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Abstract

A number of approaches to computing nearest neighbor queries in Euclidean space are presented. This
includes the depth-first and best-first methods as well as a comparison. The best first method is shown to
be capable of being extended to report the neighboring objects in increasing order from the query object so
that the search can be incremental and there is no need to knowthe value ofk in advance. The incremental
algorithm is shown to be modifiable to also work for objects that have spatial extent instead of being re-
stricted to be point objects. The best-first method is also shown to yield thek approximate nearest neighbors
give an error tolerance value.

Keywords: nearest neighbor query, depth-first nearest neighbor query, best-first nearest neighbor query,
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1 Introduction

The nearest neighbor query is a key operation in geographic information systems (GIS), spatial databases. and

location-based services, not to mention other disciplineslike computer vision and machine learning where

it is used for similarity search (e.g., [25]) and is usually discussed in the context of finding thek nearest

neighbors as is also done here. It forms the heart of all queries (e.g., [10, 27]), where a location is given

and one seeks to find the nearest object or objects (e.g., gas station, hotel, restaurant, etc.) that optionally

satisfies another, usually nonspatial, condition (e.g., product type, price, opening hours, etc.). This process is

facilitated by building an index on the data which is usuallybased on a hierarchical clustering. The idea is that

the data objects are partitioned into clusters (termednonobjects) which are aggregated to form other clusters,

with the total aggregation being represented as a tree oftenreferred to as asearch hierarchy. Thek nearest

neighbors are found by applying either a depth-first or a best-first algorithm to the search hierarchy containing

the data. The algorithms are generally applicable to any spatial index based on hierarchical clustering.
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and all its figures copyright 2015 by Hanan Samet. All Rights Reserved.
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The rest of this chapter is organized as follows. Sections 2 and 3) describe the depth-first and best-first

k nearest neighbor methods, respectively, for arbitrary values ofk, while Section 4 compares them. Next,

Section 5 shows how to extend the best-first method to report objects in increasing order of distance from the

query object thereby freeing us from having to know the valueof k in advance, and, more importantly, there is

no need to restart thek nearest neighbor search process whenk increases as we can simply resume/continue

the search for thek+ 1st and additional nearest neighboring objects from where the search last left off.

The context of the discussion is in terms of spatial objects that are points in a Euclidean space. Section 6

shows how to modify the best-first incremental method to dealwith spatial objects that have extent and

whose representation decomposes them with respect to the space that they occupy so that there are multiple

references to them, yet they are only reported once. Section7 follows with a demonstration of how to

modify the best-first method to yield approximate nearest neighbors given an error tolerance value. Section 8

concludes by mentioning other domains where similar algorithms have been applied.

2 Depth-First k Nearest Neighbor Method

The most common strategy for finding thek nearest neighbors is the depth-first method which explores the

elements of the search hierarchy in a depth-first manner (e.g., [11]). Thek nearest neighbors found so far are

kept track of in a setL with the aid of a variableDk that indicates the distance, using a suitably defined distance

functiond (Euclidean in this paper), of the currentkth-nearest object from the query objectq. The depth-first

method visits every element of the search hierarchy. Thebranch and boundvariant of the depth-first method

yields better performance by not visiting every nonobject and its objects when it can be determined that it is

impossible for the nonobject to contain any of thek nearest neighbors ofq [11, 19]). For example, this is true

if we know that for every nonobject elemente of the search hierarchy,d(q,e) ≤ d(q,e0) for every objecte0

in e (known as thecorrectness criterion[16]) and that the relationd(q,e) > Dk is satisfied1. This can indeed

be achieved if we defined(q,e) as the minimum possible distance fromq to any objecte0 in nonobjecte

(referred to as MINDIST in contrast to MAX DIST, the maximum possible distance, which unlike MINDIST

cannot be used for pruning).

Letting A(e) denote the set of nonobject immediate descendantsei of nonobject elemente of the search

hierarchy, using the above definition of distance for nonobject elements (i.e., MINDIST) makes it possible

to obtain even better performance as a result of speeding up the convergence ofDk to its final value by

processing elementsei of A(e) in increasing order ofd(q,ei) (i.e., a MINDIST ordering). In this way, once

an elementei in A(e) is found such thatd(q,ei) > Dk, thend(q,ej) > Dk for all remaining elementsej of

A(e). This means that none of these remaining nonobject descendants ofe need to be processed further, and

the algorithm backtracks to the parent ofe, or terminates ife is the root of the search hierarchy.

1This stopping condition ensures that all objects at the distance of thekth-nearest neighbor are examined. Note that if the size ofL is

limited to k and if two or more objects are at distanceDk, then some of them may not be reported in the set ofq’s k nearest neighbors.
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3 Best-First k Nearest Neighbor Method

An alternative strategy to the depth-first method is the best-first method (e.g., [8, 13, 14, 15]) which explores

the nonobject elements of the search hierarchy in increasing order of their distance fromq (hence the char-

acterization as “best-first”) rather than in a predetermined order, as in the depth-first method. In other words,

at each step of the algorithm, the next nonobject element to be visited is the closest one toq which has yet

to be visited. This is achieved by storing the nonobject elements of the search hierarchy in a priority queue

Queueaccording to this order.Queueis initialized to contain the root of the search hierarchy ata distance of

0 fromq, and as nonobject elements are dequeued, their immediate descendantse that are nonobject elements

are enqueued with their corresponding distances fromq if d(q,e) < Dk, while immediate descendantso that

are objects are inserted intoL if d(q,o) < Dk, whereDk, the distance of the currentkth-nearest neighbor of

q, is initialized to∞. The algorithm repeatedly removes nonobject elements fromQueueuntil it is empty or

until encountering a nonobject element that is farther fromq thanDk, at which time it halts as it has found

thek nearest neighbors, now inL which, as in the depth-first algorithm, keeps track of them with the aid of

variableDk. In order for the algorithm to be correct, the distanced(q,e) of any nonobject elemente from the

query objectq must be less than or equal to the distance fromq to any object ine’s descendants [16]. Again,

as in the depth-first algorithm, this property is satisfied bylettingd(q,e) be MINDIST. The best-first method

finds much use in computer vision where it serves as a key stageof the SIFT algorithm [21].

4 Comparison of the Depth-First and Best-First Algorithms

The drawback of the best-first method is that the priority queue may be rather large as can be seen in the

example space decomposition represented by an R-tree [12] object hierarchy in Figure 1. Using a Euclidean

distance metric, the necessary amount of storage may be as large as the total number of nonobjects (and hence

on the order of the number of objects) if the distance of each of the nonobjects from the query objectq (x in

the figure) is approximately the same. In low dimensions, such an event is relatively rare as its occurrence

requires two seemingly independent events — that is, that all objects lie in an approximate hypersphere

centered at some pointp and that the query objectq be coincident withp. However, in high dimensions,

where most of the data lies on the surface (e.g., [5]) and the curse of dimensionality [6] comes into play, and

in metric spaces with concentrated distance histograms, this situation is less rare. In contrast, the amount of

storage required by the depth-first method is bounded. In particular, it is proportional to the sum ofk and

the maximum depth of the search hierarchy, where, in the worst case, all of the sibling nonobject elements

must be retained for each partially explored nonobject element in the search hierarchy while executing the

depth-first search.

Nevertheless, the advantage of the best-first method over the depth-first method is that it has been shown

to be I/O optimal fork = 1 [4]. This means that the algorithm does not visit more than the minimum number

of nonobject elements—that is, it avoids visiting nonobject elements that will eventually be determined to

be too far fromq due to poor initial estimates ofDk. This is equivalent to stipulating that the algorithm is

range-optimal [16], which means that the cost of finding thek nearest neighbors is the same as that of a range

search with the search radius set to the distance fromq to itskth-nearest neighbor.

3



To appear inEncyclopedia of GIS, S. Shekhar, X. Hui, and X. Zhou, eds.
Springer, Berlin, second edition, 2016.

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA

Figure 1: An example of an R-tree of points with a cluster size of 8, showing a worst case for

the size of the priority queue for nearest neighbor search using the best-first algorithm around

query point x with a Euclidean distance metric.

As we saw above, the implementations of both the depth-first and best-first methods make heavy use of

a lower bound MINDIST corresponding to the minimum distance at which a nearest object can be found vis

a vis the distanceDk to the currentkth-nearest object fromq. It has also been shown [26] that an upper

bound MAX NEARESTDIST corresponding to the maximum possible distance at which a nearest neighbor

is guaranteed to be found can be used to overcome the shortcomings that we pointed out earlier of both

the depth-first (i.e., pruning) and best-first (i.e., size ofthe priority queue)k-nearest neighbor methods for

arbitrary values ofk (i.e., k ≥ 1). MAX NEARESTDIST was first introduced in [20] for the case ofk = 1 for

the purpose of improving the initial estimate ofDk in the depth-first method. It was also proposed in [24]

as an alternative to the MINDIST ordering for the processing of the nonobject immediate descendants of a

nonobject element in the depth-first method but again limited tok = 1. However, for the purpose of ordering,

M INDIST has been shown to be more useful [15, 24]. Thus MAX NEARESTDIST is not used for this purpose.

5 Finding the k Nearest Neighbors in Incremental Order

Some implementations of the best-first nearest neighbor method (e.g., [13, 14, 15, 22]) store both the objects

and the nonobjects in the same priority queue thereby enabling the algorithms that employ this method to

be incremental. This means that now both the objects and nonobjects are visited in increasing order of

their distance fromq, and the objects are also reported in increasing order of their distance fromq. These

implementations are designed for the case thatk is not known in advance, thereby making them inappropriate

for use with the MAX NEARESTDIST upper bound as no nonobject elements can be excluded fromQueue

since they may all be eventually needed shouldk get sufficiently large.

6 Finding k Nearest Neighbors for Non-Point Objects

The incremental implementation of the best-first nearest neighbor method in Section 5 can only handle spatial

indexes where each object is represented just once (e.g., anR-tree). This is fine when the multidimensional

data consists of points. However, in many applications, such as computer graphics, geographic information

systems (GIS), computer vision, and so on, the multidimensional data also has extent (e.g., lines, rectangles,
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regions, surfaces, volumes). In this case, it may not be desirable, or even possible, to represent the objects as

points or by one entity such as a minimum bounding box (as is done in the R-tree), as these entities are not

disjoint thereby complicating certain search queries. Instead, the domain of the data (i.e., the space occupied

by the objects) is decomposed into disjoint blocks containing the objects or disjoint segments of the objects,

and the spatial index is used to facilitate the identification and access of the blocks that are occupied by

the objects as well as to indicate the identity of the objects. Examples of such indexes include the region

quadtree [25], members of the PM and PMR quadtree [17] family, the R+-tree [34], and so on.

The disadvantage of spatial indexes that use disjoint blocks and that segment the objects is the presence of

duplicates in the sense that some objects may be reported several times for queries (e.g., finding all objects in a

rectangular query regionw since the object could have been decomposed into several segments, each of which

overlaps a part ofw). Nevertheless, there has been some work on developing algorithms for spatial queries

that report objects just once, even though they may be duplicated in several blocks or nodes (e.g., [1, 2]).

Therefore, the extension of the incremental implementation of the best-firstknearest neighbor method to

handle these spatial indexes means that we must be able to deal with the possible presence of duplicate

instances of the objects in the search hierarchy. There are two issues here. The first is to avoid inserting into

the priority queue duplicate instances of an object that hasalready been reported. The second is to make sure

to detect all duplicate instances that are currently in the priority queue when reporting the object.

The first issue is resolved by noting that it could occur if we encounter an objecto as a descendant of

an ancestor elementA where the distance ofo from query objectq is smaller than that ofA from q. This

situation, which could arise when using a spatial index based on a disjoint decomposition of the underlying

space, is actually a violation of the correctness criterion(defined in Section 2), which stipulates that, for any

objecte0 in the subtree represented byet , we havedt(q,et)≤ d0(q,e0). Therefore, we modify the correctness

criterion to be “for all objectso∈ S(note that there could be multiple occurrences of particular objects), there

exists at least one elemente0 in the search hierarchy that representso and that satisfiesdt(q,et) ≤ d0(q,e0)

for all ancestorset of e0.” So, onceo has been reported, subsequent encounters of it with a smaller distance

from q than a distance to one of its nonobject ancestor element are ignored by not inserting it into the priority

queue. However, duplicate instances of an object can still be inserted into the priority queue prior to the

object being reported.

The second issue arises when it is possible that there are multiple instances of an objecto in the priority

queue at the same time when reporting the object. This situation is detected by stipulating that the objects

be ordered in the priority queue by their identity so that when the priority queue contains duplicate instances

of two or more objects with the same distance, then all duplicate instances of one of the objects will appear

before all duplicate instances of the remaining objects. This ensures that duplicate instances of two different

objects at the same distance are not obtained from the queue in an interleaved manner. We also stipulate that

nodes must be retrieved from the queue before spatial objects at the same distance. Otherwise, an objecto

may be retrieved from the queue and reported before a nodeA that containso (i.e., A is an ancestor node,

where we note that the presence of duplicate instances of objects means that an object may have more than

one ancestor of a given type) that is at the same distance fromthe query object aso. This means thato was

contained in another nodeB that has already been dequeued by virtue of being an ancestorof o. Without such

a stipulation, we would have the situation where wheno was encountered again in nodeA, there would be no
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way of knowing thato had already been reported on account of being a descendant ofB.

7 Incremental Approximate k Nearest Neighbor Method

In many applications, obtaining exact results is not critical. Therefore, users are willing to trade accuracy for

improved performance by using an approximation error toleranceε. The approximation criterion is that the

distance between the query objectq and the resulting candidate nearest neighboro′ is within a factor of 1+ ε
of the distance to the actual nearest neighboro—that is,d(q,o′) ≤ (1+ ε) ·d(q,o). This is the basis of the

bulk of the results on approximate nearest neighbor search (e.g., [3]).

Both the depth-first and best-firstk-nearest neighbor methods can be adapted to return the approximate

nearest neighbors although it is more common to adapt the best-first methods and this is our focus here. The

reason is that the motivation for loosening the criterion asto what constitutes a nearest neighbor is to speed

up the process, which is more in the spirit of the best-first methods that are inherently designed to cease

processing as soon as the desired number of neighbors is found rather than possibly exploring the entire

search hierarchy, as is the case for the depth-first method. Regardless of whether the approximatek-nearest

neighbor algorithm is an adaptation of the best-first or depth-firstk-nearest neighbor method, it is important to

observe that, as a result, some ofq’s exactk nearest neighbors that are within a factor of 1+ ε of the distance

Dk of q’s approximatekth-nearest neighbor (including the exactkth-nearest neighborok) may be missed (i.e.,

those neighborso whereDk/(1+ ε)≤ d(q,o) < Dk).

A number of approximatek-nearest neighbor algorithms use of a priority queueQueueto support a “best-

first” traversal of the search hierarchy. Most of these algorithms (e.g., [3]) only store the nonobject elements

of the spatial index inQueue(of course, sorted in the order of their distance fromq). In particular, they do

not store the objects (usually points) inQueue. Thus, these algorithms have the same control structure that

we described for the best-first algorithm in Section 3.

These algorithms work by shrinking the distanceD1 (Dk) from q to the nearest (kth-nearest, in which case

thek objects are maintained inL) objecto by a factor of 1+ ε and by only inserting the nonobject elementep

into Queueif the minimum distance fromq to an object inep (i.e., MinDist(q,ep)) is less than this shrunken

distance.D1 (Dk) ando (L) are updated as nonobject leaf elements are removed fromQueue.

The algorithms process the elements inQueuein increasing order of their distance fromq and halt when

the elementt corresponding to nonobject elemente with distance D(t) (i.e., MinDist(q,e)) is removed from

Queue, where D(t) is greater than the shrunken distance as all remaining nonobject elements inQueueare

at the same or greater distance, and thus the objects that they contain are too far away fromq. Of course,

lettingε = 0 means that this method can also be used to find the exactk nearest neighbors, in which case it is

equivalent to the best-firstk nearest neighbor algorithm. In [3] it is shown that the use ofthis algorithm with

a BBD-tree [25] enables finding theε-nearest neighbor in time inversely proportional toε.

The drawback of implementations that make use of the shrinking approach (e.g., [3]) is that they can only

be used to find the approximate nearest neighbor or thek approximate nearest neighbors. In particular, such

implementations cannot obtain the neighbors incrementally (regardless of whether or not they are approxi-

mate) because, once a nearer object than the objecto′ currently deemed to be the nearest has been found or
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once it has been decided not to enqueue a nonobject elementa, we cannot go back and processo′ or a later

when more neighbors are needed.

Hjaltason and Samet [16] observe that instead of shrinking distances (e.g,,Dk) by a factor of 1+ ε, the

distances of the nonobject elementsep (i.e., MinDist(q,ep)) could be expanded by a factor of 1+ ε and used

in all comparisons withDk rather than the shrunken distances. In other words, they suggest multiplying the

key values for all nonobject elements in the priority queueQueueby 1+ ε; that is, for a nonobject element

ep, use(1+ ε) ·MinDist(q,ep) as a key. The advantage of using this simple and equivalent approximation

mechanism is that it enables them to transform an incremental exact nearest neighbor algorithm that uses

it into an incremental approximate nearest neighbor algorithm, wherek need not be known in advance, by

simply always also enqueueing the objects with their true distance, as well as always enqueueing a nonobject

element with its expanded distance.

From a practical point of view, in the incremental approximate nearest neighbor algorithm, enqueueing

a nonobject elementet with a larger distance value (i.e., by a factor of 1+ ε in this case) means that we

delay its processing, thereby allowing objects to be reported “before their time.” In particular, onceet is

finally processed, all of the objectso that we have reported satisfyd(q,o) ≤ (1+ ε) · dt(q,et) (which is

greater thandt(q,et) if ε > 0). Therefore, it could be the case that there exists an object c in et with a

distanced(q,c) ≤ d(q,o), yet o is reported beforec. It should be clear that in this case the algorithm does

not necessarily report the resulting objects in strictly increasing order of their distance fromq. With this

modification, for the objecto′k returned as thekth-nearest neighbor by the algorithm and the actualkth-

nearest neighborok, we haved(q,o′k)≤ (1+ε) ·d(q,ok). The same technique of expanding all distances by a

factor of 1+ ε can also be applied to both the nonincremental best-first andthe depth-firstk-nearest neighbor

algorithms to yield a corresponding approximatek-nearest neighbor algorithm.

8 Concluding Remarks

We have discussed methods for finding nearest neighbors in a Euclidean vector space. They are also ap-

plicable to non-vector data (e.g., [18]) such as data lying in a metric space many of which are surveyed

in [7, 9, 18, 25, 35] but are beyond the scope of this chapter. Similar ideas have also been applied to find

nearest neighbors in spatial networks (e.g., [23, 28, 29, 30, 31, 32, 33]).

Cross-References

Spatial data structures; Indexing; Spatial databases

Further Reading:

1. See [25] for a comprehensive treatment of multidimensional as well as metric data structures and how to

perform nearest neighbor queries.
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2. Seehttp://donar.umiacs.umd.edu/quadtree/index.html for JAVA applets that illustrate the in-

cremental best-first nearest neighbor method for a variety of spatial data structures.
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