when S is drawn from a Euclidean space. Unfortunately, when S is
not drawn from a Euclidean space (i.e., d is not the Euclidean distance metric), the mapping produced
by FastMap is not contractive [37]. This drawback is shared by MetricMap [71], which is also based on
concepts from linear algebra.

Lipschitz embeddings define a coordinate space where each axis corresponds to a reference set which
is a subset of S. Each coordinate of an object o2 S is defined as the minimum distance from o to an object
in the corresponding reference set (if δ is not the Chessboard metric, a suitable scaling factor must also be
applied [43] to guarantee contractiveness). SparseMap [38] is a variant of the Lipschitz embeddings that
attempts to reduce the computational cost of the embedding, thus making it more suitable for similarity
search applications. The heuristics involved in SparseMap mean that the mapping F that is produced is
not contractive, but this drawback can be alleviated by a suitable modification of the method [37].

3.2 Object Mapping and Distance Functions

The success of mapping-based approaches clearly depends on how well the distances among the mapped
objects correspond to the distances among the original objects. In other words, δ(F(o1);F(o2)) should
be a reasonable approximation of d(o1;o2) for o1;o2 in S, at least on the average. At best, we can achieve
complete distance preservation with F, such that δ(F(o1);F(o2)) = d(o1;o2) for all o1;o2 2 S.5 How-
ever, this is rare, so we must be satisfied with the distance correspondence being approximate. Thus, the
set R0� S resulting from a query performed on F(S) (or more accurately, R0=F�1(RF), where RF �F(S)
is the result of the query on F(S)) may not match exactly the result R of the corresponding query on
S. Two measures, termed precision and recall, are often used to characterize the correspondence be-
tween the two result sets. Precision measures the proportion of the objects in R0 that are also in R (i.e.,
jR\R0j=jR0j), while recall measures the proportion of the objects in R that are also in R0 (i.e., jR\R0j=jRj).
Clearly, they can both be 100% only when R = R0, and both are zero if R\R0 = /0. Reduced precision
reflects more “garbage” in R0 (often termed false positives) while reduced recall reflects more “good”
objects missing from R0 (often termed false dismissals).

As an example, consider a range query, where we wish to determine all objects within distance ε from
a query object q. Making use of F(S) and its spatial index, we perform a range query on F(S) using F(q)
as a query object and the same query radius ε (in some cases, a more appropriate choice is to use a query
radius of f (ε), where f depends on F and δ). In the case of such a range query on F(S), low precision
indicates that the distances δ(F(q);F(o)) are often much smaller than d(q;o), o 2 S. In the worst case,
δ(F(q);F(o))� ε = d(q;on) for all objects o 2 S, where on is the nearest neighbor of q in S, causing
a precision of nearly zero. On the other hand, low recall indicates that the distances δ(F(q);F(o)) are
typically much larger than d(q;o), o2 S. To see why, observe that an object o that is a false positive (i.e.,
o 2 R0 but o 62 R, where R and R0 are defined as above) means that δ(F(q);F(o))� ε < d(q;o), while o
suffering false dismissal (i.e., o2 R but o 62 R0) means that d(q;o)� ε < δ(F(q);F(o)). Thus, the quality
of the mapping F with respect to d depends on the extent to which it achieves a balancing act between
high precision and high recall. In other words, for any objects o1;o2 2 S, the distance δ(F(o1);F(o2))
between them should ideally be as large as possible, while not exceeding d(o1;o2) by a wide margin.
The definitions of precision and recall are clearly symmetric with respect to the result sets R and R0. For
range queries this symmetry is reflected in the fact that by using a smaller query radius than ε for F(S),
precision increases but recall decreases, whereas a larger query radius causes precision to decrease but
recall to increase. However, while increasing the query radius is the only way to increase recall (assuming
that it is not already 100%), precision can be increased to 100% by simply eliminating from R0 those
objects that are not within a distance of ε from q (of course, it is still possible that R0 does not contain all

5When this occurs and d and δ are distance metrics (i.e., satisfy the symmetry, non-negativity, and triangle inequality prop-
erties; see Section 4.1), F is said to be an isometry and (S;d) and (Rm;δ) are said to be isometric.
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elements of R). This gives rise to a two-step filter and refine process, where we use the spatial index on
F(S) as a filter in the first step (i.e., finding all objects o that satisfy δ(F(q);F(o))� ε), and then refine
the resulting candidate set in the second step by using the original distance function d. Thus, we gain
enhanced precision at the cost of having to perform more work. Of course, use of the filter and refine
process (and the spatial index) does not necessarily lead to 100% recall. To ensure that it does, we adjust
the query radius for F(S) to cε, where δ(F(q);F(o))� cd(q;o) for all o2 S. Thus, if δ(F(q);F(o))> cε
for some o2 S, then d(q;o)> ε, so F(o) can be safely rejected in the range query on F(S). Unfortunately,
for a given query object q 2Uand data set S �U, we cannot efficiently derive such a value c on a per
query basis. Therefore, the only feasible alternative is to derive a value of c that holds over all possible
q 2 S and S�U:

c = max
o1;o22U

�
δ(F(o1);F(o2))

d(o1;o2)

�
: (1)

The value of c in Equation 1 clearly depends primarily on F and δ, and is termed the expansion of F with
respect to d and δ.

For some choices of F and δ, the value of c may be ∞, or so large that δ(F(q);F(o))� cε for most
o 2 S, thus leading to a precision of nearly zero (since nearly all objects in S would be reported as a result
of the query). Thus, in such cases, 100% recall can be realized only at the cost of poor performance. In
many applications, achieving 100% recall is not crucial, in which case performance can be improved at
the cost of reduced recall. For the special case when the expansion of F as determined by Equation 1 is
no more than 1, i.e., δ(F(o1);F(o2))� d(o1;o2) for all o1;o2 2U,F is said to be contractive with respect
to d and δ. Clearly, when F is contractive, a range query on F(S) with query radius ε always achieves a
recall of 100%. Of course, the expansion c may be less than 1, in which case a query radius of cε for a
range query on F(S) provides improved precision compared to a query radius of ε.

3.3 Incremental Nearest Neighbor Search

In Section 3.2 we saw how we could increase the precision of range queries to 100% through a two-step
filter and refine strategy that uses a spatial index T on F(S), the result of mapping all the objects in S.
Furthermore, we saw that if F is contractive (or if we adjust the query radius based on the expansion of
F), it is also possible to achieve 100% recall. In other words, when F is contractive, the filter and refine
range query strategy obtains the exact result that would have been obtained by a linear scan of S (i.e., by
checking the range condition against each object in turn, thereby computing N distances, where N = jSj).
In this section, we first present a filter and refine strategy for performing incremental nearest neighbor
search that is applicable when F is contractive and that also guarantees that the result is always correct
(i.e., 100% precision and recall). In Section 3.4, we discuss the implications of F not being contractive,
and describe possible variants of the strategy for that case.

Incremental nearest search for the mapping-based approach fits readily into the framework presented
in Section 2. In fact, if T , the spatial index on F(S), is an R-tree, the search hierarchy is a straightforward
extension of the search hierarchy for performing incremental nearest neighbor search using R-trees (see
Section 2.2). In general, regardless of what data structure is used for T , the search hierarchy for the
mapping-based approach is obtained by extending the search hierarchy for T . In the search hierarchy
for T , the elements of type 0 are points in F(S), while the other elements represent nodes in T (and/or
possibly some other aspects of the data structure). When extending the search hierarchy for T to form the
new search hierarchy, we increment the type numbers for all the element types of the search hierarchy
of T , and add the objects in S as the new elements of type 0. Thus, an element e1 of type 1, representing
a point F(o), has as a child the element e0 of type 0 that represents the corresponding object o 2 S. For
the specific case of the R-tree, recall that the elements of type 1 were minimum bounding rectangles
of the objects. However, each object F(o) in F(S) is actually a point, so its minimum bounding box
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is degenerate, and thus equivalent to F(o). Therefore, the elements of type 1 in the (original) search
hierarchy for the R-tree, representing minimum bounding rectangles, always have identical distances as
the corresponding elements of type 0 (i.e., in the original search hierarchy), which represent the points
in F(S) (recall that elements of type 2 represent R-tree nodes; see Section 2.2). Thus, the elements of
type 1 can be thought of as representing the points in F(S)6, leaving us free to let the elements of type 0
represent the objects in S (replacing the original type 0) when extending the search hierarchy for R-trees.

The distance functions of the elements in the hierarchy are based on d and δ, the distance functions
for S and F(S), respectively. In particular, for an element e0 of type 0, d0(q;e0) = d(q;o) where o 2 S is
the object that corresponds to e0. The distance function for elements of type 1, corresponding to points
in F(S), is defined as

d1(q;e1) = δ(F(q);F(o)); (2)

where F(o) is the point represented by e1. An element of type t � 2 essentially represents a region inRm

that contains all the points in the corresponding subtree. If T is an R-tree, for example, elements of type
2 represent nodes, which cover regions that are rectilinear hyperrectangles. Thus, for t � 2, we define
the distance function

dt(q;et) = min
p2R
fδ(F(q); p)g; (3)

where R is the region covered by element et . Usually, Equation 3 can be evaluated with fairly simple
geometric calculations (e.g., if δ is some Minkowski metric and T is an R-tree, the distance is equal to
the distance between F(q) and one of the faces of the hyperrectangle R, or zero if F(q) is inside R).
The upper-bound distance functions d̂t (see Section 2.4 for their usage) can be defined in a similar way,
except that max would be used in the equivalent of Equation 3. However, since δ(F(q);F(o)) cannot
simultaneously be an upper and lower bound on d(q;o) unless δ(F(q);F(o))= d(q;o), we cannot define
d̂1 exactly like d1 in Equation 2. In Section 3.4 we discuss how a suitable definition can be arrived at,
but this may not always be practical.

Clearly, a range query on the search hierarchy defined above is equivalent to the two-step range query
algorithm described in Section 3.2, using the same query radius ε. Assuming that T is an R-tree, incre-
mental nearest neighbor search using the hierarchy would proceed as follows (see Figure 3). Initially,
the root of the R-tree would be inserted on the queue as an element of type 2. If the element et taken
off the queue is of type 2, representing a node n, we insert elements of type 1 (if n is a leaf node) or 2
(if n is a nonleaf node) into the priority queue based on the entries in n. If the element et that comes off
the priority queue is of type 1, we insert the corresponding object as an element of type 0. Finally, if the
element et is of type 0, we report the corresponding object as the next nearest neighbor. Figure 5 depicts
how the algorithm would proceed on a small example consisting of three objects and their mapped ver-
sions. Both are shown here as two-dimensional points; we can also think of the figure as merely showing
the relative distances of the objects from q and the mapped objects from F(q). Observe that the distance
d(q;c) need not be computed by the algorithm, since δ(F(q);F(c))> d(q;b).

3.4 Correctness and Performance

The distance functions defined above guarantee the correctness of the algorithm when F is contractive,
as they satisfy the correctness criterion outlined in Section 2.5. In particular, for any elements e0 and
e1, representing o and F(o), respectively, we have d1(q;e1) = δ(F(q);F(o))� d(q;o) = d0(q;e0). Fur-
thermore, for any ancestor et , t � 1, of an element e0, we know that dt(q;et) � d1(q;e1) � d0(q;e0),
where e1 is the parent of e0, since the region represented by et must contain the mapped point F(o) rep-
resented by e1. Thus, if ok is the kth nearest neighbor of q, the algorithm will perform as many distance

6Since points occupy half as much space as rectangles, we could even replace the minimum bounding rectangles in the leaf
nodes of the R-tree by the points themselves, thus doubling the capacity of the leaf nodes.
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Figure 5: Progress of the incremental nearest neighbor algorithm on a small example

involving three objects. Both the objects and their mapped versions are depicted as two-

dimensional points. (a) The search region �rst reaches F(a), and d(q;a) is computed. (b)

F(b) is reached next, causing d(q;b) to be computed. (c) The object b is determined to

be the nearest neighbor of q.

computations (i.e., using d) as a range query on the same search hierarchy with ε = d(q;ok) (since both
would visit exactly the same elements of type 1, i.e., those whose distance from q is less than or equal
to d(q;ok)). Observe that the precision of the range query on F(S) with ε = d(q;ok) determines the per-
formance of the algorithm, in terms of the number of distance computations. In particular, the precision
P of the range query equals jR \ R0j=jR0j = jRj=jR0j (the equality is due to the contractiveness of F),
where R = fo j d(q;o)� d(q;ok)g and R0 = fF(o) j δ(F(q);F(o))� d(q;ok)g. On the other hand, the
proportion of excess distance computations, jR0j=jRj�1= 1=P�1, is an appropriate measure of the per-
formance of the incremental nearest neighbor algorithm. In the best case, the precision is 100% and the
proportion of excess distance computation is 0%.

If F is not contractive (i.e., c> 1, as determined by Equation 1), then we may have δ(F(q);F(o))>
d(q;o) in which case the correctness criterion doesn’t hold, implying that the algorithm may not return
the correct result — that is, the object o0k reported as the kth nearest neighbor of q may not be the actual
kth nearest neighbor ok. In other words, the result of the algorithm would only be approximate in that
the objects in S may not be reported in strictly increasing order of distance from q. For example, in
Figure 5, if δ(F(q);F(c))> d(q;b)> d(q;c), then c would be the actual nearest neighbor rather than b,
but the algorithm would still report b as the nearest neighbor. Nevertheless, we can still characterize the
performance of the incremental nearest neighbor algorithm in terms of a corresponding range query. In
particular, obtaining the first k “approximate” neighbors with the algorithm requires the same number of
distance computations as would be performed with a range query with ε = maxk

i=1fd(q;o
0
i)g, where o0i

is the ith object returned by the algorithm.
By suitable modification of the distance functions, it is possible to achieve 100% recall even if the

expansion c of F is greater than 1 (as determined by Equation 1). In particular, this is done by adding
1
c as a multiplicative factor to the distance functions in Equations 2 and 3 (e.g., by defining d1(q;e1) =
δ(F(q);F(o))=c). In this case, to obtain k neighbors with the algorithm, the set R0 of objects whose dis-
tances are computed corresponds to the result of a range query on F(S) with query radius ε = cd(q;ok),
where ok is the kth nearest neighbor of q. However, if the precision of this range query with respect to
the range query on S with query radius d(q;ok) tends to be low, the proportion of excess distance com-
putations (i.e., jR0j=k�1) tends to be high, so modifying the distance functions in this way may cause an
unacceptable degradation in performance. Thus, in order to get good performance, we may need to live
with the distance functions in Equations 2 and 3, thereby sacrificing accuracy in the result of the incre-
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mental nearest neighbor algorithm. On the other hand, if c is substantially smaller than 1, modifying the
distance functions should improve the performance measurably, since the precision of a range query on
F(S)would be better with ε= cd(q;ok) than with ε= d(q;ok) (i.e., with respect to a range query on S with
query radius d(q;ok)). In general, if a function f can be derived such that f (δ(F(q);F(o)))� d(q;o), for
all o 2 S, then we can achieve correctness by defining the distance functions d1 and dt , t � 2, as follows:

d1(q;e1) = f (δ(F(q);F(o))); and

dt(q;et) = min
p2R
f f (δ(F(q); p))g; t� 2;

where o and R are defined as in Equations 2 and 3. The definitions above for the case of an expansion of
c are special cases of these definitions, where f (x) = x=c.

The upper-bound distance functions d̂t can be properly defined in a similar way. In particular, assume
that a function g can be defined such that g(δ(F(q);F(o)))� d(q;o) for all o 2 S, and let

d̂1(q;e1) = g(δ(F(q);F(o))); and

d̂t(q;et) = max
p2R
fg(δ(F(q); p))g; t� 2;

where o and R are, again, defined as in Equations 2 and 3. For example, if c0d(q;o)� δ(F(q);F(o)),
then g(x) = x=c0. Incidentally, the quantity c=c0 is termed the distortion of F with respect to d and δ,
where c0d(o1;o2)� δ(F(o1);F(o2)� cd(o1;o2) for all o1;o2 2U. Recall that the d̂t functions are needed
only when a minimum bound Dmin is set on the distances of the desired objects, or when finding farthest
neighbors (see Section 2.4). The performance of the algorithm in these applications using the above
definition of d̂t depends on the precision of a “reverse” range query on F(S), i.e., a query that seeks the
objects o such that d(q;o) � λ. If many objects o 2 S existed such that g(δ(F(q);F(o)))� λ while
d(q;o)< λ, the performance would clearly suffer as many false positives would occur.

4 Incremental Similarity Search with Distance-Based Indexing

In Section 3 we described a solution to similarity search that involved mapping into a low-dimensional
vector space in order to take advantage of spatial indexing structures. An alternative is to construct in-
dex structures that are based solely on distances between objects. A number of such methods have been
proposed over the past few decades, some of the earliest being due to Burkhard and Keller [11]. These
methods generally assume that (S;d) forms a finite metric space (see Section 4.1). Typical of distance--
based indexing structures are metric trees [65, 66], which are binary trees that result in recursively parti-
tioning a data set into two subsets at each node. Uhlmann [66] identified two basic partitioning schemes,
ball partitioning and generalized hyperplane partitioning.

In ball partitioning, the data set is partitioned based on distances from one distinguishedobject, some-
times called a vantage point [74], i.e., into the subset that is inside and the subset that is outside a ball
around the object (e.g., see Figure 6a). In generalized hyperplane partitioning, two distinguished objects
a and b are chosen and the data set is partitioned based on which of the two distinguished objects is the
closest, i.e., all the objects in subset A are closer to a than to b, while the objects in subset B are closer
to b (e.g., see Figure 6b).

Below, we collectively use the term pivot to refer to any type of distinguished object that can be used
during search to achieve pruning of other objects, following the convention of Chávez et al. [15]. In other
words, a pivot p 2 S is an object for which we have some information about its distance from some or
all objects in S, e.g., for all objects o 2 S0 � S we know

1. the exact value of d(p;o),
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2. that d(p;o) lies within some range [rlo;rhi] of values, or

3. that o is closer to p than to some other object p0 2 S.

S1

p r

S2

(a) (b)

p1

p2

Figure 6: Possible top-level partitionings of a set of objects (depicted as two-dimensional

points) in a metric tree using (a) ball partitioning and (b) generalized hyperplane parti-

tioning.

While most distance-based indexing structures are variations on and/or extensions of metric trees,
a few radically different approaches exist. Several methods based on distance matrices have been de-
signed [67, 49, 70]. In these methods, all or some of the distances between the objects in the data set are
precomputed. Then, when evaluating queries, once we have computed the actual distances of some of
the objects from the query object, the distances of the other objects can be estimated based on the pre-
computed distances. Clearly, these distance matrix methods do not form a hierarchical partitioning of
the data set, but combinations of such methods and metric tree-like structures have been proposed [47].
The sa-tree [50] is another departure from metric trees, inspired by the Voronoi diagram. In essence, the
sa-tree records a portion of the Delaunay graph of the data set, a graph whose vertices are the Voronoi
cells, with edges between adjacent cells.

In this section, we describe a number of distance-based indexing methods and show how to perform
incremental nearest neighbor search on them. The focus of the discussion is on how to construct a search
hierarchy for each structure such that incremental nearest neighbor search can be implemented. Thus,
we do not always provide much detail about construction algorithms or devote much effort to comparing
and/or contrasting different structures. Furthermore, with a few exceptions, we do not describe other
nearest neighbor algorithms in this section (however, see Section 5).

This section is organized as follows. In Section 4.1 we discuss properties of the distance metric useful
for search pruning. In Section 4.2 we describe the vp-tree [74] and other variants of metric trees that
employ ball partitioning. In Section 4.3 we present the gh-tree [66] and other variants of metric trees
that employ generalized hyperplane partitioning. In Section 4.4 we describe the M-tree [19], a dynamic
and balanced metric tree variant, suitable for disk-based implementation. In Section 4.5 we introduce
the sa-tree [50]. Finally, in Section 4.6 we describe AESA [67] and LAESA [49], methods that rely on
distance matrices.

4.1 Distance Metric and Search Pruning

As mentioned earlier, the indexed objects must reside in a finite metric space (S;d). This means that the
distance function d must satisfy the following three properties, where o1;o2;o3 2 S:
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1. d(o1;o2) = d(o2;o1) (symmetry)

2. d(o1;o2)� 0, d(o1;o2) = 0 iff o1 = o2 (non-negativity)

3. d(o1;o3)� d(o1;o2)+d(o2;o3) (triangle inequality)

The indexing methods discussed in this section are often applicable even when these three properties are
relaxed. For example, it rarely matters if d(o1;o2) = 0 for some pairs of distinct objects o1 and o2 (in this
case, d is often termed a pseudo-metric). Furthermore, adequate performance can often be attained even
if the triangle inequality is occasionally violated7, but this leads to approximate results (i.e., we cannot
guarantee that the nearest neighbors are obtained in strictly non-decreasing order of distance).

Of the distance metric properties, the triangle inequality is the key property for pruning the search
space when processing queries. However, in order to make use of the triangle inequality, we often find
ourselves applying the symmetry property. Furthermore, the non-negativity property allows discarding
negative values in formulas. Below, we enumerate a number of results that can be derived based on the
metric properties. Our goal is to provide ammunition for use in later sections when constructing distance
functions that lower-bound or upper-bound the distances between a query object and the objects in a
subtree of some search hierarchy (as defined in Section 2.2). Thus, we provide lower and upper bounds on
the distance d(q;o) between a query object q and some object o, given some information about distances
between q and o and some other object(s). The reader may wish to skim over this section on first reading
and refer back to it as needed.

Recall that S 2U, whereUis some underlying set, usually infinite, and we assume that (U;d) is also
a metric space (i.e., that d also satisfies the above properties onU). For generality, we present our results
in terms of (U;d), since a query object is generally not in S. In the first lemma, we explore the situation
where we know the distances from an object p to both q and o (while the distance between q and o is
unknown).

Lemma 3 Given any three objects q; p;o 2U, we have

jd(q; p)�d(p;o)j� d(q;o)� d(q; p)+d(p;o): (4)

Thus, knowing d(q; p) and d(p;o), we can bound the distance of d(q;o) from both below and above.

Proof The upper bound is a direct consequence of the triangle inequality. For the lower bound, notice
that d(p;o)� d(p;q)+ d(q;o) and d(q; p)� d(q;o)+ d(o; p) according to the triangle inequality. The
first inequality implies d(p;o)�d(p;q)� d(q;o), while the second implies d(q; p)�d(o; p)� d(q;o).
Therefore, combining these inequalities and making use of symmetry, we obtain jd(q; p)� d(p;o)j �
d(q;o), as desired.

Figure 7a illustrates the situation where the lower bound jd(q; p)�d(p;o)j established in Lemma 3
is nearly attained. Clearly, in the figure, d(q;o) is nearly as small as d(q; p)� d(p;o). The opposite
relationship (i.e., d(q;o) being nearly as small as d(p;o)�d(q; p)) is obtained by exchanging q and o in
the figure. Similarly, Figure 7b illustrates the situation where the upper bound d(q; p)+d(p;o) is nearly
attained.

In the next lemma, we assume that we know the distance between q and p, but that the distance be-
tween p and o is only known to be within some range. This is illustrated in Figure 7c, where we show
three different positions of the query object q. The lower bounds on the distances d(q1;o) and d(q2;o)
are indicated with gray arrows, and the upper bound on d(q2;o) is indicated with a gray broken arrow.

7Distance functions for DNA data that are based on edit distance are usually of this nature [63].
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q
d(q,p)+d(p,o)

d(q,o)

(b)
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(c)

rlo
rhi

q1

q2

q3

p

o

q
|d(q,p)–d(p,o)|

d(q,o)

(a)

Figure 7: Illustration of distance bounds. Given d(q; p) and d(p;o), a lower bound (a)

and an upper bound (b) can be established for d(q;o). (c) Given that rlo � d(p;o)� rhi,

we can establish lower and upper bounds on d(q;o). Three positions are shown for q,
demonstrating three cases that can arise.

Lemma 4 Let o and p be objects inUsuch that rlo � d(o; p)� rhi. The distance d(q;o) from q 2Uto
o can be bounded as follows, given d(q; p):

maxfd(q; p)� rhi;rlo�d(q; p);0g � d(q;o)� d(q; p)+ rhi: (5)

Proof Again, we use the triangle inequality to prove these bounds. In particular, from the inequality
d(q; p)� d(q;o)+d(o; p)and the upper bound d(o; p)� rhi, we obtain d(q; p)�d(q;o)� d(o; p)� rhi,
which implies that d(q; p)�rhi� d(q;o) (e.g., see q1 in Figure 7c). Similarly, we can combine the trian-
gle inequality and the lower bound on d(o; p) to obtain rlo � d(o; p)� d(q;o)+d(q; p), which implies
that rlo�d(q; p)� d(q;o) (e.g., see q2 in Figure 7c). Either or both of these lower bounds can be nega-
tive (e.g., for q3 in Figure 7c), whereas distance values are required to be non-negative. Thus, the overall
lower bound in Equation 5 is obtained by taking the maximum of zero and these two lower bounds. The
upper bound in Equation 5 is obtained by a straightforward application of the triangle inequality and the
upper bound on d(o; p), i.e., d(q;o)� d(q; p)+d(o; p)� d(q; p)+ rhi (e.g., see the broken arrow from
q2 through p to the outer boundary in Figure 7c).

In some situations, the distance d(q; p) in Lemma 4 may not be known exactly. The next lemma
establishes bounds on the distance from q to o in such circumstances:

Lemma 5 Let o, p, and q be objects in U for which d(o; p) is known to be in the range [rlo;rhi] and
d(q; p) is known to be in the range [slo;shi]. The distance d(q;o) can be bounded as follows:

maxfslo� rhi;rlo� shi;0g � d(q;o)� rhi + shi: (6)

Proof Substituting slo for the first instance of d(q; p) in Equation 5 can only reduce the lower bound.
Thus, we find that slo� rhi � d(q;o). The same is true when substituting shi for the second instance of
d(q; p) in the equation, as this instance is subtractive, which shows that rlo� shi � d(q;o). Similarly,
substituting shi for the last instance of d(q; p) in the equation increases the upper bound, so we obtain
d(q;o)� rhi + shi.

Clearly, the roles of the two ranges in Lemma 5 are symmetric. For an intuitive understanding of the
lower bound, imagine two shells around p, one with radius range [rlo;rhi] (where o is allowed to reside)
and the other with radius range [slo;shi] (where q is allowed to reside). As illustrated by the shaded arrow
in Figure 8a, the minimum distance between q and o is equal to the space between the shells, if any.
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[rlo,rhi]
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Figure 8: (a) The lower bound on d(q;o) is illustrated for the case when d(p;o) is in the

range [rlo;rhi] and d(p;q) is in the range [slo;shi]. (b) Illustration of how the upper bound

on d(q;o) can be attained when d(p;o) and d(p;q) are in these ranges.

Similarly, the upper bound can be understood by visualizing shells around q and o, with p at the outer
edge of each shell, as illustrated in Figure 8b.

In some distance-based indexes, objects are partitioned based on relative closeness to two or more
objects. The following lemma provides a result that we can use in such situations:

Lemma 6 Let o 2Ube an object that is closer to p1 than to p2, or equidistant from both (i.e., d(p1;o)�
d(p2;o)). Given d(q; p1) and d(q; p2), we can establish a lower bound on d(q;o):

max

�
d(q; p1)�d(q; p2)

2
;0

�
� d(q;o): (7)

Proof From the triangle inequality,we have d(q; p1)� d(q;o)+d(p1;o), which yields d(q; p1)�d(q;o)�
d(p1;o). When combined with d(p2;o)� d(q; p2)+d(q;o) (from the triangle inequality) and d(p1;o)�
d(p2;o), we obtain d(q; p1)� d(q;o) � d(q; p2) + d(q;o). Rearranging yields d(q; p1)� d(q; p2) �
2d(q;o), which yields the first component of the lower bound in Equation 7, the second component being
furnished by non-negativity.

One way to get some intuition about this result is to consider the situation shown in Figure 9a where
q lies on the line between p1 and p2 in a two-dimensional Euclidean space, closer to p2. If o is closer to
p1, it is to the left of the horizontal line midway between p1 and p2 which separates the regions in which
objects are closer to p1 or to p2. Thus, d(q;o) is lower-boundedby the distance from q to the dividing line,
which equals (d(q; p1)�d(q; p2))=2 for the particular position of q in the figure. If we move q parallel
to the dividing line (i.e., up or down in Figure 9a), the distance from q to the line is clearly unchanged.
However, the difference between d(q; p1) and d(q; p2) can be shown to decrease as both increase8, so the
value of (d(q; p1)�d(q; p2))=2 will also decrease. In other words, we see that (d(q; p1)�d(q; p2))=2 is
exactly the distance from q to the dividing line in the figure, while (d(q; p1)�d(q; p2))=2 decreases as q
is moved while keeping the distance from q to the dividing line constant. Therefore, the value (d(q; p1)�
d(q; p2))=2 is indeed a lower bound on the distance from q to the dividing line, and thus also a lower

8Figure 9b depicts the relative distances for a query point q0 that is above q. From α2 = a2 + c2 we obtain α2 � a2 =

(α� a)(α+ a) = c2 or α� a = c2

α+a . In the same manner, we can show that β� b = c2

β+b . Since q is closer to p2, we have

a > b and α > β, and therefore α+ a > β+ b. Thus, α� a = c2

α+a < c2

β+b = β� b, implying that α� β < a� b, and thus

(d(q0; p1)�d(q0; p2))=2< (d(q; p1)�d(q; p2))=2.
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bound on the distance between q and o. Note that this argument holds for all positions of q that are closer
to p2 than to p1, as the initial position of q can be anywhere on the line between p1 and p2. Observe that
without additional information, an upper bound on d(q;o) cannot be established, as o may be arbitrarily
far away from p1 or p2.

(a)

p2p1 q

o

(d(q,p1)-d(q,p2))/2
(b)

p2p1 q

q´

a

α β

b
c

Figure 9: (a) Lower bound on d(q;o), illustrated in a two-dimensional Euclidean space

when q is on the line between p1 and p2, closer to p1, while o is closer to p2. (b) The

lower bound can be shown to decrease when q is moved o� the line (e.g., to q0).

4.2 Ball Partitioning Methods

4.2.1 The VP-Tree

The vp-tree (Vantage Point Tree) [74] is an example of an indexing method that uses ball partitioning
(and thus is a variant of the metric tree [65, 66]). In this method, we pick a pivot p from S (termed a
vantage point in [74]), compute the median r of the distances of the other objects to p, and then divide
the remaining objects into roughly equal-sized subsets S1 and S2 as follows:

S1 = fo 2 Snfpg j d(p;o)< rg

S2 = fo 2 Snfpg j d(p;o)� rg

Thus, the objects in S1 are inside the ball of radius r around p, while the objects in S2 are outside this
ball. Applying this rule recursively leads to a binary tree, where a pivot object is stored in each internal
node, with the left and right subtrees corresponding to the subsets inside and outside the corresponding
ball, respectively. In the leaf nodes of the tree we would store one or more objects, depending on the
desired capacity. An example of such a partition is shown in Figure 6a. Note that the ball regions play
a role somewhat similar to the bounding rectangles in the R-tree In fact, we can define bounding values
for each subset S1 and S2. In particular, for o2 Si we have d(p;o)2 [ri;lo;ri;hi], for some bounding values
ri;lo and ri;hi. Given only the radius r, the known bounds are [r1;lo;r1;hi] = [0;r] and [r2;lo;r2;hi] = [r;∞]
(or, more accurately, [0;r� δ] and [r;M], respectively, where δ � d(o;o1)� d(o;o2) and M � d(o1;o2)
for all o;o1;o2 in S). For the tightest bounds possible, all four bounding values can be stored in the node
corresponding to p. However, this may yield improved search performance, but perhaps at the price of
excessive storage cost. Below, we use rlo and rhi to denote bounding values of S1 or S2 for statements or
equations that apply to either subset.

The simplest method of picking pivots is to simply select at random. Yianilos [74] argues that a more
careful selection procedure can yield better search performance (but at the price of a higher construction
cost). The method he proposes is to take a random sample from S, and choose the object among the
sample objects that has the best spread (defined in terms of the variance) of distances from a subset of
S, also chosen at random. For a data set drawn from a Euclidean space for which the data points are
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relatively uniformly spread over a hypercube c, this would tend to pick points near corners as pivots (the
observation that such pivots are preferable was first made by Shapiro [62]). Choosing such points as
pivots can be shown to minimize the boundary of the ball that is inside c (e.g., the length of the boundary
in Figure 10a is greater than that in Figure 10b), which Yianilos [74] argues increases search efficiency.
Some intuitive insight into the argument that the boundary is reduced as the pivot is moved farther from
the center of c can be gained by considering that if we are allowed to pick points outside c as pivots,
the resulting partitioning of the hypercube increasingly resembles a partitioning by a hyperplane (e.g.,
see Figure 10c). Notice that the areas of the two regions inside c formed by the partitioning tend to be
about the same when the points are uniformly distributed, and the length of the partitioning arc inside
c is inversely proportional to the distance between the pivot point and the center of c (see Figure 10).
Observe also that the length l of the partitioning arc decreases even more as the pivot is moved further
away from c (e.g., see Figure 10c).

(a) (b) (c)

p
p p

Figure 10: Depiction of partitions of a set of points in a two-dimensional Euclidean space,

assumed to be uniformly distributed in a cube c, for pivot points (a) in the center of c,
(b) in a corner of c, and (c) outside c.

In the vp-tree, the ball radius is always chosen as the median, so that the two subsets are roughly
equal in size. Another possibility would be to split at the mid-point between the distances of the objects
in Snfpg that are closest and farthest from p, as proposed by Chávez et al. [15] (and inspired by Burkhard
and Keller [11]). This yields a partition into equal-width “shells” around p. Chávez et al. [15] argue
that splitting at the mid-point yields better partitions for data sets whose “inherent dimensionality” is
high, as the objects outside the ball may reside in a thin “shell” when always splitting at the median [15].
However, the disadvantage of splitting at the mid-point is that the resulting tree is not balanced, as is the
case when splitting at the median.

Clearly, search algorithms are fundamentally the same regardless of how the pivot and ball radius
are determined, since the basic structure is the same. First, let us examine how a range query would
proceed for a query object q and query radius ε — that is, we wish to determine all objects o such that
d(q;o)� ε. Such a range query is most easily implemented with a depth-first traversal of the tree. When
visiting a node n with pivot p and ball radius r, we must decide whether to visit the left and/or right child
of n. Lemma 4 enables us to establish lower bounds on the distances from q to objects in the left and right
subtrees. If the query radius is less than the lower bound for a subtree, there is no need to visit that subtree.
For example, in Figure 11a the left subtree (for the objects inside the ball) need not be visited, while in
Figure 11b, the left subtree must be visited. Formally, from Equation 5, in Lemma 4, with rlo = 0 and
rhi = r, we know that the distance from q to an object in the left subtree of n is at least maxfd(q; p)�r;0g.
Similarly, by applying the equation with rlo = r and rhi = ∞, we know that the distance from q to an
object in the right subtree of n is at least maxfr� d(q; p);0g. Thus, we visit the left child if and only if
maxfd(q; p)� r;0g� ε and the right child if and only if maxfr�d(q; p);0g� ε.

We can also use a similar approach to design an incremental nearest neighbor algorithm for the vp-
tree, by specifying the search hierarchy according to the framework presented in Section 2.2. Being that
the vp-tree is hierarchical, the search hierarchy essentially falls out of the existing hierarchical structure.
Thus, the elements of the search hierarchy correspond to the objects (type 0) and the nodes in the vp-tree
(type 1). Again, we observe that the ball regions for the vp-tree nodes play the same role as bounding
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Figure 11: During a range query with query radius ε, the subtree corresponding to the

inside of the ball need not be visited in (a) while it must be visited in (b).

rectangles in the R-tree. The resulting search hierarchy for a small sample vp-tree is depicted in Fig-
ure 12. Note that elements of type 1 can produce elements of type 0 and 1.

p

o1 o2

(a)

o1

p

o2

(b)

Figure 12: (a) An example vp-tree for three objects p, o1, and o2, and (b) the search

hierarchy induced by the vp-tree.

We now define the distance functions dt for the distance between the query object q and elements
et of type t, t = 0;1. Since elements e0 of type 0 represent objects, d0 is simply equal to d. As for d1,
recall that the value of d1(q;e1) should be a lower bound on the distance d(q;o) for any object o in the
sub-hierarchy rooted at e1. The information we have on hand to derive such a lower bound is the value of
d(q; p) and the fact that d(p;o) is in the range [rlo;rhi], where p is the pivot of the parent e1 and [rlo;rhi]
defines the shell around p containing the objects in the subtree rooted at e1 (i.e., [0;r] if e1 is a left child
and [r;∞] if e1 is a right child, where r is the ball radius). Thus, as we saw above for the range query,
we can make use of Lemma 4, which gives lower and upper bounds on d(q;o) based on exactly such
information. In particular, the definition of d1 as obtained from the lemma is:

d1(q;e1) = maxfd(q; p)� rhi;rlo�d(q; p);0g:

This definition of d1 is general in that it accounts for e1 being either a left child (in which case rlo = 0
and rhi = r) or a right child (in which case rlo = r and rhi = ∞)9. Furthermore, for either case, it also
accounts for q being either inside or outside the region for e1 (i.e., inside or outside the ball around p of
radius r). Since the lemma guarantees that d1(q;e1) � d(q;o) for any object o in the subtree rooted at

9As we pointed out before, tight distance bounds for each subtree could be stored in each vp-tree node instead of just the
median [74], thereby causing d1 and d̂1 to yield improved bounds. This can improve search performance, but at the cost of an
increase in the storage requirement (i.e., four distance values in each node instead of just one).
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e1, we are assured that the incremental nearest neighbor algorithm is correct when applied to the vp-tree
search hierarchy that we have defined (see Section 2.5).

The upper-bound distance function d̂1 can also be derived from the result in Lemma 4 (i.e., by Equa-
tion 5):

d̂1(q;e1) = d(q; p)+ rhi;

where p and rhi are defined as above. Recall that upper-bound distance functions are used when per-
forming farthest-neighbor queries and when a minimum distance bound is imposed on the query results
(see Section 2.4). The correctness of such algorithm variants is guaranteed by the lemma, i.e., since
d̂1(q;e1)� d(q;o) for any object o in the subtree rooted at e1.

Given the search hierarchy defined above, incremental nearest neighbor search proceeds as described
in Section 2.3. In particular, when the element obtained from the queue represents an object (i.e., is of
type 0), we report it as the next nearest neighbor. Otherwise, the element is of type 1, representing a node
n. If n is a nonleaf node with pivot p and ball radius r, we compute d(q; p) and insert p into the priority
queue as an element of type 0. Furthermore, the left and right children of n are inserted into the priority
queue as elements of type 1 using the distance function defined above. If n is a leaf node, we perform
the same action as for pivots of nonleaf nodes for the object(s) in the node.

In Section 2.5, we mentioned that the incremental nearest neighbor algorithm is correct even if some
elements produce elements whose distance to the query object is smaller, provided that the correctness
criterion with respect to the data objects is not violated. Such situations arise frequently in the vp-tree.
In the example shown in Figure 13, the distance of n2 from q is d(q; p1)� r1, where r1 is the ball radius
for p1, while the distances of both the left child and right child of n2 are less than this (d(q; p2)� r2 and
0, respectively). However, this does not violate correctness, since the objects in the subtree rooted at n2

are still no closer to q than d(q; p1)�r1, even though the lower bounds based on the pivot p2 and its ball
radius r2 are smaller. In other words, the objects in the left subtree of n2 must be somewhere in the white
region inside the ball for p2 (denoted S1 in the figure) and not in the darkly shaded region, and the objects
in the right subtree must be in the lightly shaded region (denoted S2) and not outside the ball for p1.

p1

S2

p2

q
S1

Figure 13: An example of pivots p1 and p2 for two nodes n1 and n2, respectively, in a

vp-tree, where n2 is the left child of n1. The regions for the left and right child of n2 are

denoted S1 and S2, respectively, in the �gure.

4.2.2 The VPsb-Tree

When the vp-tree is constructed, we must compute the distances of an object o from each of the pivots
on the path from the root to the leaf containing o. This information is useful, as it can often be used
during search to either prune o from the search or include it in the search result without computing its
distance. Based on this insight, Yianilos [74] proposed a version of the vp-tree, termed the vps-tree,
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where we store, for each object (whether it functions as a pivot or is stored in a leaf node), its distance
from all ancestral pivots (i.e., those higher in the tree on the path from the root). In the related vpsb-
tree, the leaf nodes can store more than one object, thus serving as “buckets”. To see how we make
use of the distances to ancestral pivots, consider an object o, one of its ancestral pivots p, and the query
object q. Given d(q; p) and d(p;o), Lemma 3 allows us to bound the distance between q and o, i.e.,
jd(q; p)�d(p;o)j� d(q;o)� d(q; p)+d(p;o). Thus, when performing a range query with radius ε, we
can safely discard o if jd(q; p)�d(p;o)j> ε or directly include it in the result if d(q; p)+d(p;o)� ε.

In order to take full advantage of all ancestral pivots, we define two functions dlo(q;o) and dhi(q;o)
that provide upper and lower bounds on d(q;o), respectively, for any object o:

dlo(q;o) = max
i
fjd(q; pi)�d(pi;o)jg; and

dhi(q;o) = min
i
fd(q; pi)+d(pi;o)g;

where p1; p2; : : : are the ancestral pivots of o. Observe that when evaluating these functions, no new
distance computations are needed, as d(q; pi) will have been computed earlier in the query evaluation
and d(pi;o) is stored with o in its vp-tree node. Clearly, a straightforward application of Lemma 3 yields
dlo(q;o)� d(q;o)� dhi(q;o).

Thus, we can discard object o from the result of a range query if dlo(q;o)> ε and directly include it
if dhi(q;o)� ε. This is true even if jd(q;v)�d(v;o)j� ε or d(q;v)+d(v;o)> ε, respectively, for some
pivot object v.

Incidentally, there is an interesting connection between dlo and a class of mapping methods termed
Lipschitz embeddings (see Section 3.1.3). In particular, the m ancestral pivots p1; : : : ; pm of an object o
can be regarded as m singleton sets, each of which corresponds to a coordinate axis, forming the mapping
h : S!Rm where h(o) is the vector (d(pi;o))i. If we now map q and o according to h, the L∞ distance
dM(h(q);h(o)) between h(q) and h(o) is equal to dlo(q;o).

How do we make use of these bounds when performing incremental nearest neighbor search? In
particular, for determining some number k of neighbors, the algorithm should ideally be able to perform
fewer actual distance computations (i.e., based on d) when using the bounds than when not using them.
The obvious choice is to modify how objects are treated when encountered in leaf nodes. In other words,
if dhi(q;o) is less than or equal to the distance value of the element at the front of the priority queue, o can
be immediately reported as the next nearest object without evaluating d(q;o). Unfortunately, this simple
modification is unlikely to improve performance to any significant degree, in the sense of reducing the
number of distance computations. To obtain a better solution, we must establish a new search hierarchy
that makes use of dlo(q;o). In particular, in our new search hierarchy, type 0 represents objects, type 1
represents approximate objects, while type 2 represents vp-tree nodes. The distance functions for types
1 and 2 are as follows:

d1(q;e1) = dlo(q;o) and

d2(q;e2) = maxfd(q; p)� rhi;rlo�d(q; p);0g:

where o is the object represented by e1, p is a pivot for the parent of e2, and [rlo;rhi] is the corresponding
distance range for objects in the subtree. Similarly, the upper-bound distance functions are defined as

d̂1(q;e1) = dhi(q;o) and

d̂2(q;e2) = d(q; p)+ rhi:
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given the same definitions of o, p, and rhi. Observe that elements e2 of type 2 must carry along the ances-
tral pivot distances d(q; pi) to enable computing dlo(q;o) and dhi(q;o) for elements of type 1. The cor-
rectness of this search hierarchy is guaranteed by the results in Section 4.1. In particular, we have already
shown that d1(q;e1)� d(q;o)� d̂1(q;e1) follows from Lemma 3 and that d2(q;e2)� d(q;o)� d̂2(q;e2)
follows from Lemma 4, where o is a descendant of e1 or e2, respectively.

Incremental nearest neighbor search using this search hierarchy proceeds as follows (see Section 2.3).
Initially, we simply insert the root of the vp-tree as an element of type 2. Subsequently, if the element
obtained from the priority queue is of type 0, we report it as the next neighbor, as usual. If the dequeued
element is of type 1, we enqueue an element of type 0 for the corresponding object, thus computing
its actual distance (alternatively, if d̂1(q;e1) is smaller than or equal to the distance value for the new
element at the front of the priority queue, we can report the corresponding object immediately without
computing the actual distance). If the element is of type 2, it is treated similarly to what was done earlier
for the vp-tree, except that elements of type 1 are generated for the data objects in leaf nodes.

The search hierarchy outlined above enables pruning some objects appearing in leaf nodes without
computing their distance. In particular, it prunes objects o such that dlo(q;o)> dlo(q;olast) where olast

is the last object retrieved in incremental nearest neighbor search — that is, the element of type 1 corre-
sponding to o would remain on the priority queue without being processed).

A drawback of the search hierarchy is that such pruning is not possible for pivots in nonleaf nodes,
since when processing such a node, we immediately compute d(q; p) for the pivot p. However, if each
nonleaf node only contains the ball radius r (and not tight distance ranges [rlo;rhi] for each subtree), the
distance according to d2 from q of one of the two elements is always zero. In particular, suppose that e2

is a search hierarchy element corresponding to a vp-tree nonleaf node n with pivot p, and let e02 and e002
be the elements corresponding to the two children of n. Without the distance range information, either
d2(q;e02) or d2(q;e002) will always be zero, depending on whether d(q; p) is smaller than or larger than
r, the ball radius of n (i.e., whether q is inside or outside the ball centered at p). Thus, one of the child
elements of e2 should be processed next, and we cannot avoid computing the exact value of d(q; p) to
determine which one and to process it (since all ancestral pivot distances are needed).

If tight distance bounds are stored in each nonleaf node for each of the two subtrees (or, at least,
more information than merely the ball radius), then it is in some cases possible to prune nonleaf nodes
from the search without computing the distance from q of the corresponding pivot object. In particular,
suppose that n is a nonleaf node with pivot p and that [r1;lo;r1;hi] and [r2;lo;r2;hi] are the distance bounds
for the two subtrees. Based on dlo(q; p) and dhi(q; p), we can derive the lower bound maxfdlo(q; p)�
r1;hi;r1;lo�dhi(q; p);0g on the distance between q and any object in the left subtree (i.e., for S1), and the
analogous one for the right subtree. Hence, if the minimum of dlo(q; p) and the lower bounds for the two
subtrees is greater than zero, it may be possible to prune n without computing the distance d(q; p). Based
on this observation, we can augment the search hierarchy above with elements e3 of type 3 denoting
“approximate” nonleaf nodes, with distance function

d3(q;e3) = min

8<
:

dlo(q; p)
maxfdlo(q; p)� r1;hi;r1;lo�dhi(q; p);0g
maxfdlo(q; p)� r2;hi;r2;lo�dhi(q; p);0g

9=
; ;

where p is the pivot in the node represented by e3 and [r1;lo;r1;hi] and [r2;lo;r2;hi] are the corresponding
distance bounds for the subtrees. Thus, when processing an element e2 of type 2 representing a nonleaf
node n, we evaluate d3(q;e3) where e3 represents n. If d3(q;e3) > D f where D f is the distance of the
element at the front of the priority queue, then we enqueue e3. Otherwise, we cannot avoid computing
d(q; p) and must process e2 in the manner described earlier (i.e., producing elements for the pivot and
the two children).
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4.2.3 The MVP-Tree

A potential criticism of vp-tree and related metric tree variants is that the fan-out is low (i.e., just 2). As
pointed out by Yianilos [74], the vp-tree can gain higher fan-out by splitting S into m subsets of roughly
equal size instead of just two, based on m+1 bounding values r0; : : :;rm (alternatively, we can let r0 = 0
and rm = ∞). In particular, S is partitioned into S1;S2; : : :;Sm where Si = fo 2 Snfpg j ri�1 � d(p;o)<
rig. Observe that objects in the subsets lie on spherical “shells” around p. Applying this partitioning
process recursively yields an m-ary tree. It is easy to adapt the search hierarchy defined above to this
variant. In particular, the various distance functions defined above for search hierarchy elements that
represent vp-tree nodes still apply, provided that we set rlo and rhi to the proper values — that is, rlo = ri�1

and rhi = ri for the child corresponding to Si (unless tighter bounds are maintained).
Another variant of vp-trees that achieves a higher fan-out, termed the mvp-tree, was suggested by

Bozkaya and Ozsoyoglu [7, 8]. Each node in the mvp-tree is essentially equivalent to the result of col-
lapsing the nodes at several levels of a vp-tree. There is one crucial difference between the mvp-tree and
the result of such collapsing: only one pivot is used for each level inside an mvp-tree node (although the
number of different ball radius values is unchanged). Thus, in an mvp-tree that corresponds to collapsing
a vp-tree over every two levels, two pivots are used in each mvp-tree node with three ball radius values.
An example of the top-level partitioning for such an mvp-tree is shown in Figure 14.

The motivation for the mvp-tree is that fewer distance computations are needed for pivots during
search since there are fewer of them (e.g., for an mvp-tree node with two pivots, three pivots would be
needed in the corresponding vp-tree). Observe that some subsets are partitioned using pivots that are not
members of the sets, which does not occur in the vp-tree (e.g., p2 is used to partition the subset inside the
ball around p1 in Figure 14a). Bozkaya and Ozsoyoglu [7, 8] suggest using multiple partitions for each
pivot, as discussed above. Hence, with k pivots per node and m partitions per pivot, the fan-out of the
nonleaf nodes is mk. Furthermore, they propose storing, for each data object in a leaf node, the distances
to some maximum number n of ancestral pivots (by setting a maximum n on the number of ancestral
pivots, the physical size of all nodes can be fixed). This is analogous to the use of ancestral pivots in the
vpsb-tree, as described above, except that this distance information is only maintained in leaf nodes in
the mvp-tree. Another minor departure from the vp-tree that enables additional pruning to take place is
that each leaf node in the mvp-tree also contains k pivots (whereas pivots are not used in leaf nodes in
the vp-tree). In addition, the distances between these pivots and the data objects are stored in the node
(a version of the mvp-tree in which pivots are not used in leaves is also considered in [8]). Thus, the leaf
node pivots essentially function like the ancestral pivots.

Clearly, a search hierarchy similar to that for the vp-tree can be defined for the mvp-tree, with the
addition of approximate object elements as was done for the vpsb-tree (these are generated for leaf nodes
based on distances to ancestral pivots). The question is whether to treat the k pivots in each mvp-tree
node separately. In other words, should we design the search hierarchy so that each mvp-tree node is
represented by a single type of element, or should we introduce k types for each node, one of which
represents the node itself, while the others represent partial decompositions based on some of the pivots
in the node? For the second alternative, m first-pivot partial node elements are generated from each node
element based on the first pivot, m second-pivot partial node elements are generated from each first-pivot
partial node based on the second pivot, etc. Choosing this second alternative would only make sense if we
could sometimes prune all m partial node elements without computing the actual distance to the second
pivot of the corresponding mvp-tree node. Unfortunately, because of the way the mvp-tree is defined, this
is not the case, since at least one of the m partial node elements generated for a node n must be processed
before the next nearest neighbor can be reported. Similar reasoning applies here as that for pruning of
nonleaf nodes in Section 4.2.2. In particular, if only ball radii are stored for partitions (i.e., not distance
ranges for each partition), the distance value for one of the two partitions based on the first pivot will
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Figure 14: (a) Possible top-level partitionings of a set of objects (depicted as two-dimen-

sional points) in an mvp-tree where two pivots are used in each node, and (b) a depiction

of the corresponding mvp-tree node. The second pivot, p2, partitions the inside of the

ball for p1 into subsets S1 and S2, and the outside of the ball into subsets S3 and S4.

always be zero. Augmenting mvp-tree nonleaf nodes with tighter bounds for the distance values in the
two partitions of the first pivot might make it worthwhile to use partial node elements, but this is at the
cost of more storage.

4.2.4 Other Methods Related to Ball Partitioning

A number of additional proposals of search structures that employ some form of ball partitioning have
been made. Below, we summarize some of these ball partitioning methods. Unless otherwise mentioned,
incremental nearest neighbor search can be performed in these structures using search hierarchies that
are very similar to those described in Sections 4.2.1–4.2.3.

The vp-tree, one of the most common instances of ball partitioning, is actually a special case of what
Knuth terms a post-office tree whose proposal he attributes to Bruce McNutt in 1972 [40, p. 563]. The
difference is that each node in the post-office tree is a vp-tree node (p;r) with the addition of a tolerance
δ which is associated with the radius r of the ball centered at p. In particular, given a value of δ, once
pivot p and radius r have been chosen, the remaining objects are subdivided into two subsets S1 and S2

as follows:

S1 = fo 2 Snfpg j d(p;o)� r+δg
S2 = fo 2 Snfpg j d(p;o)� r�δg

Thus the objects in S1 are inside the ball of radius r+δ, while the objects in S2 are outside a ball of radius
r�δ. Of course, some objects lie both in S1 and S2 — that is all objects o where jd(o; p)� rj � δ10.

Among the earliest published work on distance-based indexing was that of Burkhard and Keller [11].
One of the three structures they proposed employs ball partitioning. However, the distance function
was assumed to be discrete, so that only a few different distance values are possible, say m. At the top
level, some distinguished object p 2 S is chosen, and the remaining objects are partitioned into m subsets

10The idea of a loose partition so that the sons of a node are not disjoint is also used in the os-tree [44, 45], KD2-tree [54, 55],
spatial k-d tree [53], and hybrid tree [12, 13].
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S1;S2; : : : ;Sm based on distance value. Applying this process recursively yields an m-ary tree. Clearly, p
has the same role as a pivot in the vp-tree, and the result of the partitioning process is analogous to that
of an m-ary vp-tree (see Section 4.2.3). In fact, as pointed out by Chávez et al. [15], a natural adapta-
tion of Burkhard and Keller‘s technique to continuous distance functions is to choose the partition values
r0;r1; : : :;rm such that the objects are partitioned into m equiwidth shells around p. In other words, r0 and
rm are chosen as the minimum and maximum distances, respectively, between p and objects in Snfpg,
and ri =

i
m(rm� r0)+ r0 for i = 1; : : : ;m�1.

Baeza-Yates et al. [3] proposed a variant of Burkhard and Keller’s approach that they termed the
fixed-queries tree. In this variant, all nodes at the same level in the tree use the same pivot, and the pivot
objects also appear as data objects in leaf nodes of the tree11 (unlike the vp-tree or Burkhard and Keller’s
approach). The rationale for using just one pivot per level is the same as in the mvp-tree — that is, so that
fewer distance computations are needed during search, since only one distance computation is needed
for visiting all nodes at a given level (as is the case when the search backtracks). The drawback is that the
quality of the partitioning may suffer as a result of using fewer pivots. Fixed-height variants of this idea
were also proposed, where all leaf nodes are at the same level. Thus, some internal nodes have only one
child node (in cases where the node would otherwise have been a leaf node), and leaf nodes may contain
arbitrary numbers of objects. Furthermore, each object has the same number of ancestral pivots, and thus
requires the same number of distance computations when constructing the tree. This insight led to the
proposal of the fixed query array [14], which is essentially a compact representation of the distances in a
fixed-height fixed-queries tree in the form of an array of bit strings. In the fixed query array, movements
in the equivalent fixed-height fixed-queries tree are simulated with binary search.

Yianilos [73] proposed a variant of vp-trees termed the excluded middle vantage point forest that is
intended for radius-limited nearest neighbor search, i.e., where the nearest neighbor is restricted to be
within some radius r� of the query object. This method is based on the insight that most of the complex-
ity of performing search in methods based on binary partitioning, such as the vp-tree, is due to query
objects that lie close to the partition values, thereby causing both partitions to be processed. For exam-
ple, in the vp-tree, these are objects q for which d(q; p) is close to r, the partitioning value for a pivot
p. The proposed solution is to exclude all data objects whose distances from a pivot are within r� of the
partition value (i.e., the ball radius). This process is applied to all pivots in the tree and a new tree is built
recursively for the set of all excluded objects. Thus the final result is a forest of trees. Since the width of
all exclusion regions is at least 2r�, nearest neighbor search limited to a search region of radius r� can
be performed with no backtracking, but this is at the price of having to search all the trees in the forest.
The fact that no backtracking is needed allows determining a worst-case bound on the search cost, based
on the heights of the trees in the forest. Unfortunately, the method appears to provide good performance
only for very small values of r� [73], which is of limited value in most similarity search applications.

4.3 Generalized Hyperplane Partitioning Methods

4.3.1 The GH-Tree

Uhlmann [66] defined a metric tree using generalized hyperplane partitioning, which has been termed
a gh-tree by later authors [9, 8, 27]. Instead of picking just one object for partitioning as in the vp-tree,
this method picks two pivots p1 and p2 (e.g., the objects farthest from each other) and splits the set of
remaining objects based on the closest pivot (see Figure 6b):

S1 = fo 2 Snfp1; p2g j d(p1;o)� d(p2;o)g; and

11When performing incremental nearest neighbor search with structures where pivot objects also appear in leaf nodes, care
must be taken that such objects are only inserted once into the priority queue (either by inserting objects only as they are en-
countered in leaf nodes, or by somehow detecting the fact that an object has been inserted earlier).
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S2 = fo 2 Snfp1; p2g j d(p2;o)< d(p1;o)g:

In other words, the objects in S1 are closer to p1 than to p2 (or equidistant from both), and the objects
in S2 are closer to p2 than to p1. This rule is applied recursively, resulting in a binary tree where the
left child of a nonleaf node corresponds to S1 and the right to S2. This rule can be restated as stipulating
that S1 contains all objects o such that d(p1;o)�d(p2;o)� 0. Clearly, the two subsets S1 and S2 can be
very different in size. Uhlmann [66] actually suggested partitioning based on a median value m, so that
d(p1;o)�d(p2;o)� m applies to roughly half the objects in S. For simplicity, we assume below that m
is fixed at 0; the discussion is easily generalized to other values.

The term “generalized hyperplane partitioning” is derived from the fact that if the objects are points
in an n-dimensional Euclidean space, the partitioning is equivalent to partitioning based on an (n�1)--
dimensional hyperplane like that used in a k-d tree (in a k-d tree, however, the partitioning planes are
axis-aligned). This hyperplane is the set of all points o that satisfy d(p1;o) = d(p2;o). Consider how to
compute a lower bound on the distance from a query object q to an object in one of the partitions, say,
that for S1. If q is in the partition (i.e., is closer to p1), the lower bound is clearly zero. Otherwise, the
lower bound is equal to the distance from q to the partitioning hyperplane, which is easy to compute in
Euclidean spaces. For arbitrary metric spaces, however, we cannot form a direct representation of the
“generalized hyperplane” that divides the two partitions, since we assume that the interobject distances
are the only available information.

Fortunately, even given the limited information available in the gh-tree, Lemma 6 shows that it is
possible to derive a lower bound on the distance from q to some object in a partition12 (though an upper
bound cannot be determined, since objects can be arbitrarily far from p1 and p2). In particular, for a range
query with query radius ε, the left subtree for a pivot p must be visited if and only if d(q;p1)�d(q;p2)

2 � ε and

the right one must be visited if and only if d(q;p2)�d(q;p1)

2 � ε. Similarly, we can define a search hierarchy
for the gh-tree, with the distance of an element of type 1, representing a node, defined as follows:

d1(q;e1) =

8<
:

max
n

d(q;p1)�d(q;p2)

2 ;0
o
; if e1 is a left child,

max
n

d(q;p2)�d(q;p1)

2 ;0
o
; otherwise.

4.3.2 GNAT

GNAT [9] (Geometric Near-neighbor Access Tree) is a generalization of the gh-tree, where more than
two pivots (termed split points in [9]) may be chosen to partition the data set at each node. In particular,
given a set of pivots P = fp1; : : : ; pmg, we split S into S1; : : : ;Sm based on which of the objects in P
is the closest. In other words, for any object o 2 S nP, o is a member of Si if d(pi;o)� d(p j;o) for all
j = 1; : : :;m. In case of ties, i is the lowest index among the ones that participate in the tie. Thus, applying
such a partitioning process recursively yields an m-ary tree. Brin [9] left the value of m as a parameter,
and also suggested a way to adaptively choose a different number of pivots at each node, based on the
cardinalities of the partition sets. The method Brin [9] describes for choosing the pivot objects is based
on a philosophy similar to that of Yianilos [74] for the vp-tree (and also suggested by others [8, 62]). In
particular, initially, randomly pick 3m candidate pivot objects from S. Next, pick the first pivot object at
random from the candidates, pick as the second the candidate farthest away from the first one, pick as
the third the candidate farthest away from the first two, etc.

In addition to pivots and child pointers, the nodes in GNAT also store information about the ranges of
distances between the pivots and objects in the subtrees, which enables more pruning during search. In

12The bound in the lemma is clearly much weaker than would be obtained in a Euclidean space by using the hyperplane
directly.
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particular, for each pair of pivots pi and p j in a node n, we store the range [r(i; j)
lo ;r(i; j)

hi ] of d(pi;o) over all

objects o2 S j[fp jg (i.e., r(i; j)
lo = mino2S j[fp jg

fd(pi;o)g and r(i; j)
hi = maxo2S j[fp jg

fd(pi;o)g). Although

not mentioned by Brin [9], it may also be advantageous to store the range [r( j; j)
lo ;r( j; j)

hi ] for d(p j;o) over all
m objects o2 S j, bringing the total number of ranges to m2 (as there are m �(m�1)+m ranges altogether).
Figure 15 illustrates the distance bounds for two pivots pi and p j , where the dots clustered around p j

depict the objects in S j.

pi

pj

r(i,j)
lo

r(i,j)
hi

r(j,j)
lo

r(j,j)
hi

q1

ε1

q2

ε2

Figure 15: Depiction of the bounds for two pivots pi and p j in a GNAT. For the sam-

ple query object q with query radius ε shown in the �gure, p j and its subset would be

eliminated from the search since d(q; pi)�ε > r(i; j)
hi .

If the objects are points in an n-dimensional Euclidean space, the objects in Si are exactly the objects
in S nP that fall into the Voronoi cell with pi as a site. For Euclidean spaces, it is relatively straight-
forward to directly represent the Voronoi cells (although this becomes increasingly impractical as the
dimensionality grows), and thus compute a lower bound on the distance from a query point to the points
inside a given cell (i.e., based on the geometry of the cell). Unfortunately, for arbitrary metric spaces,
computing a lower bound in this way is not feasible since, as we saw for the gh-tree, we do not have a
direct representation of the “generalized Voronoi cells” formed by the pivots (termed Dirichlet domains
in [9]). Clearly, we could simply apply Lemma 6, as we did for the gh-tree, which would yield the lower
bound (d(q; pi)�d(q; p j))=2 on d(q;o) for an object o in Si (i.e., o is closer to pi than to p j), where p j is
the object in P closest to q (since this choice of p j maximizes the lower bound). However, as shown be-

low, tighter bounds can be obtained by using the distance ranges [r(i; j)
lo ;r(i; j)

hi ] (based on Lemma 4), thus
achieving better search performance. We can think of the distance bounds as effectively constraining
the “shape” of the region represented by the child nodes so as to approximate the corresponding Voronoi
cells. For example, in Euclidean spaces, the distance bounds represent spherical shells around the piv-
ots, and the Voronoi cell for pi is approximated by the intersection of the shells for all the pivots p j.
Of course, two approximate Voronoi cell regions may intersect each other, unlike actual Voronoi cells
(which at most share a boundary).

The range query algorithm for GNAT described by Brin [9], for a query object q and query radius ε,
proceeds in a depth-first manner. When processing a node n, the distances between q and the pivots are
computed one by one, gradually eliminating subtrees when possible. The children of n are visited only
after computing the distances of all pivots that could not be eliminated using the distances of pivots that
were considered earlier. In particular, the process is initiated with the set P consisting of all pivots for n.
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At each step, we remove one of the objects pi 2 P whose distance from q has not been computed, and
compute d(q; pi). If d(q; pi)� ε, we add pi to the query result. Next, for all p j 2P, we remove p j from P

if d(q; pi)�ε> r(i; j)
hi or d(q; pi)+ε < r(i; j)

lo (or, equivalently, if maxfd(q; pi)�r(i; j)
hi ;r(i; j)

lo �d(q; pi)g> ε,
based on Lemma 4). Figure 15 depicts two sample query objects q1 and q2 and associated query radii
ε1 and ε2, respectively, both of which would cause p j to be removed from P since d(q1; pi)�ε1 > r(i; j)

hi

and d(q2; pi)+ ε2 < r(i; j)
lo . After the distances from q for all the pivots in P have been computed (or P

becomes empty), the children of n that correspond to the remaining pivots in P are searched recursively.
Notice that a pivot p j may be discarded from P before its distance from q is computed.

A naive definition of a search hierarchy for incremental nearest neighbor search is obtained by using
only two types of elements, for objects and nodes, and deriving the lower-bound distance function based
on all the distance ranges. In other words, for a node n0 corresponding to pivot p j in its parent n, we can
derive the following lower bound (based on Lemmas 4 and 6) on the distance d(q;o), where o is in the
subtree rooted at n0 (i.e., o 2 S j):

max
i2f1;:::;mg

fd(q; pi)� r(i; j)
hi ;r(i; j)

lo �d(q; pi);
d(q; p j)�d(q; pi)

2
;0g:

Clearly, evaluating this lower bound requires computing the distances between q and all the pivots in n.
This is a major drawback, as it means that range search on this search hierarchy would generally compute
more distances than the range query algorithm described above, since the latter is sometimes able to
discard pivots from consideration without computing their distances from q. The challenge we face in
defining a more effective search hierarchy is that with incremental nearest neighbor search, we have no ε
to base the pruning on. In particular, regardless of k, the number of nearest neighbors obtained, our goal
is to perform no more distance computations than the range query algorithm would with ε = d(q;ok),
where ok is the kth nearest neighbor.

To approach this goal, the search hierarchy must essentially embody gradual computation of the dis-
tances between q and the pivots in a node. We propose to do this in the following way. Elements of type
0 and 1 represent objects and GNAT nodes, as usual, but elements of type 2 represent partially processed
GNAT nodes. For each element e2 of type 2 representing a node n, we maintain information about which
pivots and child nodes have already been enqueued, as well as bounds on the distances between q and the
remaining pivots and child nodes (i.e., the objects in the subtrees rooted at the child nodes). In particular,
if the child node n0 corresponding to a pivot p j has not yet been enqueued, we define

dlo(q;Tj) = max
pi2P0

fd(q; pi)� r(i; j)
hi ;r(i; j)

lo �d(q; pi);
d(q; p j)�d(q; pi)

2
;0g; and

dhi(q;Tj) = min
pi2P0

fd(q; pi)+ r(i; j)
hi g;

where P0 is the set of pivots of n whose distances from q have been computed, S j is the set of objects in
the subtree rooted at n0, and Tj = S j if p j 2 P0 or Tj = S j[fp jg, otherwise. The values of dlo(q;Tj) and
dhi(q;Tj) are computed incrementally as each new pivot is added to P0 and its distance from q computed.
Given these definitions, the distances for e2 are defined as

d2(q;e2) = min
Tj2R
fdlo(q;Tj)g; and

d̂2(q;e2) = max
Tj2R
fdhi(q;Tj)g;

where R is the set of sets Tj for which the child node corresponding to pivot p j has not been enqueued.
Similarly, the distances for an element e1 of type 1 for a node n0 are defined in terms of the current values
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of dlo(q;Tj) and dhi(q;Tj) when e1 was created, where p j is the corresponding pivot in n, the parent of n0.
The correctness of incremental nearest neighbor search using this scheme should be clear (by Lemmas 4
and 6).

When performing incremental nearest neighbor search using this hierarchy, it is easy to see what ac-
tions to take when processing elements of type 0 or 1. In particular, for an element of type 0 we simply
report the corresponding object as the next nearest neighbor. For an element e1 of type 1 correspond-
ing to a node n, we effectively generate a new element e2 of type 2 for the node, where dlo(q;Tj) and
dhi(q;Tj) for each pivot p j are initialized to 0 and ∞, respectively (thus, since d2(q;e2) = 0, e2 will get
processed next). It is less clear which of two actions to perform when processing an element e2 of type 2,
representing a partially processed node n. The two possible actions are: 1) compute the distance from q
to a new pivot pi of n (thereby generating an element of type 0 for pi and updating dlo(q;Tj) and dhi(q;Tj)
based on d(q; pi) for each Tj 2 R), or 2) generate an element of type 1 for the child corresponding to pivot
pi of n (thereby removing Ti from R). For both actions, d2(q;e02) � d2(q;e2) (to see why, observe that
action 1 may increase some dlo(q;Tj) for Tj 2 R as it is based on a maximum and pi has been added to
P0, while action 2 removes Ti from R, so the minimum over dlo(q;Tj) can only increase), where e02 repre-
sents the element that results from performing the action on e2. Clearly, if the distances from q of all the
pivots of n have been computed, we can perform action 2 repeatedly until we have exhausted R, thereby
generating elements of type 1 for all remaining children of n. However, if this is the only instance in
which we chose action 2 over action 1, we are not much better off than we were with the naive search
hierarchy definition, since the only instance in which we will not compute the distances between q and
all the pivots of n before reporting the next nearest neighbor o is if o happens to be one of the pivots of
n.

A simple heuristic that overcomes this drawback is one where we choose the action based on the set
Tj 2 R with the lowest value of dlo(q;Tj). In particular, we choose action 1 if d(q; p j) has not been com-
puted, where p j is the pivot that corresponds to Tj , and action 2 otherwise. Letting ok be the kth nearest
neighbor, consider a node n that is visited by the GNAT range query algorithm using ε = d(q;ok). The
range query algorithm avoids computing the distances of pivots p j whenever dlo(q;Tj)> d(q;ok) before
p j is picked. The same is true in incremental nearest neighbor search based on the heuristic outlined
above, since d(q; p j) is only computed if dlo(q;Tj)� dlo(q;Ti) for any other pivot pi whose correspond-
ing child has not yet been enqueued — that is, if dlo(q;Tj) > d(q;ok), then d(q;ok) > dlo(q;Ti). Un-
fortunately, incremental nearest neighbor search may visit a child node n0 of n, say that corresponding
to pivot pi, that would not be visited by the range query algorithm, since n0 would only be visited by
the range query algorithm after having computed the distances between q and all pivots in n that cannot
be eliminated. Thus, we cannot quite attain our goal of always achieving the same number of distance
computations as the range query algorithm. However, in practice, the range query algorithm cannot be
used directly for nearest neighbor queries, since the value of d(q;ok) would not be known a priori. For
nearest neighbor search, we cannot expect to complete the pruning of all pivots in a node before visiting
the children, so some heuristic must be used to determine when to visit children.

4.3.3 Other Methods Related to Generalized Hyperplane Partitioning

A structure very similar to the gh-tree, termed the monotonous (sic) bisector tree (abbreviated below as
mb-tree), was proposed by Noltemeier et al. [52] (and used by Bugnion et al. [10]). The intended applica-
tion was to point data using Minkowski metrics (and an extension, the mb*-tree, was defined for complex
objects, such as lines and polygons), but the mb-tree is generally applicable to arbitrary metrics. In the
mb-tree, one of the two pivots in each nonleaf node n, except for the root, is inherited from its parent
node (i.e., of the two pivots in the parent of n, the one that is closer to each object in the subtree rooted
at n). Since this leads to fewer pivot objects, it can be expected to reduce the number of distance compu-
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tations during search (provided the distances of pivot objects are propagated downward during search),
at the possible cost of worse partitioning. Furthermore, the radius of the ball around the pivots (i.e., the
maximum distance to objects in the corresponding subtree) is also stored, which enables more pruning.
The TLAESA method of Micó et al. [47] also uses an mb-tree-like search structure in conjunction with
a distance matrix to provide lower bounds on the distance from q to the pivot objects during search (see
Section 4.6.3 for more details).

The gh-tree and GNAT (as well as the M-tree, described in Section 4.4) can be considered to be spe-
cial cases of a general class of hierarchical clustering methods, as described by Burkhard and Keller [11]
and Fukunaga and Narendra [28]. Using the description given by Burkhard and Keller [11], a set S of
objects is clustered into m subsets S1;S2; : : :;Sm using some criterion. Then a pivot object pi is chosen
for each Si and the radius ri = maxo2Sifd(pi;o)g is computed13. This process is applied recursively to
each Si, possibly with a different number m of clusters each time. Observe that for performing search
(e.g., range search), a lower bound on the distances from a query object q to all objects in Si can be de-
rived based on pi and ri according to Lemma 4, as was done for the vp-tree in Section 4.2.1 (i.e., letting
rlo = 0 and rhi = ri). Besides the above general formulation, Burkhard and Keller also described a spe-
cific method of clustering, where each cluster is a clique, which they define to be a set of objects R such
that the greatest distance between any two objects in R is no more than k14. The clique property was
found to reduce the number of distance computations and allow more pruning during search [11], at the
price of high preprocessing cost (for determining the cliques).

Fukunaga and Narendra [28] outlined a hierarchical clustering approach similar to that of Burkhard
and Keller [11], with the additional property that the distances from a pivot object are stored for all data
objects in the leaf nodes, allowing for greater pruning15. However, some aspects of their process of con-
structing the search structure depend on properties of vector spaces. In particular, Fukunaga and Naren-
dra assume that each pivot is chosen as the centroid of the cluster (i.e., the point obtained by averaging
the coordinate values of the points in the cluster), and the clustering method used in their experiments
assumes vector data (in contrast to just making use of the interobject distance values). Nevertheless, their
nearest neighbor algorithm is valid for general clustering methods (see Section 5.2).

4.4 The M-Tree

The distance-based indexing methods described in Sections 4.2 and 4.3 are either static, unbalanced, or
both. Hence they are unsuitable for dynamic situations involving large amounts of data, where a disk--
based structure is needed. The M-tree [19] is a distance-based indexing method designed to address this
deficiency. Its design goal was to combine a dynamic, balanced index structure similar to the R-tree (see
Section 2.1) with the capabilities of static distance-based indexes.

In the M-tree, as in the R-tree, all the objects being indexed are referenced in the leaf nodes16, while
an entry in a nonleaf node stores a pointer to a node at the next lower level along with summary informa-
tion about the objects in the subtree being pointed at. Recall that in an R-tree, the summary information
consisted of minimum bounding rectangles for all the objects in the subtree. For arbitrary metric spaces,
we cannot explicitly form the “regions” that enclose a set of objects in the same manner. Instead, in the
M-tree, “balls” around pivot objects (termed routing objects in [19]) serve the same role as the minimum
bounding rectangles in the R-tree. Clearly, the pivots in the M-tree have a function similar to that of the

13GNAT [9] maintains more comprehensive distance information in each node.
14If we consider the objects to be nodes in a graph, with edges between objects whose distance is no more than k, a graph-

theoretic clique in this graph corresponds to Burkhard and Keller’s definition of a clique.
15This idea was later adopted and extended in the vpsb-tree and mvp-tree; see Sections 4.2.2 and 4.2.3.
16The objects can either be stored directly in the leaf nodes, or externally to the M-tree, with object IDs stored in the leaf

nodes.
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pivots in GNAT (see Section 4.3). However, unlike GNAT, all objects in S are stored in the leaf nodes of
the M-tree, so an object may be referenced multiple times in the tree (once in a leaf node, and as a pivot
in one or more nonleaf nodes). For an object o in the subtree of a node n, the pivot p of that subtree is
not always the one closest to o among all the pivots in n (i.e., we may have d(p;o)> d(p0;o) for some
other pivot p0 in n). In addition to this summary information, the entries in M-tree nodes also contain
distance values that can aid in pruning during search, as is done in the vpsb-tree (see Section 4.2.2).

More precisely, for a nonleaf node n, the entries are (p;r;D;T), where p is a pivot, r is the corre-
sponding covering radius, D is a distance value (defined below), and T is a reference to a child node of
n. For all objects o in the subtree rooted at T , we have d(p;o)� r. For each non-root node, let parent
object denote its associated pivot, i.e., the pivot in the entry pointing to it in its parent. The distance
value stored in D is the distance d(p; p0) between p and the parent object p0 of n. As we shall see, these
parent distances allow more pruning during search than would otherwise be possible. Similarly, for a
leaf node n, the entries consist of (o;D), where o is a data object and D is the distance between o and
the parent object of n. Clearly, the root has no parent, so D = ∞ for all the entries in the root. Observe
that the covering radius for a nonleaf entry is not necessarily the minimum radius for the objects in the
corresponding subtree (except when the M-tree is bulkloaded [18]).

Being a dynamic structure, the M-tree can be built gradually as new data arrives [19]. The insertion
procedure first “routes” a new data object to a leaf node n, for each nonleaf node on the path, picking a
child node that “best matches” the data object, based on heuristics. For example, a heuristic might first
look for a pivot object whose “ball” includes the data object, and pick the one closest to the data object
if there is more than one such pivot. The insertion into n may cause overflow, causing n to be split and
a new pivot to be selected. Thus, overflow may cascade up to the root, and the tree actually grows in
a bottom-up fashion. Ciaccia et al. [19] considered a number of heuristics for choosing the child node
to route an object into and for splitting overflowing nodes. Bulk-loading strategies [18] have also been
developed for use when an M-tree must be built for an existing set of data objects. An example of root
node partitioning in an M-tree for a set of objects is shown in Figure 16, where we have three pivot
objects, p1, p2, and p3. Notice that the regions of some of the three subtrees overlap. This may give rise
to a situation where an object can be inserted into more than one subtree, such as the object marked o,
which can be inserted into the subtree of either p1 or p3.

p1

p3

p2

o

Figure 16: Possible top-level partitionings of a set of objects (depicted as two-dimensional

points) in an M-tree. Objects that fall into more than one \ball", like o, can go into any

of the corresponding subtrees.
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Traina et al. [64] speed up the M-tree node insertion and node splitting algorithms while also im-
proving the storage utilization. This is achieved, in part, by applying a post-processing step (termed the
Slim-down algorithm) that attempts to reduce the overlap among node regions. They use the term Slim-
tree to describe their method. An empirical study showed that these modifications led to a reduction in
the number of disk accesses [64].

Range queries for query object q and query radius ε can be performed on the M-tree with a straight-
forward depth-first traversal, initiated at the root. Let n be a node that is being visited, and let p0 be its
parent pivot, i.e., p0 is the pivot for the entry in n’s parent that points to n. In order to exploit the parent
distance D stored in the entries of n (i.e., to avoid as much as possible the computation of the distances
from q to the pivots p stored in the entries of n), the value of d(q; p0) must be propagated downward in
the depth-first traversal as n is visited (since the root has no parent, we use d(q; p0) = ∞ when processing
the root, and assume that ∞�∞ evaluates to 0). Assume that n is a nonleaf node. We consider each entry
(p;r;D;T) in turn. There are two cases:

1. If jd(q; p0)�Dj�r> ε, then the subtree pointed at by T need not be traversed and thus the entry is
pruned. This criterion is based on the fact that jd(q; p0)�Dj� r is a lower bound on the distance
of any object in the subtree pointed at by T . Thus, if the lower bound is greater than ε, then no
object in this subtree can be in the range. The lower bound can be established by making use of
Lemmas 3 and 5. Lemma 3 yields a lower bound from q to any of the pivots (e.g., p) in node
n. In this case, p and p0 play the roles of o and p, respectively, in the Lemma which stipulates
that jd(q; p0)� d(p0; p)j = jd(q; p0)�Dj � d(q; p). The upper bound on the distance from q to
any of the pivots (e.g., p) in node n is ∞. The distance from pivot p to any of the objects in the
corresponding subtree T lies between 0 and r. We now apply Lemma 5 to obtain a lower bound
on the distance from q to any object o in the subtree pointed at by T — that is, rlo = 0, rhi = r,
slo = jd(q; p0)�Dj, and shi = ∞ — yielding jd(q; p0)�Dj� r� d(q;o).

2. Otherwise, jd(q; p0)�Dj� r� ε. In this case, we can no longer avoid computing d(q; p). How-
ever, having computed d(q; p), we can still avoid visiting the node pointed at by T if the lower
bound on the distance from q to any object o in T is greater than ε. This is the case if d(q; p)�r> ε
and is a direct result of applying Lemma 4 noting that the distance from p to o lies between 0 and
r.

Leaf nodes are processed in a similar way: For each entry (o;D) in n with parent pivot p0, we first check
if jd(q; p0)�Dj� ε (since we know from Lemma 3 that jd(q; p0)�d(p0;o)j= jd(q; p0)�Dj� d(q;o), so
if ε < jd(q; p0)�Dj � d(q;o), we can immediately discard o without computing its distance), and only
for such entries compute d(q;o) and check whether d(q;o)� ε. Observe that once again we see that the
parent distances sometimes allow us to prune node entries from the search based on the query radius ε,
without computing the actual distances of the corresponding objects.

Finding nearest neighbors is more complicated than range search. For k-nearest neighbor search,
Ciaccia et al. [19] propose using the distance of the farthest candidate kth nearest neighbor in place of ε
in the pruning conditions17. This technique is discussed further in Section 5.2, while below we describe
the more general incremental approach where the number of desired neighbors is not known in advance.
In particular, for incremental nearest neighbor search, not knowing the number of desired neighbors in
advance means that the search radius is unbounded and thus the pruning condition used by Ciaccia et
al. [19] is inapplicable. To overcome this dilemma, we introducing two new element types corresponding
to approximate objects and approximate nodes to the search hierarchy. These new element types serve
the same role as bounding rectangles in the case of an R-tree. Thus they provide a simple way to order

17This is a standard approach for extending a nearest neighbor algorithm to a k-nearest neighbor algorithm. For example, it
was adopted by Seidl and Kriegel [60], as described in Section 5.1.
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the subsequent processing of elements of both a leaf and nonleaf node without having to compute the
actual distances of these elements from the query object. As we will see in Section 5.2, this method can
also be applied to obtain a more efficient solution to the k-nearest neighbor problem than the algorithm
of Ciaccia et al. [19].

The search hierarchy for the M-tree is defined in a manner similar to that for the vpsb-tree in Sec-
tion 4.2.2. In particular, we define four types of elements. Type 0 represents objects, type 1 represents
approximate objects, type 2 represents nodes, and type 3 represents approximate nodes. Elements of type
1 and 3 are generated as a result of processing leaf nodes and nonleaf nodes, respectively. In particular,
when processing a leaf (nonleaf) node n (i.e., when it reaches the front of the priority queue as an element
of type 2), an element of type 1 (3) is generated from each of the entries in n. An element of type 0 is
generated as a result of processing an element of type 1, and, similarly, each element of type 2 derives
from an element of type 3. The distance functions for elements of type 1 through 3 are defined as follows:

d1(q;e1) = maxfjd(q; p0)�Dj;0g; (8)

d2(q;e2) = maxfd(q; p)� r;0g; and

d3(q;e3) = maxfjd(q; p0)�Dj� r;0g

where p0 is the parent object and D the corresponding distance for the node entry from which e1 and e3

were generated, and where p and r are the pivot and covering radius for the node corresponding to e2

and e3. Using the same definitions, the upper-bound distance functions for types 1 through 3 are

d̂1(q;e1) = d(q; p0)+D;

d̂2(q;e2) = d(q; p)+ r; and

d̂3(q;e3) = d(q; p0)+D+ r:

To support distance computations for descendants, we must associate certain information with each ele-
ment. In particular, an element of type 1 must include the identity of the corresponding object, an element
of type 2 must include a pointer to the corresponding node n and the distance d(q; p0), where p0 is the
parent object of n, and an element of type 3 must include p, r, and T , where (p;r;D;T) is the nonleaf
node entry that gave rise to it. Note that a depth-first range search on this search hierarchy is equivalent
to the range query algorithm described above.

The correctness of incremental nearest neighbor search with these definitions can be shown by apply-
ing the results in Section 4.1. In particular, for an element e1 and the corresponding object o, d1(q;e1) =
jd(q; p0)�Dj= jd(q; p0)� d(p0;o)j � d(q;o)� d(q; p0)+ d(p0;o) = jd(q; p0)+Dj= d̂1(q;e1) follows
from Lemma 3. For an element e2 and an object o in its subtree, we have d2(q;e2) = maxfd(q; p)�
r;0g � d(q;o) � d(q; p) + r = d̂2(q;e2) from Lemma 4. Finally, for an element e3 and an object o
in the subtree, d3(q;e3) = maxfjd(q; p0)� Dj � r;0g = maxfjd(q; p0)� d(p0; p)j � r;0g � d(q;o) �
d(q; p0)+d(p0; p)+ r = jd(q; p0)+Dj+ r = d̂3(q;e3) follows from the above lemmas and Lemma 5.

Observe that when d1(q;e1) and d3(q;e3) are computed for elements e1 and e3, respectively, the dis-
tance information that they are based on is already available, so no additional computation of actual dis-
tances is necessary. In particular, D is a distance value computed during the construction of the M-tree,
and d(q; p0) was computed earlier in the processing of the query and stored in e2, the node element from
which e1 or e3 is generated (i.e., p0 is the parent object of the node corresponding to e2). Thus, assuming
that incremental nearest neighbor search is terminated after object ok has been reported, any element of
type 1 that still remains on the priority queue represents an object that we were able to prune without
computing its actual distance from q. A similar statement applies to elements of type 3.
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4.5 The SA-Tree

The Voronoi diagram is a widely used method for nearest neighbor search in point data. For each “site”
p, its Voronoi cell identifies the area closer to p than to any other site. Thus, given a query point q,
nearest neighbor search simply involves identifying the Voronoi cell that contains q. Another, somewhat
indirect, way of constructing a search structure for nearest neighbor search based on the Voronoi diagram
is to build a graph termed a Delaunay graph, defined by Navarro [50] to be a graph where each object
is a node and two nodes have an edge between them if their Voronoi cells have a common boundary18.
In other words, the Delaunay graph is simply an explicit representation of neighbor relations that are
implicitly represented in the Voronoi diagram. Search for the nearest neighbor of a query point q then
starts with an arbitrary object, and proceeds to a neighboring object closer to q as long as this is possible.
Once we reach an object o where the objects in its neighbor set N(o) (i.e., the objects connected to o by
an edge) are all farther away from q, we know that o is the nearest neighbor of q. The reason this search
process works on the Delaunay graph of a set of points is that the Delaunay graph has the property that
if q is closer to a point p than to any of the neighbors of p in the Delaunay graph, then p is the object
in S closest to q. The same search process can be used on any graph that satisfies this Voronoi property.
In fact, for an arbitrary metric space (U;d), a Delaunay graph for a set S � U is a minimal graph that
satisfies the Voronoi property (i.e., removing any edge would cause violation of the property). Thus, any
graph that satisfies the Voronoi property must include a Delaunay graph as a subgraph. Note that the
Delaunay graph is not necessarily unique as there can be several such minimal graphs (possibly even
with a different number of edges).

The Voronoi diagram serves as the inspiration for the sa-tree [50], a distance-based indexing method.
In Section 4.3 we defined two other methods, the gh-tree and GNAT, that are also based on Voronoi cell-
like partitioning. However, these structures are based on hierarchical partitioning, where at each level,
the space is partitioned into two or more Voronoi cell-like regions. In contrast, the sa-tree attempts to
approximate the structure of the Delaunay graph; hence its name, which is an abbreviation for Spatial
Approximation Tree. As we saw in Section 4.3.2, Voronoi cells (or, perhaps more accurately, Dirichlet
domains [9]) for objects cannot be constructed explicitly (i.e., their boundaries specified) if only inter-
object distances are available. Moreover, it is possible to show [50] that without more information about
the structure of the underlying space U, the set of interobject distances for a finite metric space (S;d),
S�U, does not uniquely determine the Delaunay graph for S based on d. In other words, two sets S�U
and S0 � U0 with identical interobject distances (i.e., (S;d) and (S0;d0) are isometric), possibly drawn
from different underlying spacesUand U0, may have different Delaunay graphs19. Hence, given only
the interobject distances for a set S, the only way to ensure that the search structure includes all the edges
in the Delaunay graph is to use the complete graph, i.e., the graph containing an edge between all pairs
of nodes. However, such a graph is useless for searching with, as deciding on what edge to traverse from
the initial object requires computing the distances from the query object to all the remaining objects in
S (i.e., it is as expensive, O(N), as brute-force search). The idea behind the sa-tree is to approximate the

18Navarro [50] actually uses the term “Voronoi graph”, but “Delaunay graph” is a more appropriate term as the concept is
closely related to the concept of Delaunay triangulations, except that the edges in the Delaunay graph merely indicate that the
Voronoi regions have a common boundary and do not have an associated geometric shape.

19For example, suppose that U=U0 = fa;b;c;xg, d(a;b) = d(a;c) = d(b;c) = 2 and d0(a;b) = d0(a;c) = d0(b;c) = 2.
Furthermore, assume that d(a;x)= 1, d(b;x)= 2, and d(c;x)= 3 while d0(a;x) = 3, d0(b;x) = 2, and d0(c;x)= 1. If S = S0 =
fa;b;cg, the distance matrices for the two sets are the same. The graph with edges (a;b) and (a;c) (i.e., N(a) = fb;cg and
N(b) = N(c) = fag) satisfies the Voronoi property for (S;d), since the nearest neighbor of any query object drawn fromUcan
be arrived at starting at any object in S by only transitioning to neighbors that are closer to or at the same distance from the query
object. However, this is not the case for (S0;d0), since starting at b with q= x, b’s only neighbor a is farther away from x than b
is, so we cannot transition to the nearest neighbor c of x. Even though the graph with edges (a;b) and (b;c) (i.e., N(b) = fa;cg
and N(a) =N(c)= fbg) does satisfy the Voronoi property for both (S;d) and (S0d0), its existence does not invalidate the above
observations.
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proper Delaunay graph with a tree structure that retains enough edges to be useful for guiding search,
but not so many that an excessive number of distance computations are required when deciding on what
node to visit next.

The sa-tree is defined as follows for a finite metric space (S;d) (see the example below to clarify
some of the questions that may arise). An arbitrary object a is chosen as the root node of the tree (since
each object is associated with exactly one node, we use the terms object and node interchangeably in this
discussion). Next, the smallest possible set of neighbors N(a) is identified, such that x is in N(a) iff for
all y 2 N(a)�fxg, d(x;a)< d(x;y). Intuitively, for a legal neighbor set N(a) (i.e., not necessarily the
smallest such set), each object in N(a) is closer to a than to the other objects in N(a), and all the objects
in SnN(a) are closer to one of the objects in N(a) than to a. The objects in N(a) then become children of
a. The remaining objects in S are associated with the closest child of a (i.e., the closest object in N(a)),
and the subtrees are defined recursively in the same way for each child of a. The distance to the farthest
object in a subtree can also be stored in each node, i.e., for a this is maxb2S d(a;b). Figure 17b shows a
sample sa-tree for the two-dimensional points a–w given in Figure 17a, with a chosen as the root. In this
example, N(a) = fb;c;d;eg. Note that h is not in N(a) as h is closer to b than to a.
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Figure 17: (a) A set of points in a two-dimensional Euclidean space, and (b) its corre-

sponding sa-tree constructed using the algorithm of [50] when a is chosen as the root.

The fact that the neighbor set N(a) is used in its definition (i.e., in a sense, the definition is circular)
makes constructing a minimal set N(a) expensive. In fact, Navarro [50] argues that its construction is
an NP-complete problem. Thus, Navarro [50] resorts to a heuristic for identifying the set of neighbors.
This heuristic considers the objects in Snfag in the order of their distance from a, and adds an object o
to N(a) if o is closer to a than to the existing objects in N(a). In fact, the sa-tree in Figure 17b has been
constructed using his heuristic with a chosen as the root. An example of a situation where the heuristic
would not find the minimal set of neighbors is shown in Figure 18, where approximate distances between
four two-dimensional points a through d are labeled. The minimum neighbor set of a in this case is
N(a) = fdg (and N(d) = fb;cg) whereas use of the heuristic would lead to N(a) = fb;cg (and N(b) =
fdg). Although the heuristic does not necessarily find the minimal neighbor set, it is deterministic in the
sense that for a given set of distance values, the same neighbor set is found (except for possible ties in
distance values). Thus, using the heuristic, the structure of the sa-tree is uniquely determined once the
root has been chosen. However, different choices of the root lead to different tree structures.

Using the sa-tree, it is easy to perform exact match queries (i.e., to search for an object in S) using
the same procedure as in the Delaunay graph as described above. Of course, this is not very useful, as
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Figure 18: An example of four points a, b, c, d where the sa-tree construction algorithm

does not �nd the minimal neighbor set N(a).

the query object is typically not in S in most actual queries. Nearest neighbor and range search can be
performed in the sa-tree for arbitrary query objects q by using the observation in Lemma 6. In particular,
if a is the object corresponding to a root node, let c be some object in fag[N(a). Letting b be an arbitrary
object in N(a) and o be an object in the subtree associated with b (i.e., rooted at b), we know that o is
closer to b than to c (or equidistant, e.g., if c = b). Thus, we can apply Lemma 6 to yield the lower bound
(d(q;b)�d(q;c))=2 on d(q;o)— that is, o is at a distance of at least (d(q;b)�d(q;c))=2 from q. Since
o does not depend on c, we can select c in such a way that the lower bound on d(q;o) is maximized,
which occurs when d(q;c) is as small as possible — that is, c is the object in fag[N(a) that is closest
to q.

When performing range search with query radius ε, we can use the lower bound on the distances
derived above to prune the search. In particular, when at node a, we first find the object c 2 fag[N(a)
such that d(q;c) is minimized. Next, the search traversal visits each child b 2 N(a), except those for
which (d(q;b)� d(q;c))=2 > ε (or, equivalently, d(q;b)> d(q;c)+ 2ε, as used in [50]), since in this
case we know that d(q;o) > ε for any object o in the subtree associated with b. Unlike exact match
search, the above search process may require backtracking and the pursuit of several paths in the tree.
Incidentally, we have identified a slight optimization over the search strategy presented in [50] (which
is equivalent to what we described above). In particular, instead of basing the selection of c on the set
fag[N(a) (i.e., on distances from q), we can use the larger set

S
a02A(a)(fa

0g[N(a0)), where A(a) is the
set of ancestors of a (with the understanding that a is an ancestor of itself). This strategy makes it more
likely that c is close to q (since a larger set is used to select it), thus providing a larger value for the lower
bound (d(q;b)�d(q;c))=2 on d(q;o). Below, we prove the correctness of this approach.

The nearest neighbor search algorithm for the sa-tree proposed in [50] is a variant of the range search
algorithm described above, and is based on a depth-first branch-and-bound strategy. Initially, ε is set to
∞, but is gradually reduced as objects are found at smaller distances to q than ε. The algorithm proceeds
in a depth-first fashion and visits child nodes in order of increasing distance from q so as to increase the
chance of quickly finding the nearest neighbor or at least reducing ε. Unfortunately, such a heuristic often
chooses the wrong subtree to descend.

In order to alleviate these drawbacks, we propose to adapt our incremental nearest neighbor algorithm
from Section 2 (Figure 3) to the sa-tree, thus replacing depth-first traversal of the tree with best-first
traversal. For this, we must define the search hierarchy and the distance functions for each element type
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in the search hierarchy. Naturally, the objects and the nodes of the sa-tree become elements of the search
hierarchy, of types 0 and 1, respectively. Observe that each element of type 1 in the search hierarchy has
one child element of type 0 (i.e., the object corresponding to the sa-tree node) and zero or more child
elements of type 1. The distance function d0 on the object elements is simply the distance function d on
the objects. The distance function d1(q;e1) is defined as

d1(q;e1) = maxf
d(q;b)�d(q;c)

2
;d(q;b)�dmax(b);0g;

where b 2 N(a) is the object that corresponds to e1, c is the object in
S

a02A(a)ffa
0g[N(a0)g that is clos-

est to q, and dmax(b) is the greatest distance from b to an object in its subtree. Notice that here we use
the optimization mentioned above, as well as the information about maximum distances in subtrees. For
the purpose of defining d̂1(q;e1), only the maximum distances in subtrees are applicable, since the infor-
mation about distances of neighbors does not provide an upper bound on distances. In other words, we
obtain

d̂1(q;e1) = d(q;b)+dmax(b):

To permit computing the distances of descendants, an element e1 of type 1 must not only carry a pointer to
the correspondingnode a, but also the distance value d(q;c0), where c0 is the object in A(a)[

S
a02A(a)nfagfN(a0)g

that is closest to q. When processing an element e1 corresponding to the node for object a, we evaluate
d(q;b) for each b2N(a), and then set D to the minimum of these distance values (i.e., minb2N(a)fd(q;b)g)
and of d(q;c0) (as stored in e1). Clearly, D is now equal to d(q;c), where c is the object in

S
a02A(a)ffa

0g[

N(a0)g that is closest to q. Thus, by substituting D for d(q;c) in the formula, we can evaluate d1(q;e01)
for each e01 corresponding to b 2 N(a) with no additional distance computations. In other words, when
processing e1, only jN(a)j distance computations are necessary.

To prove the correctness of our approach, we must show that d1(q;e1)� d0(q;e0) for any ancestor
e1 of the element e0 in the search hierarchy (see Section 2.5). Since d1(q;e1) is the maximum of two
quantities, we must show that neither is larger than d0(q;e0). The first step is the following lemma:

Lemma 7 If a is a node in an sa-tree and b0 is an object in the subtree rooted at b, where b 2 N(a), then
b0 is closer to b than to any of its ancestors or their siblings — that is,

d(b0;c)� d(b0;b);8c2
[

a02A(a)

ffa0g[N(a0)g:

Proof We first prove the lemma for c 2 fag[N(a). Assume that d(b0;c)< d(b0;b) for some c 2 fag[
N(a). There are two cases: 1) c = a, and 2) c 2 N(a). The first case, d(b0;a)< d(b0;b), contradicts the
assumption that b0 is a descendant of b. In particular, since d(b0;b)� d(b0;y) for all siblings y of b (or
else b0 would reside in the subtree of y), we have d(b0;a)< d(b0;y) for all y 2 N(a). However, by the
definition of a neighbor set, this implies that b0 should be in N(a). In the second case, d(b0;c)< d(b0;b)
for c 2 N(a), c cannot be equal to b, so it must be a sibling of b. However, this also contradicts the
assumption that b0 is a descendant of b, since b0 should be in the subtree of the sibling that it is closest to
(which it is not, since d(b0;c)< d(b0;b)). Thus in both cases we have a contradiction, and the statement
holds for c 2 fag[N(a).

The above reasoning can now be extended by induction to the general case where c2
S

a02A(a)ffa
0g[

N(a0)g. In particular, we showed above that b0 is closer to b than to a or to the siblings of b (or equidis-
tant). Applying this principle to a and its parent a0 shows that d(b0;c) � d(b0;a), where c = a0 or c 2
N(a0). Thus, since d(b0;a) � d(b0;b), we also have d(b0;c) � d(b0;b) for this case, or more generally,
for c 2 ffa0g[N(a0)g where a0 is a or its parent. It should be clear that this loose induction argument
applies all the way up to the root of the tree, thereby proving the lemma.
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Based on the above lemma and on Lemma 6, we conclude that (d(q;b)� d(q;c))=2� d(q;b0) for
any object b0 in the subtree rooted at b. The other lower bound, d(q;b)�dmax(b)� d(q;b0), follows from
Lemma 4 (as does the upper bound d(q;b0)� d(q;b)+dmax(b)). Thus, we have shown that d1(q;e1)�
d0(q;e0) always holds and, therefore, that the above hierarchy guarantees correctness.

Recall from Section 2.5 that the correctness of the incremental nearest neighbor algorithm implies
that it is optimal with respect to the search hierarchy. In other words, it visits the same search hierar-
chy elements when computing k neighbors as a top-down range query using the distance between q and
the kth neighbor. Since the distance functions we defined on the search hierarchy are equivalent to the
conditions used in the range query algorithm presented in [50], this shows that the incremental nearest
neighbor algorithm achieves the same performance in terms of distance computations (on the data ob-
jects themselves). On the other hand, a depth-first nearest neighbor algorithm such as that proposed by
Navarro [50] depends on a heuristic to bound the search, which cannot guarantee optimality.

4.6 Distance Matrix Methods

4.6.1 AESA

The distance-based index methods that we have considered so far impose a hierarchy on the set of ob-
jects that guides the order of distance computations during query evaluation. AESA (Approximating and
Eliminating Search Algorithm) [67, 68]20 takes another approach. During preprocessing, all O(N2) inter-
object distances are computed for the N objects in S and stored in a matrix. At query time, the distance
matrix is used to provide lower bounds on distances to objects whose distances have not yet been com-
puted, based on object distances already computed. The process is initiated by computing the distance
from the query object to an arbitrary data object, allowing establishing the initial lower-bound distances
of the remaining data objects. The algorithm uses these lower bounds to guide the order in which objects
are chosen to have their distances from the query object q computed and to eliminate objects from consid-
eration (hopefully without computing their actual distances from q). In other words, AESA treats all N
data objects as pivot objects when performing search. Although designed for finding nearest neighbors,
AESA can also be used with almost no modification to perform range searching.

According to experiments presented in [67], nearest neighbors can be obtained with AESA using
remarkably few distance computations. In particular, AESA was observed to require at least an order
of magnitude fewer distance computations than competing methods and was argued to have constant-
time behavior with respect to the size of the data set [67]. These benefits are obtained at the expense
of quadratic space complexity, quadratic time preprocessing cost, and linear time and storage overhead
during search. Thus, although promising, the method is practical only for relatively small data sets, of at
most a few thousand objects. For example, for 10,000 data objects, the distance matrix occupies about
400 MB, assuming 4 bytes per distance value. Nevertheless, if distances are expensive to evaluate and
we can afford the large preprocessing cost, the search performance is hard to beat with other methods.

Of course, one could ask if it is really worthwhile to perform N � (N� 1)=2 distance computations
between the objects, when by using brute force we can always find the nearest object to q using N distance
computations. The payoff occurs when we can be sure that the set of objects is static and that there will be
many queries (more than N, assuming that preprocessing time and query time are of equal importance),
and that most of these queries will be nearest neighbor queries for low numbers of neighbors or range
queries with small query radii (otherwise, AESA will tend to require O(N) distance computations, like
the brute-force approach). The complexity arguments made in favor of AESA must also bear in mind that
the constant-time claim refers to the number of distance computations, while the distance matrix has to

20The difference between [67] and [68] lies in the presentation of the algorithm and in the order in which the objects are
chosen whose distance from the query object is computed — that is, in the “approximating” step (see footnote 23 below).
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be accessed many times for each query (Ω(N) for each nearest neighbor query21), although the distance
computations are usually many orders of magnitude more complex than the operation of accessing the
distance matrix.

The key to AESA [67] is the property described in Lemma 3: for any objects o and p in the data set
S and any query object q 2U, the following inequality holds:

jd(q; p)�d(p;o)j � d(q;o):

Thus, if Sc � S is the set of objects whose distances from q have been computed, the greatest known
lower bound dlo(q;o) on d(q;o) for any object o 2 SnSc is

dlo(q;o) = max
p2Sc

fjd(q; p)�d(p;o)jg (9)

The algorithm uses this lower bound to eliminate objects o in S n Sc whose lower-bound distances are
greater than the distance of the nearest neighbor candidate on, i.e., dlo(q;o)> d(q;on) (for range search
with query radius ε, the elimination criterion is dlo(q;o) > ε)22. Hence, it maintains the set Su � S of
objects whose distances have not been computed and that have not been eliminated based on their lower-
bound distances. At each step of the algorithm, the next object p 2 Su whose distance is to be computed
is chosen as the one whose lower-bound distance dlo(q; p) is smallest (initially, an arbitrary object is
chosen). Next, the algorithm computes d(q; p) (which, we point out, may be very expensive), updates
the nearest neighbor candidate on if necessary (in the case of range searching, we instead add p to the
result set if d(q; p)� ε), and then eliminates objects from Su that cannot be the nearest neighbor (or within
the range for range searching) as described above. The algorithm is terminated once Su becomes empty
— that is, once the greatest known lower-bound distance dlo(q;o) for each object o2 SnSc is greater than
d(q;on) (or ε in the case of range search). Observe that the lower-bound distance, dlo(q;o), for an object
o 2 Su need not be computed from scratch (i.e., for all p 2 Sc) each time the algorithm uses it. Rather,
the algorithm stores the current lower-bound distance for each object o 2 Su, and incrementally updates
dlo(q;o) in each iteration as a new distance value is computed. Storing and maintaining this information
accounts for the linear space and time overhead of the algorithm (besides the quadratic space and time
for constructing and storing the distance matrix).

The rationale for picking the object p to process next based on the smallest lower bound dlo is that,
hopefully, such a choice ensures that p is relatively close to q. As pointed out by Vidal [68], the closer p
is to q, the greater is the tendency for jd(p;o)� d(q; p)j to be large, which means that the lower bound
dlo(q;o) is larger and hence the potential for pruning increases. Of course, other strategies for picking the
next object are also possible23. Some possible strategies include picking the object at random, choosing
the object with the greatest value of dlo(q; p), or even basing the choice on the upper bound dhi(q; p),
described below. Wang and Shasha [70] explored several different choices which are described briefly
in Section 4.6.3.

AESA is easily extended to a k-nearest neighbor algorithm by maintaining a list of the k candidate
nearest neighbors seen so far, and by using the largest distance among the k candidates for the elimi-
nation step. There are a number of ways to implement incremental nearest neighbor search within the

21To see why the number of accesses is at least proportional to N (i.e., Ω(N)), observe that even if the first object picked as
the candidate nearest neighbor turns out to be the actual nearest neighbor, the distances between that object and all the other
objects must be accessed to establish that this is indeed the case.

22If dlo(q;o)> d(q;on) is satisfied, we know that d(q;o)> d(q;on) since dlo(q;o)� d(q;o); similarly, dlo(q;o)> ε means
that d(q;o)> ε.

23 In the original formulation of AESA [67], the selection criterion was actually based on picking the object p 2 Su that
minimizes the value of ∑s2Sc

fjd(q;s)�d(s; p)jg rather than that of dlo(q; p) = maxs2Scfjd(q;s)�d(s; p)jg, which Vidal [68]
later claimed was a better “approximation”. One possible rationale for the claimed improvement is that the former minimizes
the average lower bound while the latter minimizes the maximum of the lower bounds, which yields a tighter lower bound.
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AESA framework. Below, we identify three approaches; most other approaches are variants of these
three. Conceptually, all three algorithms maintain two sets, Sc and Su, of data objects, where S = Sc[Su,
whose distances from the query object have been computed and have not been computed, respectively.
At a given stage in an algorithm, k of the objects in Sc have already been reported as neighbors, while
the unreported object with the smallest distance in Sc is a candidate for being the k+1st neighbor. Each
object o in Su has an associated lower-bound distance, dlo(q;o). If the distance of the k+ 1st candidate
neighbor in Sc is smaller than the minimum lower-bound distance in Su, the k + 1st neighbor has been
identified and can be reported. Otherwise, the algorithm takes some action on some or all of the objects
in Su. The algorithms differ in the way they represent Su, which has implications for the accuracy of the
lower-bound distance dlo(q;o), i.e., the number of objects in Sc that have been used to update dlo(q;o)
using Equation 9. The effect is that the cost of updating lower-bound distances for a given number of
neighbors varies among the algorithms. Note that the algorithms cannot eliminate any of the objects in
Su as is done in AESA, since we do not know how many neighbors will eventually be requested. How-
ever, by eliminating objects from Su in AESA, the cost of future updating of lower-bound distances is
reduced. A similar effect can be achieved for incremental nearest neighbor search by using suitable rep-
resentations of Su.

The simplest incremental nearest neighbor algorithm based on AESA is one that extends the k-nearest
neighbor algorithm in a straightforward manner. The set Su is maintained as a whole, with the lower-
bound distances of the objects in Su based on all the objects in Sc. Following the framework for INN
search laid down in Section 2.2, the search hierarchy consists of objects (type 0, representing unreported
objects in Sc) and sets of objects (type 1, representing Su). The distance function d0 is based on d, as
before, but the distance function d1(q;e1), where e1 represents Su � S, is defined as the smallest lower-
bound distance among the objects in Su, i.e.,

d1(q;e1) = min
o2Su

fdlo(q;o)g:

The correctness criterion (see Section 2.5), d1(q;e1) � d0(q;e0), is clearly satisfied for this scheme,
where e0 represents object o, e1 represents subset Su, and o0 2 Su, since

d1(q;e1) = min
o2Su

fdlo(q;o)g � dlo(q;o
0)� d(q;o0) = d0(q;o):

An upper-bound distance function for elements of type 1 can be derived in the same way:

d̂1(q;e1) = max
o2Su

fdhi(q;o)g;

where dhi(q;o) = minp2Scfd(q; p)+d(p;o)g.
The incremental nearest neighbor algorithm (Figure 3) using this search hierarchy works as follows.

Initially, we insert S on the priority queue, with the lower-bound distances of all o 2 S set to 0. If the
element on the priority queue with the smallest distance value is an object, we report it as the next nearest
neighbor. Otherwise, if it is an element e1 representing the set Su, we choose the object o 2 Su with the
smallest lower-bound distance, dlo(q;o) (ties are broken arbitrarily). Next, we compute d(q;o)and insert
o on the priority queue. Finally, the lower-bound distances of the remaining objects in Su are updated,
and we insert an element e01 representing Su n fog on the priority queue with a key of d1(q;e01) (i.e., the
minimum among the updated lower-bound distances). Thus, the search hierarchy forms a lopsided tree
where each nonleaf node (representing a set of objects) has two children, one of which is a leaf node
(representing an object).

The search hierarchy for incremental nearest neighbor search that we have described leads to the
same number of distance computations for finding the k nearest neighbors as would the original AESA
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algorithm. The problem is that no “elimination” is performed by the incremental algorithm. In other
words, each time a new distance computation is performed (i.e., when processing the set of objects SnSc,
where Sc is the set of objects whose distances have been computed) we must update the lower bound
distance dlo(q;o) for jSnS0cj objects, where S0c = Sc[fo0g and o0 was the object whose distance was just
computed. In contrast, AESA needs only to update the lower-bound distance for jS n S0c n Sej, where Se

is the set of objects that have been eliminated in previous steps. Hence, the incremental algorithm may
have a much higher overhead.

To achieve more elimination, we can put the burden on the priority queue of the incremental nearest
neighbor algorithm. In particular, instead of lettingelements of type 1 represent sets of objects, we use the
objects themselves, using the lower-bound distance as the distance function d1. The algorithm initially
picks an arbitrary object o, computes the distance d(q;o) and uses it to establish a lower-bound distance
for the remaining objects. The object o is inserted on the priority queue with its actual distance, while
the remaining objects are inserted on the priority queue with their lower-bound distances. Each time a
lower-bound object o is processed by the algorithm, we refine its lower-bound distance dlo(q;o) based on
already computed distances (for objects in Sc) until dlo(q;o)> dt(q;et) for the element et on the priority
queue with the smallest distance (in which case we insert o back on the priority queue with its updated
lower-bound distance), or compute d(q;o) if the distances of all the objects in Sc have been used. The
result is that the search hierarchy has a fan-out of jSj at the root, while the remaining elements of the
search hierarchy have only one child or are leaves.

Since each element of type 1 in the search hierarchy represents a single object, rather than the set
Su = S n Sc, this approach minimizes the overhead in terms of the number of times dlo(q;o) is updated
for each object. In fact, the updating overhead is lower with this approach than with AESA, but the price
that must be paid is that more priority queue operations are performed. A reasonable compromise results
from a blend of the two extreme approaches, where Su is broken up into subsets of different sizes, and
the lower-bound distances of the objects in each subset have been updated different numbers of times
(based on different numbers of elements of Sc). As in the first approach, search hierarchy elements of
type 1 represent sets of objects. However, we allow such elements to have several children; in other
words, we partition the set of objects into several subsets, based on the lower-bound distances of the
objects. As in the second approach, when processing an element representing a set S0u of objects, a new
distance computation is performed only if the distances of all the objects in Sc have already been applied
to update the lower-bound distances of the objects in S0u. If the objects in Sc have not all been applied, we
update the lower-bound distances using all the objects in Sc, or until the minimum lower-bound distance
for the objects in S0u exceeds the distance of the element at the front of the queue (i.e., S0u is no longer
the smallest element on the priority queue). In our implementation, we found that partitioning into two
subsets each time led to the best performance, i.e., the best balance between the cost of updating lower-
bound distances, the cost of priority queue operations, and the cost of managing the subsets. Furthermore,
it turned out to be better to quickly partition into two subsets of random size (as is done in the Quicksort
algorithm) rather than to spend time partitioning the sets into two equal parts.

It is interesting to make an analogy between the search hierarchy resulting from our last approach
and the hierarchical indexing methods described in Section 4.2. The search hierarchy superficially re-
sembles a variant of the vp-tree structure, where the same pivot is used for all partitions at a given level
(as in the fixed-queries tree that we briefly discussed in Section 4.2.4). The crucial difference between the
search hierarchy and such fixed-pivot metric tree structures is that the choice of pivots (i.e., the order in
which the objects are chosen for Sc) and the partition keys in the search hierarchy (i.e., the lower-bound
distances) are highly dependent on the query object q.

Based on our experience, each of the three approaches to INN search outlined above performs well
for the sizes of data sets for which AESA is practical. For a small number of neighbors, the last approach
tends to be superior, with the second being next best and the first being worst, whereas for a large number
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of neighbors (when many distance computations must be performed in any case), the first approach even-
tually becomes best. It must be admitted that the overhead of the algorithms is higher than that of AESA
for computing a given number of neighbors (but the number of distance computations is the same). How-
ever, in situations where the number of neighbors is unknown in advance and distance computations are
expensive, using the INN algorithms is superior to using k-NN AESA, since in the latter case, the num-
ber of neighbors must be guessed at. In particular, the INN algorithms perform the minimum numbers of
distance computations for the number of neighbors that are eventually requested, whereas using a k-NN
algorithm usually results in computing too many neighbors and thus in too many distance computations
(or worse, too few neighbors are computed and the algorithm must be re-applied).

4.6.2 LAESA

Recall that AESA is impractical for all but the smallest data sets due to the large preprocessing and stor-
age costs. LAESA (Linear AESA) [48, 49] alleviates this drawback by choosing a fixed number M of
pivots (termed base prototypes by Micó et al. [48, 49]), whose distances from all other objects are com-
puted. Thus, for N data objects, the distance matrix contains N �M entries rather than O(N2) for AESA
(or more precisely N(N� 1)=2 entries assuming that only the lower triangular portion of the matrix is
stored). An algorithm for choosing the M pivots is presented by Micó et al. [49]. Essentially, this algo-
rithm attempts to choose the pivots such that they are maximally separated, i.e., as far away from each
other as possible (a similar procedure was suggested by Brin [9] for GNAT; see Section 4.3.2).

The LAESA search strategy is very similar to that of AESA, except that some complications arise
from the fact that not all objects in S serve as pivot objects in LAESA (and the distance matrix does not
contain the distances between non-pivot objects). In particular, as before, let Sc � S be the set of objects
whose distances from q have been computed and let Su � S n Sc be the set of objects whose distances
from q have yet to be computed and that have not been eliminated. The distances between the query
object q and the pivot objects in Sc are used to compute a lower bound on the distances of objects in Su

from q, and these lower bounds allow eliminating objects from Su based on the distance from q of the
current candidate nearest neighbor on (or ε in the case of range search). The difference here is that non-
pivot objects in Sc do not help in tightening the lower-bound distances of the objects in Su, as the distance
matrix stores only the distances from the non-pivot objects to the pivot objects and not to the remaining
objects. Thus, Micó et al. [49] suggest treating the pivot objects in Su differently than non-pivot objects
when

1. selecting the next object in Su to have its distance from q computed (since computing the distances
of pivot objects early will help in tightening distance bounds), and

2. eliminating objects from Su (since eliminating pivot objects that may later help in tightening the
distance bounds is undesirable).

A number of possible policies can be established for this purpose. The policies explored by Micó et
al. [49] are simple, and call for

1. selecting a pivot object in Su over any non-pivot object, and

2. eliminating pivot objects from Su only after a certain fraction f of the pivot objects have been
selected into Sc ( f can range from 0 to 100%; note that if f = 100%, pivots are never eliminated
from Su).

As with AESA, several possible strategies can be pursued for INN search within the framework of
LAESA. Since LAESA is practical for much larger data sets than AESA, the first two approaches that
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we presented for AESA are too inefficient. In particular, too much overhead in terms of updating lower-
bound distances results from the approach that maintains Su = S n Sc as a whole and updates the lower-
bound distances for all elements in Su each time the distance of a pivot object is computed. Similarly,
entering each element in Su separately into the priority queue results in excessive priority queue cost
(as the priority queue will initially hold N elements). Thus, we are left with the approach that partitions
Su into subsets of varying sizes. Unfortunately, using this strategy makes it difficult to apply arbitrary
selection policies, since the resulting algorithm processes only one of the existing subsets of Su at a time
(the one containing the element having the minimum lower-bound distance dlo(q;o)). In particular, if
the subset being processed does not contain the object that the selection policy would call for (e.g., the
pivot with the smallest lower bound distance in the policy mentioned above), we must either settle for
an inferior choice of an object whose distance is to be computed next, or we must inspect more than one
subset on the priority queue to find a better choice, potentially at a high cost. To overcome this problem,
we partition Su into the sets Sp

u of pivot objects and Sn
u of non-pivot objects, and represent subsets of each

of these sets on two separate priority queues, Qa and Qb, respectively. Thus, any selection policy that is
devised for LAESA nearest neighbor search can be applied to decide from which priority queue, Qa or
Qb, to take the next element to process. Priority queue Qb is also used for unreported objects in Sc.

Fitting the above strategy into the INN search framework of Section 2.2, the search hierarchy ele-
ments are objects in Sc (type 0), subsets of Sn

u (type 1), and subsets of Sp
u (type 2). As in Section 4.6.1, the

distance d0 is the same as the distance function d for the corresponding objects. The distance functions
d1(q;e1) and d2(q;e2) are defined in terms of the lower-bound distances of the objects in T , the set of
objects corresponding to e1 or e2, i.e., mino2T dlo(q;o). We can imagine that the search hierarchy has
a root, representing the data set S itself, having two child elements of types 1 and 2, respectively. The
two subtrees of the root represent the non-pivot objects and pivots, respectively, and each has a structure
similar to that of the last search hierarchy described in Section 4.6.1. Of course, the INN search strat-
egy described above departs from the framework in that it uses two priority queues, Qa containing only
elements of type 2 and Qb containing elements of types 0 and 1. Usually, the algorithm processes the
element in either priority queue having the smallest distance, but the selection policy may interfere with
this, as described below. As always, processing an element of type 0 involves outputting the correspond-
ing object as the next nearest neighbor. For an element of type 1 or 2, representing a set of objects T , the
action depends on whether all pivots in Sc have already been used to update the lower-bound distances of
the objects in T . If not, we update the lower-bound distances based on all the unused pivots in Sc, or until
the minimum lower-bound distance among the objects in T exceeds the smallest distance of the elements
in either priority queue24. Finally, T is partitioned into several subsets based on lower-bound distance
(e.g., by random bipartitioning, as suggested in Section 4.6.1), and the resulting subsets are inserted into
the proper priority queue. Otherwise, if all the pivots in Sc have already been applied on the objects in
T , the action is somewhat different for elements of type 1 and 2 (i.e., according to whether T is a set of
non-pivot objects or of pivots). For elements of type 1, we compute the distances of the objects in T by
updating lower-bound distances, until the lower-bound distance of the next object is larger than or equal
to the smallest distance of an element in either Qa or Qb. For elements of type 2, we compute the dis-
tance of the pivot in T having the minimum lower-bound distance, update the lower-bound distances of
the remaining objects in T , and partition T as described above.

Let ea and eb be the elements in Qa and Qb, respectively, having the smallest distances. As mentioned
above, we usually process the element having the smaller distance of the two. However, if element eb is
of type 1 (as opposed to type 0) d1(q;ea)� d2(q;eb), and all pivots in Sc have been used to update the
lower-bound distances in the corresponding set, then the choice between processing ea or eb is left to the

24If T is large, we may want to update the lower-bound distances only once, even if the minimum lower-bound distance is
still too low.
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selection policy. For example, using the policy presented in [49], we would always process eb in such a
case.

The incremental nearest neighbor search strategy described above performs the same number of dis-
tance computations for a given number of neighbors as the LAESA nearest neighbor search strategy,
when the same selection policy is used (for deciding between computing the distance of a pivot or a non-
pivot object). In particular, if et is an element of type 1 or 2 that corresponds to T � S, and e0 corresponds
to object o 2 T , then

dt(q;et)� dlo(q;o)� d(q;o) = d0(q;e0);

where dlo(q;o) is any lower-bound distance for o. Thus, the resulting algorithm is correct with respect to
the search hierarchy, as established in Section 2.5, if the selection policy is taken into account. Moreover,
besides the exceptions due to the selection policy, we only compute distances of objects whose lower-
bound distances are lower than the distances of all elements remaining on the two priority queues.

A somewhat simpler INN search strategy is obtained by computing the distances of all pivots in the
initialization phase of the search. In other words, Sc initially contains all the pivots in S, and Su = SnSc

contains only non-pivot objects. Thus, in this case, only one priority queue is needed, and the search hi-
erarchy contains objects in Sc (type 0) and subsets of Su (type 1). The actions performed when processing
elements of type 1 are the same as described above. The disadvantage of such a strategy is that the dis-
tances of all the pivots must be computed, whereas this is not always the case in LAESA, depending on
the selection and pivot elimination policy. However, for some policies [49], the distances of all the piv-
ots must usually be computed. Furthermore, precomputing the distances of all the pivots allows ordering
them by distance. In [67], the author argued that basing lower-bound distances on objects close to the
query object was more effective. Thus, using the pivots in order of distance when updating lower-bound
distances should lead to more effective search.

4.6.3 Other Distance Matrix Methods

Shapiro [62] described a nearest neighbor algorithm (which is also applicable to range searching) that
is closely related to LAESA, which also uses an N �M distance matrix based on M pivot objects. The
order in which the data objects are processed in the search is based on their positions in a list (o1;o2; : : :)
sorted by distance from the first pivot object p1. Thus, the search is initiated at the object whose distance
from p1 is most similar to d(q; p1), where q is the query object — that is, the element at the position j for
which jd(q; p1)�d(p1;o j)j is minimized (this value is a lower bound on d(q;o j), as shown in Lemma 3).
The goal is to eliminate object oi from consideration as soon as possible, thereby hopefully avoiding the
need to compute its distance from q. Therefore, when object oi is processed during the search, we check
whether the pruning condition jd(q; pk)�d(pk;oi)j> d(q;on) is satisfied for each pivot object p1; p2; : : :

in turn until oi can be eliminated; otherwise, we compute d(q;oi) (and possibly update on). The search
continues alternating in the two directions — that is, for i= j+1; j�1; j+2; j�2; : : :, stopping in either
direction when the pruning condition jd(q; p1)�d(p1;oi)j> d(q;on) is satisfied, where on is the current
candidate nearest neighbor25.

Observe that Shapiro’s algorithm is less sophisticated than LAESA in two ways:

1. the order used in the search is based on position in the sorted list ordered by distance from p1, and

2. only the first pivot p1 affects the order in which the data objects are processed.

In contrast, LAESA uses the lower-bound distances as determined by all pivot objects that have been
applied so far to guide the search (i.e., to choose the pivot to use next and to decide when to compute the

25Recall that range search can be performed by basing the pruning condition on ε instead of d(q;on).
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actual distances of data objects). In other words, rather than applying all pivots for each object in turn as
done by Shapiro, LAESA applies each pivot in turn for all objects (the difference can be characterized
roughly in terms of processing the pivot-object distance matrix in row-major or column-major order).

Wang and Shasha [70] described a search method based on distance matrices that is similar to AESA.
However, they allow for the case where only some of the distances have been precomputed, as in LAESA.
In contrast to LAESA, no assumptions are made about the pairs of objects for which the distance is pre-
computed (so that no distinction is made between pivot and non-pivot objects). In other words, we are
given a set of inter-object distances for arbitrary pairs of objects in S. Search is facilitated by the use of
two matrices Dlo and Dhi (called ADM and MIN in [70]), constructed on the basis of the precomputed
distances, where Dlo[i; j]� d(oi;o j)� Dhi[i; j], given some enumeration o1;o2; : : :;oN of the objects in
S26. In other words, all entries in Dlo and Dhi are initialized to zero and ∞, respectively, except that the
entries on their diagonals are set to zero, and if d(oi;o j) has been precomputed, then Dlo[i; j] and Dhi[i; j]
are both set to d(oi;o j).

A dynamic programming algorithm is described by Wang and Shasha [70] that utilizes a generalized
version of the triangle inequality27 to derive values for the entries of Dlo and Dhi whose distance values
are missing, in such a way that they provide as tight a bound as possible, based on the precomputed
distances that are available. In particular, the generalized triangle inequality property was used by Wang
and Shasha to derive rules for updating Dlo[i; j] and Dhi[i; j] based on the values of other entries in Dlo

and Dhi (some of these rules use entries in Dlo to update entries in Dhi, and others do the opposite). At
search time, the matrices Dlo and Dhi are augmented so that the query object q is treated as if it were
object oN+1. In particular, Dlo[i;N+1] and Dhi[i;N+1] are initialized to 0 and ∞, respectively. Observe
that the values of Dlo[i;N+ 1] and Dhi[i;N+ 1] correspond to our definitions of dlo(q;oi) and dhi(q;oi),
respectively, in Section 4.6.1.

The nearest neighbor algorithm presented by Wang and Shasha [70] follows the same general outline
as AESA. Thus any object oi satisfying Dlo[i;N+1]> d(q;on) can be pruned from the search, where on

is the current candidate nearest neighbor. The difference here is that when d(q;ok) is computed for some
candidate object ok, their method attempts to update Dlo[i; j] and Dhi[i; j] (by applying their generalized
triangle inequality property) for all pairs of objects oi;o j 2 S whose actual distances are not available
(i.e., either precomputed or computed during the search), thereby possibly yielding a tighter bound on
d(oi;o j). In contrast, in AESA, only the values of dlo(q;oi) and dhi(q;oi) are updated for all objects
oi 2 S, corresponding to Dlo[i;N+1] and Dhi[i;N+1], respectively.

Since updating the entire matrices Dlo and Dhi can be expensive if done for all pairs at each stage of
the algorithm, Wang and Shasha [70] describe two alternatives, one of which is almost equivalent to the
updating policy used in AESA (the difference is that in AESA, upper-bound distances are not maintained,
whereas such upper bounds can be used to update the values of dlo(q;o) in the same way as is done for
Dlo[N + 1; i] in the method of Wang and Shasha [70]). Wang and Shasha [70] identify four heuristics
for picking the next candidate object during search. The next object oi for which to compute d(q;oi) is
chosen as the object in Su (as defined in Section 4.6.1) having

1. the least lower bound Dlo[i;N+1],

2. the greatest lower bound Dlo[i;N+1],

3. the least upper bound Dhi[i;N+1], or

4. the greatest upper bound Dhi[i;N+1].

26Note that the matrices are symmetric and that their diagonals are zero. Thus, only the lower triangular part of each matrix
is actually maintained.

27For example, based on d(o1;o4) � d(o1;o3)� d(o3;o4) and d(o1;o3) � d(o1;o2)� d(o2;o3) we can conclude that
d(o1;o4)� d(o1;o2)�d(o2;o3)�d(o3;o4).
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According to their experiments, the best choice is the object with the least lower-bound distance esti-
mate (i.e., item 1), which is the same as used in AESA. Thus, essentially the same search hierarchies can
be used to implement incremental nearest neighbor search in this setting as those we outlined in Sec-
tion 4.6.1.

Micó et al. [47] proposed a hybrid distance-based indexing method termed TLAESA that makes use
of both a distance matrix and hierarchical clustering, thereby combining aspects of LAESA [49] (see Sec-
tion 4.6.2) and the mb-tree [52] (see Section 4.3.3). The hierarchical search structure used by TLAESA
applies the same variation on the gh-tree as is used in the mb-tree: two pivots are used in each node for
splitting the subset associated with the node (based on which pivot is closer), where one of the pivots
in each nonroot node is inherited from its parent. The search algorithm proposed by Micó et al. uses a
partial distance matrix as in LAESA, thus introducing a second set of pivots (termed ‘base prototypes’
by Micó et al. [47]). Initially, the algorithm computes the distances between q and all distance matrix
pivots. Next, when traversing the tree structure, TLAESA uses the distance matrix pivots to compute
lower bounds on the distances of the tree pivots from q, rather than computing their actual distances
from q. In other words, if p1; p2; : : :; pM are the distance matrix pivots and p is a tree pivot, a lower
bound dlo(q; p) on d(q; p) is obtained by applying Lemma 4 to all the distance matrix pivots. Therefore,
dlo(q; p)� d(q; p) where

dlo(q; p) = max
i
fjd(q; pi)�d(pi; p)jg:

Now, if r is the ball radius corresponding to the tree pivot p, dlo(q; p)� r is the lower bound on the
distances between q and all the objects in the subtree rooted at the child node corresponding to p (via
Lemma 5, setting rlo = 0, rhi = r, slo = dlo(q; p), and shi = ∞). The actual distances of data objects
(other than distance matrix pivots) are then computed only when reaching leaf nodes of the tree.

Several other variants of AESA and LAESA have been developed (e.g., [57, 69]). For example, Ra-
masubramanian and Paliwal [57] presented a variant of AESA that is tailored to vector spaces, allowing
them to reduce the preprocessing cost and space complexity to O(nN), where n is the dimensionality of
the vector space (thus, there are significant savings compared to O(N2) since n� N). This algorithm
appears to be quite related to LAESA.

Although both AESA and LAESA usually lead to a low number of distance computations when
searching, they do have an overhead of O(N) in terms of computations other than distance. Vilar [69]
presents a technique (termed Reduced Overhead AESA, or ROAESA for short), applicable to both AESA
and LAESA, that reduces this overhead cost by using a heuristic to limit the set of objects whose lower-
bound distances dlo are updated at each step of the algorithm. In particular, rather than updating dlo for
all objects in Su (to use the notation in Section 4.6.1), ROAESA partitions Su into two subsets which are
termed alive (Sa) and not alive (Sd), and only updates the dlo values of the objects in Sa. ROAESA starts
by picking an object o1 whose distance from q is computed, and o1 is entered into Sc. Next, it computes
dlo for all objects in Su = SnSc on the basis of o1, and makes the object oa in Su with the lowest dlo value
alive — that is, initially, Sa = foag and Sd = Snfoag.

In the main loop that constitutes the search, the object in Sa with the smallest dlo value is picked as
the next object whose distance is computed and the dlo values of the objects in Sa are updated. Then, in
an inner loop, the objects in Sd are considered in order of their dlo value (i.e., which was based on the
initial object o1), and made alive (i.e., moved from Sd to Sa) if their dlo value is lower than the minimum
of dn and da, where dn is the distance of the current candidate nearest neighbor and da is the minimum
dlo of an object in Sa (note that da may change in each iteration of the inner loop)28. Note that ROAESA

28Vilar [69] employs a performance improvement technique, in which all of the objects in S are sorted in the preprocessing
step of AESA/LAESA on the basis of their distance from o1. It can be shown that this means that all alive objects lie in con-
secutive locations in the sorted array, so that the next object to become alive will be one of the objects just beyond the region
of alive objects.
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has no effect for range searching as in this case dn is replaced by ε and now Sa is the set of all elements
of Su that have not been eliminated by virtue of their dlo values being greater than ε.

Interestingly, some of the search hierarchies that we devised for AESA and LAESA (see Sections 4.6.1
and 4.6.2) are related to Vilar’s technique, as they also aim at reducing the amount of updating in a some-
what analogous, but more powerful, manner. In particular, in some of the search hierarchies that we pro-
posed, Su is partitioned into any number of subsets rather than just two (i.e., the alive and not alive objects
in ROAESA), where a different number of objects in Sc are used to define dlo for each subset.

5 Comparison to Existing Nearest Neighbor Algorithms

In Sections 3 and 4 we outlined how to perform incremental nearest neighbor search for a database of
complex objects using different representations. k-nearest neighbor algorithms have already been pro-
posed for most of these representations (some of which are limited to k = 1). However, in all cases, the
performance of our incremental nearest neighbor algorithm is at least as good as (and often considerably
better than) these existing methods when determining the same number of neighbors, as measured by
the number of distance computations. This is a direct consequence of Lemma 2 in Section 2.5, since we
designed the search hierarchy for each representation in such a way that the algorithm would be correct
(in the case of a mapping-based approach, the mapping must be contractive). Furthermore, the search hi-
erarchies were constructed so that the number of distance computations (using d) performed by a single
iteration of the loop in Figure 3 is no larger than would be performed by any existing k-nearest neighbor
algorithm in the equivalent situation.

The primary advantage of an incremental nearest neighbor algorithm over a k-nearest neighbor algo-
rithm for the same representation is revealed in circumstances when the number of neighbors desired is
unknown in advance. In that case, when using a k-nearest neighbor algorithm, we must guess the value
of k. If k is too small, the algorithm must be reapplied with a larger value; if k is too large, the algorithm
wastes effort computing neighbors that are not needed. In either case, wasted effort results. Moreover,
even when the number of neighbors is known in advance, with an incremental algorithm we can show the
user the first few neighbors before all k neighbors have been found, whereas with a k-nearest neighbor
algorithm, we must wait until completion of the search. This is important for interactive query interfaces
when the distance function d is very expensive to compute. For example, in [41], it was reported that it
took an average of almost 13 seconds to compute the morphological distance function.

The price that must be paid for the advantages of the incremental algorithm is that the overhead of
the algorithm may be higher than that of non-incremental algorithms for the same representation. For
the most part, the additional overhead is due to priority queue operations. However, with an efficient
priority queue implementation, the cost of manipulating the priority queue should not be a very signifi-
cant factor in the execution cost of the algorithm, since computing distances using the distance function
d is generally much more expensive than priority queue operations. This is especially true if parts of the
representation reside on disk and must be accessed at query time (e.g., if we use an R-tree in the case of
a mapping-based approach or an M-tree in the case of distance-based indexing). Furthermore, the ad-
ditional overhead is often offset (completely or partially) by better pruning achieved by the incremental
algorithm, and by not needing to maintain data structures in the corresponding k-nearest neighbor algo-
rithm that are replaced by the priority queue.

Several algorithms proposed for nearest neighbor search in the spatial domain apply a best-first search
strategy, like the incremental nearest neighbor algorithms proposed by us [35, 36] and Henrich [32]. An
early k-nearest neighbor algorithm is known as Elias’s algorithm (e.g., [58]) which partitions the data
based on a grid and then proceeds to search the grid cell containing the query point q and its immediate
neighboring grid cells in the order of their distance from q. Lower bounds on the distance from a grid
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cell to q are used to eliminate most of the grid cells from consideration once a candidate set of k nearest
neighbors has been found. A version of this algorithm was proposed for the VA-file [72] which deals
with high-dimensional data. Another early algorithm due to Friedman, Baskett, and Shustek [26] is an
example of a mapping-based approach which employs dimensionality reduction. It sorts the data on the
basis of just one coordinate (i.e., feature) f , and then processes the objects in the order of their f -distance
from q until k objects have been found. The fact that the mapping is contractive enables this method to
eliminate objects from consideration once a set of k candidates has been found. The approximate nearest
neighbor algorithm of Arya et al. [2] also applies best-first traversal.

In this section, we briefly describe several nearest neighbor and k-nearest neighbor algorithms that
have been proposed for similarity search, and compare them with our incremental nearest neighbor al-
gorithm (Section 2) as used with the search hierarchies described in Sections 3 and 4. In particular, Sec-
tion 5.1 reviews existing nearest neighbor algorithms for the mapping-based approach while Section 5.2
reviews existing nearest neighbor algorithms for distance-based indexes.

5.1 Existing Nearest Neighbor Algorithms for the Mapping-Based Approach

Two filter-and-refine k-nearest neighbor algorithms have been proposed for the mapping-based approach.
Both require that the mapping F be contractive (see Section 3.2) for the results to be correct, i.e., that
δ(F(o1);F(o2))� d(o1;o2) for all o1;o2 2 S.

The algorithm due to Korn et al. [41] first performs a k-nearest neighbor query on the spatial index
that represents F(S), using F(q) as a query object and distance function δ (see Section 3.2), resulting in a
set R00 of k candidate nearest neighbors of q. Next, the algorithm computes the actual distances (based on
d) of all the objects in R00 and determines the distance of the object farthest from q, ε=maxo2R00fd(q;o)g.
A range query is then performed on F(S) with a query radius of ε, resulting in a candidate set R0. Finally,
the set R of the k nearest neighbors of q is determined by computing the distances of all objects in R0 and
retaining the k objects that are closest to q.

The correctness of this algorithm can be shown as follows. By the contractiveness of F and the def-
inition of ε, we know that δ(F(q);F(o))� d(q;o)� ε for all o� R00. Thus, since R0 is the set of all o in
S for which δ(F(q);F(o))� ε, we have R00 � R0. Therefore, since R00 contains k objects, R0 contains at
least k objects, and thus the k nearest neighbors of q must be in R0. The drawback of the algorithm is that
ε may overestimate the distance of the kth nearest neighbor of q by a considerable margin, as shown by
Seidl and Kriegel [60], so R0 may be significantly larger than necessary. Furthermore, the fact that two
queries are issued to the spatial index that represents F(S) (i.e., the k-nearest neighbor query yielding R00

and the range query yielding R0) means that some duplication of effort is inevitable.
Seidl and Kriegel [60] proposed an improved algorithm that is partially based on incremental near-

est neighbor search. In particular, the algorithm performs an incremental nearest neighbor query on the
spatial index storing F(S), using F(q) as the query object and a distance measure δ (see Section 3.2).
As the algorithm obtains the neighbors one by one, it computes the actual distance of each object us-
ing d, and inserts the objects into a list L of the candidate nearest neighbors of q (termed the candidate
list). If this insertion causes L to contain more than k objects, the object farthest from q (based on d)
is discarded. Clearly, if all the objects in S were inserted into the candidate list L in this way, L would
eventually contain the actual k nearest neighbors. However, since the mapped objects are obtained from
the incremental nearest neighbor query in order of the values of δ(F(q);F(o)), the algorithm can usually
be terminated long before inserting all the objects into L. In particular, once δ(F(q);F(o))> Dk for the
object o just obtained from the incremental nearest neighbor query, where Dk is the distance of the cur-
rent kth candidate nearest neighbor, contractiveness of F guarantees that d(q;o0)� δ(F(q);F(o0))> Dk

for all objects o0 that have not yet been retrieved. Thus, when this condition arises, the candidate list L
contains the actual k nearest neighbors of q and the search can be halted.
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Our incremental nearest neighbor algorithm, described in Section 3.3, is clearly closely related to
the k-nearest neighbor algorithm of Seidl and Kriegel. However, our algorithm takes the incremental
approach a step further by integrating the candidate list L into the priority queue used by the incremental
nearest neighbor algorithm for the spatial index. In other words, when our algorithmencounters an object
o (i.e., when F(o) reaches the front of the priority queue), instead of inserting o into a separate candidate
list, o is inserted into the priority queue, using the actual distance d(q;o) as a key. In this way, we ob-
tain an overall incremental process, whereas the algorithm of Seidl and Kriegel is a k-nearest neighbor
algorithm, requiring the number of desired neighbors to be known in advance.

For obtaining any fixed number k of neighbors (using our algorithm, the process is simply termi-
nated once k objects have been output), the two algorithms have very similar performance characteristics.
In particular, let ok be the kth nearest neighbor of q. Both our incremental algorithm and the k-nearest
neighbor algorithm compute the distances only for objects o such that δ(F(q);F(o))� d(q;ok). How-
ever, our algorithm has a slight edge in that it sometimes performs fewer spatial index node accesses
and δ distance computations than Seidl and Kriegel’s k-nearest neighbor algorithm. To see this, observe
that Seidl and Kriegel’s algorithm terminates only after retrieving the first mapped object F(ot) such
that δ(F(q);F(ot)) > d(q;ok). Therefore, that algorithm must access spatial index nodes at a distance
from F(q) of up to δ(F(q);F(ot)) � d(q;ok). In contrast, our integrated incremental nearest neighbor
algorithm only accesses nodes with distances from F(q) of up to d(q;ok) (since ok is the last element
obtained from the priority queue). Observe that using Seidl and Kriegel’s algorithm results in accessing
more nodes only if the next non-object element after ok to be retrieved from the priority queue in our
incremental algorithm represents a node in the spatial index. This is a relatively rare situation, so the
two algorithms will usually access exactly the same number of nodes.

5.2 Existing Nearest Neighbor Algorithms for Distance-Based Indexes

Most existing k-nearest neighbor algorithms for distance-based indexes use a depth-first branch and
bound strategy (e.g., [34]). A few algorithms employ best-first search, much like our incremental near-
est neighbor algorithm, but the full power of best-first search is not always exploited. We have shown
that the search hierarchies that we proposed for distance matrix methods in Section 4.6 compute exactly
the same numbers of distances to find the same numbers of neighbors as k-nearest neighbor algorithms
(which can be viewed as applying a depth-first branch and bound strategy without any backtracking)29.

Fukunaga and Narendra [28] presented one of the earliest nearest neighbor algorithms for distance-
based indexes. Actually, as mentioned in Section 4.3.3, the search structure that they use is partly specific
to vector data, but their search algorithm is generally applicable to any index based on hierarchical clus-
tering. In fact, they make some of the same observations that we made in Section 4.1, albeit in a some-
what different form. A generalized version of Fukunaga and Narendra’s algorithm for an arbitrary search
hierarchy, as defined in Section 2.2, is as follows. The elements in the hierarchy are visited in a depth-
first traversal, starting at the root, while maintaining a list L of the current candidate k nearest neighbors.
Let Dk be shorthand for the distance between q and the farthest object in L (i.e., Dk = maxo2Lfd(q;o)g),
or ∞ if L contains fewer than k objects. Observe that Dk is monotonically non-increasing over the course
of the search traversal, and eventually reaches the distance of the kth nearest neighbor of q. If the element
et being visited represents an object o (i.e., t = 0), then o is inserted into L, causing the removal of the
object in L farthest from q if this causes L to contain k+ 1 objects (of course, the object removed may

29In order to see this, consider AESA [67] as described in Section 4.6.1, and represent its execution logic by a binary tree. In
particular, the first pivot that is picked becomes the root of the tree, while all objects eliminated from the search are associated
with the left subtree, and the rest of the objects are associated with the right subtree. Recursively applying the same procedure
to the set associated with the right subtree yields a binary tree. In essence, using AESA is analogous to performing a depth-first
search on this tree, with no backtracking, as one of the subtrees at each node always corresponds to eliminated objects.
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be o itself). When visiting an element et , t � 1, we construct an active list A(et) of child elements of et ,
ordered by distance from q as determined by the appropriate distance function d0t for each child element
et0 of type t 0. Next, the elements in A(et) are visited recursively in order, until all have been visited or
until reaching an element et0 2 A(et) such that dt0(q;et0) > Dk

30, at which time the traversal backtracks
to the parent of et , or terminates if et is the root. Observe that L gets updated in the recursive visits to the
children of et as objects are encountered.

Variants of this general depth-first k-nearest neighbor algorithmhave been presented for the vp-tree [74,
17], the sa-tree [50], and a number of other structures. However, such depth-first algorithms may achieve
much less pruning of the search space and thereby perform substantially worse, as measured by the num-
ber of visited search hierarchy elements, than algorithms that apply best-first search on the same search
hierarchy, as is done by our incremental algorithm. To see why, note that a depth-first algorithm must
make local decisions about visiting elements, choosing among the children of a single element (the ele-
ments in A(et) that have not yet been visited) based on the current value of Dk. In contrast, a best-first
algorithm makes global decisions about what elements to visit. The global list maintained by the best-
first algorithm essentially corresponds to the union of the unvisited portions of the active lists A(et) in the
depth-first algorithm for all elements et on the path from the root to the currently visited element. Thus,
while the best-first approach visits an element et only if dt(q;et) � d(q;ok) where ok is the kth nearest
neighbor (since the elements are visited in order of distance; see Section 2.5), the depth-first approach
may visit an element et0 with dt0(q;et0) > d(q;ok), since Dk may be much larger than d(q;ok) for much
of the duration of the search, especially early on. Notice that these observations are also true for variants
of the depth-first algorithms that attempt to improve performance by introducing aggressive pruning (ef-
fectively by reducing Dk), such as was described for the vp-tree by Chiueh [17]31. While such strategies
can narrow the performance gap relative to a best-first algorithm, they cannot visit any fewer elements in
the search hierarchy than a best-first algorithm without risking missing some of the k nearest neighbors
of q. In fact, when such an aggressive algorithm detects that too much pruning has taken place (which
may well be a common occurrence), the search hierarchy must be traversed again, this time with less
aggressive pruning. Hence, the average performance gain of aggressive pruning may be modest.

Ciaccia et al. [19] proposed a k-nearest neighbor algorithmfor the M-tree that applies best-first traver-
sal, and thus is somewhat similar to our incremental nearest neighbor algorithm as presented in Figure 3.
We might think that it could be transformed into an incremental algorithm without any significant al-
gorithmic changes, but this is not the case, because the algorithm has a certain depth-first-like aspect
to it in the way it locally prunes a candidate list, and thus does not take full advantage of the best-first
traversal. In particular, the k-nearest neighbor algorithm of Ciaccia et al. uses the priority queue (which
serves to guide the search) only for the nodes in the M-tree. In contrast, the search hierarchy for incre-
mental nearest search in the M-tree that we proposed in Section 4.4 consists of four types of elements,
all of which are handled by the priority queue. Besides node elements, there are object elements, as well
as two other types that provide approximate distances of nodes and objects. Instead of placing the ob-
jects on the priority queue, the k-nearest neighbor algorithm of Ciaccia et al. places them on a list L of
the k candidate nearest neighbors of q, as is done in the depth-first algorithms described above. Thus
the condition for terminating the search in their algorithm is d2(q;e2) � Dk,32 where e2 represents the

30This stopping condition ensures that all objects at the distance of the kth nearest neighbor are reported. If only k objects
are to be reported, then the halting condition should be dt 0(q;et 0)�Dk .

31Chiueh [17] suggested using an estimate of the lower bound of the nearest neighbor in each subtree to bound the search
in that subtree, thus yielding an algorithm that performs “bounded” nearest neighbor search of each subtree (in the reported
experiments, a simpler strategy was employed that made use of an estimate of the smallest lower bound over all nodes). Of
course, if the lower bound estimate is too low, it may be necessary to reapply the algorithm with a higher estimate.

32This condition means that the algorithm will report exactly k neighobrs regardless of how many objects are at the same
distance from q as the kth nearest neighbor. If it is desired to report all of the objects that are at the same distance from q as the
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node that was most recently retrieved from the priority queue, d2 is as defined in Equation 8, and Dk is
the distance of the farthest object from q in L (or ∞ if jLj< k). This is analogous to placing the objects
on the priority queue and terminating the search once the kth object has been retrieved from the priority
queue (the primary difference is that in the candidate list approach, at most k objects are remembered at
any given time, whereas the priority queue can contain any number of objects in our approach). How-
ever, the algorithm of Ciaccia et al. also uses Dk to locally prune entries as it processes nodes obtained
from the priority queue. This local pruning takes the place of the approximate node and object elements
used in our approach, as mentioned above. In particular, using our notation and the distance functions in
Equation 8, when processing a node n, an entry is pruned if d1(q;e1)� Dk or d3(q;e3)� Dk, depending
on whether n is a leaf or a nonleaf node, respectively. As we saw above in the case of the depth-first
branch and bound algorithms, such local pruning inevitably leads to more distance computations than a
comprehensive best-first solution like ours, since Dk may converge slowly to its final value (i.e., d(q;ok)
where ok is the kth nearest neighbor of q).

As an example of how use of the algorithm of Ciaccia et al. results in more distance computations
than our incremental algorithm, suppose that Dk = 6 for the current candidate kth nearest neighbor. More-
over, suppose that we are currently processing a leaf node n with two objects a and b, and that the “parent”
object of n is p. Therefore, we know d(q; p) (since it was computed when n was inserted into the pri-
ority queue), and we know d(p;a) and d(p;b) (since they are stored in the entries of M-tree node n).
Furthermore, we know that jd(q; p)� d(p;a)j and jd(q; p)� d(p;b)j are lower bounds on d(q;a) and
d(q;b), respectively. Let us assume that jd(q; p)�d(p;a)j= 5, jd(q; p)�d(p;b)j= 3, d(q;a) = 7, and
d(q;b) = 4. We first examine the execution of our incremental algorithm. It inserts the “approximate”
versions of a and b in the priority queue, and uses the lower bound distance values 5 and 3, respectively.
Assume that the next element that is removed from the priority queue is the “approximate” b, which
would lead to computing d(q;b) and inserting b on the priority queue. Next, the algorithm removes b
from the queue, which is the next neighbor. If the search is now terminated, then the computation of
d(q;a) has been avoided.

To see why our incremental algorithm is better in this example, we point out that at the time the leaf
node n was processed, the algorithm of Ciaccia et al. would compute both d(q;a) and d(q;b), since their
lower bounds are both smaller than Dk = 6. In essence, Ciaccia et al.’s use of the lower-bound distances
is local (as they are used to make an immediate decision about whether to compute the actual distance),
whereas our incremental nearest neighbor algorithm makes a global use of them (by putting them on the
priority queue, and only computing the actual distance once they are removed from the queue). In other
words, our incremental algorithm defers the computation of the distances via the use of the approximate
objects and nodes. Nevertheless, both our incremental algorithm and the algorithm of Ciaccia et al. ex-
plore the same number of M-tree nodes, as in both algorithms these nodes are only explored once they
reach the head of the priority queue, which happens in the same way in the two algorithms. However,
use of the approximate node for n does result in deferring the computation of d(q; p) and replacing it
by a quantity that involves jd(q; p0)�Dj which has already been computed before processing n. Thus a
distance computation has also been possibly avoided.

6 Performance Evaluation

In this section, we report some preliminary results from an empirical study of the performance of our
incremental nearest neighbor algorithm when applied to similarity search using both a mapping-based
approach and distance-based indexing. We also compare the performance of the incremental nearest
neighbor algorithm with that of existing k-nearest neighbor algorithms.

kth nearest neighbor, then the condiditon for terminating the search is modified to be d2(q;e2)> Dk.
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6.1 Experimental Environment

In the experiments, we used the R�-tree to test the multistep algorithms of Section 3. The R�-tree imple-
mentation was based on the freely distributed GiST indexing framework [31]. For experiments with the
M-tree, we used the GiST-based implementation that is made available by its inventors [19]. To build
the M-trees used in the experiments, we used their bulk-loading algorithm [20]. The source code was
written in C++ and was built with the GNU C++ compiler with maximum optimization (-O3). We ran
the experiments on a Sun Ultra 1, which is rated at 6.17 SPECint95 and 11.80 SPECfp95. In one of the
graphs, we report execution times of a set of queries, but in the others we report the execution cost in
terms of the number of distance computations or node I/Os.

For the mapping-based approach, we stored the feature vectors (the mapped objects) directly in the
leaf nodes of the R�-tree, while the actual object data were stored in a simple table in an external file
(termed an object table). In the M-tree, we also employed an object table, and stored pointers into this
table in the tree itself (for both routing and data objects). Thus, unlike the experiments reported in [19]
where the data is stored directly in the tree, the M-trees used in our experiments had the same maximum
fan-out regardless of dimension. In both cases, we used node sizes of 4K, which led to a maximum fan-
out of about 25 for the R�-tree assuming 10D feature vectors, and about 100 for the M-tree. While it
may sometimes be inefficient to store the objects outside the M-tree, thus usually requiring disk accesses
for distance computations (unless the objects are already in the buffers), this does not affect the number
of distance calculations and node I/Os for queries. However, different values of maximum fan-out can
potentially affect both, as they lead to a different tree structure. Nevertheless, although we do not show
this, we found that reducing the fan-out of the M-tree down to 25 usually did little to reduce the number
of distance calculations for queries, while it increased the number of node I/Os (as would be expected).

We used three types of data in our experiments: color histograms, tumor images, and synthetic data.

� The color histograms were taken from an image database [60], and are of dimensions 64, 112, and
256. The 64D and 256D sets contained about 12000 items while the 112D set contained about
8000. For the mapping-based approach, we used the Karhunen-Loève Transform (KLT) to ex-
tract the 10 most significant coordinates for storage in an R�-tree. As a distance metric, we used
Euclidean distance. The KLT method can be shown to result in feature vectors whose Euclidean
distances lower-bound the Euclidean distances of the original vectors (see Section 3.1.2).

� The tumor image data came from Korn et al. [41]; we used a set of 5000 images for our exper-
iments. As mentioned in Section 3, the morphological distance measure defined in [41] is very
expensive to evaluate. In [41] each distance computation is reported to take about 13 seconds.
Using full compiler optimization, some algorithm optimizations and a faster machine, we got the
time down to an average of about 1/3 of a second. This is still a long time for a large database, and
in particular much longer than a node I/O, so this application represents an interesting extreme
case. The feature vectors (stored in the R�-trees) derived from the images are 11-dimensional and
the distance metric used is L∞.

� The synthetic data sets contained multidimensional points that formed 10 normally-distributed
clusters [19]. They were generated for dimensions ranging from 20 to 100, and contained 10,000
points each. As before, we used the Euclidean distance metric. Again, we extracted the 10 most
significant coordinates to store in the R�-tree for the mapping-based approach.

6.2 Benefit of Incremental Aspect

In this section we show experiments demonstrating the benefit of the incremental nature of our algo-
rithms. As mentioned in Section 1, two important situations where incremental nearest neighbor algo-
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rithms prove useful are 1) to allow quick display of the first results to the user in interactive applications,
and 2) when the number of desired neighbors is unknown in advance, e.g., when processing a complex
query where the “nearest” condition is only one of the conditions. In the first situation, the user may
for example want to view the 10 most similar images. Using a k-nearest neighbor algorithm, we would
have to wait until the entire search has been completed, whereas with an incremental nearest neighbor
algorithm we can quickly display the closest image before the next closest image has been determined.
In the second situation, it is awkward to use a k-nearest neighbor algorithm since we do not know an ap-
propriate k, so we must guess. Too high a guess causes extraneous processing, whereas too low a guess
may force us to re-invoke the algorithm. One way to proceed is to first set k to a low number, say 5, and
then multiply by 2 each time we must re-invoke the algorithm (e.g., if the 6th neighbor is requested).

Figures 19 and 20 show the numbers of distance computations and node I/Os for queries on the 64D
histogram data set using the mapping-based approach. The figures show the cost of finding from 1 to
20 of the nearest neighbors for the multistep incremental nearest neighbor algorithm (using the R�-tree),
and the cost of finding the 10 and 20 nearest neighbors using the multistep k-nearest neighbor algorithm,
as well as the cost of using it when the number of desired neighbors is unknown, using an initial value
of k = 5, and multiplying by 2 each time. Figures 21 and 22 show the same information for the M-
tree algorithms. The figures dramatically show the advantage of using the incremental nearest neighbor
algorithms over the k-nearest neighbor algorithms, especially as regards the number of distance compu-
tations. For the mapping-based approach, the INN algorithm reports the first neighbor using only 17%
of the number of distance computations needed to find the first 10 neighbors using the k-NN algorithm,
and 11% for the first 20.
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If the cost of distance computations is much higher than that of node I/Os, the importance of reducing
the number of distance computations increases. This is the case for the tumor shape data. Figure 23
reports the execution times for queries on a tumor shape database consisting of 5000 images using both
approaches, the mapping based approach using the R�-tree (R) and the M-tree (M). It shows the cost of
finding from 1 to 10 neighbors using the incremental nearest neighbor algorithms and the cost of finding
the 10 nearest neighbors using the k-nearest neighbor algorithms. While this graph does not show as
great an advantage of the incremental approach as some of the previous graphs, the advantage is still
substantial. In both cases, the incremental nearest neighbor algorithm reports the first nearest neighbor
in about 65% of the time it takes to find the 10 nearest neighbors. Interestingly, for this data set, the
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6.3 Comparison of Mapping-based Approach and Distance-Based Indexing

If we compare Figures 19 and 21 we can see that the R�-tree based method performed many fewer dis-
tance computations than the M-tree based method. In the experiment reported in these figures, the num-
ber of dimensions of the mapped objects stored in the R�-tree is 10. An interesting question is what
happens when we vary the number of dimensions of the mapped objects. Clearly, the lower the number
of dimensions, the poorer an approximation of the objects we get in the mapped objects. In Figure 24
we show the results of varying the dimensionality of the mapped objects in the R�-tree for the 112D his-
togram data, for two different numbers of neighbors (1 and 10). We also show, for comparison, the result
for the same queries in the M-tree. As we might have expected, the number of distance computations de-
creases with increasing number of dimensions. At eight dimensions, the R�-tree method is already better
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than the M-tree. For the 64D and 256D histogram data, we found that the cut-off point was four dimen-
sions.

6.4 k-nearest Neighbor Queries

In Section 5.1, we showed that when applied to the mapping-based approach, our incremental nearest
neighbor algorithm performs exactly as many distance computations as the k-nearest neighbor algorithm
of Seidl and Kriegel [60], and sometimes fewer node I/Os, but never more. Similarly, we showed in
Section 5.2 that when applied to the M-tree, our algorithm performs exactly as many node I/Os as the
M-tree k-nearest neighbor algorithm of Ciaccia et al. [19], and usually fewer distance computations, but
never more.
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Figure 25 shows the relative numbers of distance computations performed by the INN and k-NN al-
gorithms for the M-tree when computing 10-NN queries on the three histogram datasets and on the tumor
shape dataset. In most cases, the k-NN algorithm performed roughly 15-20% more distance computa-
tions, but for the 112D histogram set, it performed almost 85% more. The number of node I/Os performed
by the multistep INN algorithm is usually at most 1-2% less than that of the multistep k-NN algorithm,
so we do not show a graph for that case.

Figures 26 and 27 show the numbers of distance computations and node I/Os for 10-NN queries on
synthetic data sets of 10000 vectors of dimension 20 through 100. In the figures, we show the results
of the INN and k-NN algorithms together when they are identical or very similar. The performance of
both approaches does not appear to depend much on the dimensionality of the data. This is perhaps not
surprising given that the data sets are constructed with the same parameters (i.e., using 10 clusters of
vectors and the same distribution around each cluster). However, the number of distance computations
for the mapping-based approach is significantly lower for 20 and 30 dimensions. This is because in this
case, the 10 dimensional feature vectors stored in the R�-tree evidently retain more of the information
than for higher dimensions, thus effecting better filtering.

7 Concluding Remarks

We have introduced a general framework for performing incremental nearest neighbor search, and have
applied it to two classes of similarity search methods, mapping-based approaches and distance-based
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indexes. Similarity search involves finding objects in a data set S�U that are similar to a query object
q 2U, based on some distance measure d. Our algorithm reports the result objects one by one in order
of similarity, with as little effort as possible expended to produce each new result object. The algorithm
was shown to be correct for all the indexing methods that we applied it to, given a suitable definition
of a “search hierarchy” on which the algorithm operates. In the case of incremental nearest neighbor
search, correctness means that the objects are reported in order of increasing (or, more accurately, non-
decreasing) distance from the query object. However, we discussed methods that aim to improve the
performance of the algorithm, by relaxing the correctness criterion, implying that the objects may be
reported somewhat out of order. For many applications, such approximate behavior is acceptable, within
limits, and users are willing to trade off accuracy for speed. In addition to discussing such an approximate
version of the algorithm, we also described how the algorithm can exploit limits (upper and lower) on the
distances of the desired objects and limits on the cardinality of the result, thus incorporating features of
range search and k-nearest neighbor search. Furthermore, we showed how the algorithm can be varied
to produce the objects in order of decreasing distance, so that the farthest neighbor is reported first.

We showed that our incremental nearest neighbor algorithm is optimal with respect to the search
hierarchy that it is applied to, in that as small a portion of the search hierarchy is visited as possible, for
any number of neighbors. In particular, for obtaining k neighbors of a query object q, the portion of the
search hierarchy visited is the same as would be visited by a range query with query object q and radius
equal to the distance of the kth neighbor of q. When applied to similarity search structures, this means in
practice that it performs the fewest possible distance computations (on the objects in S using the distance
measure d), and if the underlying indexing structure is disk-resident, the fewest possible I/O operations.
Of course, this form of optimality does not imply that the algorithm will perform the least amount of
work in some absolute sense; the actual performance depends on the underlying indexing structure and
the definition of the search hierarchy.

During our discussion, we surveyed a number of different mapping methods and distance-based in-
dexing methods. We also discussed existing nearest neighbor and k-nearest neighbor algorithms for these
methods, and showed that, in most cases, these algorithms achieve less pruning of the search hierarchy for
any fixed number of neighbors (but never more, of course). Furthermore, our algorithm has the distinct
advantage of being incremental, which gives it much better performance for distance browsing queries,
wherein we browse through a database based on distance and may terminate the browsing at any time —
that is, the number of desired objects is unknown in advance. An experimental study confirms our rea-
soning, showing considerable improvement over the k-nearest neighbor algorithms in areas where the
incremental nature of the algorithm can be exploited. Another benefit of our algorithm in the setting of
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interactive query interfaces, even in cases where the number of desired neighbors is fixed in advance, is
that the first few neighbors can be reported to the user as soon as the algorithm determines them. Our
experiments also confirmed that the first neighbors often can be determined much sooner than, say, the
20th neighbor. Admittedly, in some cases, the cost of determining only the first neighbor may be very
high. In particular, let C(m) be the cost of determining m neighbors, and let k be the desired number of
neighbors. The benefit of the incremental algorithm depends on the value of C(k)=C(1): if this value is
large, we get the first neighbor much more quickly than the kth neighbor. Unfortunately, the greater the
inherent dimensionality of the data set S, the smaller C(k)=C(1) tends to be.

Our experiments also provide a comparison between the two approaches to similarity search. Under
the parameters that we used, the mapping-based approach always performed fewer distance computa-
tions compared to using the distance-based index, but the mapping-based approach led to more node I/O
operations. This appears to suggest that the mapping-based approach is preferable in situations where
the distance function that measures the similarity of two objects is expensive to compute. Naturally, this
depends on the quality of the filtering that the mapped objects provide during query execution. Never-
theless, we found that a remarkably small number of dimensions for the mapped objects was adequate
for the data sets that we used. In fact, the query execution time when using the mapping-based approach
was never higher than that for distance-based indexing (given a suitable dimensionality of the mapped
object).

An important future task in this area is to develop cost models for our algorithm in various settings.
Such cost models necessarily depend on the particular indexing structure being employed, but some gen-
eral assumptions can possibly be formulated that apply reasonably well to a large class of structures.
There are three important parameters to such a cost model. First, the expected number k of desired neigh-
bors of the query object q. Second, the expected distance r of the kth nearest neighbor of q. Third, the
expected cost C of performing a range query with query radius r. Clearly, the measure C of the cost of the
range query must include the number of distance computations on S, since they are typically expensive,
but for a disk-resident indexing structure, we must also take into account the number of I/O operations.
The relative weight of these two factors clearly depends on the relative cost of distance computations vs.
I/O operations. Some headway has been made in recent years in developing cost models for proximity
queries, e.g., for high-dimensional vector spaces [4] and for M-trees [20]. Based on some simplifying
assumptions, this work focuses on estimating the r parameter based on k and/or the C parameter based on
r. However, the assumptions do not apply to all similarity search methods, so more remains to be done.
In situations where the number of desired neighbors is not precisely known in advance, it will also be
necessary to estimate k. A reasonable approach might be to take a “trailing average” of the number of
requested neighbors in some of the recent queries.

Other future work includes performing more experiments using other mapping methods and distance-
based indexes on more varied data sets. Thus, we would aim at providing an empirical basis for choosing
the appropriate method (e.g., whether to use a mapping-based approach or a distance-based index) for a
given application using our algorithm.
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[4] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A cost model for nearest neighbor search
in high-dimensional data space. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pages 78–86, Tucson, AZ, May 1997.
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