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Abstract

A number of approaches to computing nearest neighbor quierieuclidean space are presented. This
includes the depth-first and best-first methods as well asrgpagdson. The best first method is shown to
be capable of being extended to report the neighboring thijeincreasing order from the query object so
that the search can be incremental and there is no need totkeowalue ok in advance. The incremental
algorithm is shown to be modifiable to also work for objectatthave spatial extent instead of being re-
stricted to be point objects. The best-first method is alsastto yield thek approximate nearest neighbors
give an error tolerance value.

Keywords: nearest neighbor query, depth-first nearest neighbor goesy-first nearest neighbor query,
incremental nearest neighbor query, approximate neagé@gtinor query

1 Introduction

The nearest neighbor query is a key operation in geograpfuicnation systems (GIS), spatial databases. and
location-based services, not to mention other discipllikescomputer vision and machine learning where
it is used for similarity search (e.g., [25]) and is usuallgadissed in the context of finding thenearest
neighbors as is also done here. It forms the heart of all ga€#.g., [10, 27]), where a location is given
and one seeks to find the nearest object or objects (e.g.taams hotel, restaurant, etc.) that optionally
satisfies another, usually nonspatial, condition (e.@dpct type, price, opening hours, etc.). This process is
facilitated by building an index on the data which is usubtged on a hierarchical clustering. The idea is that
the data objects are partitioned into clusters (termmtbbjectywhich are aggregated to form other clusters,
with the total aggregation being represented as a tree odferred to as aearch hierarchy Thek nearest
neighbors are found by applying either a depth-first or a-besdtalgorithm to the search hierarchy containing
the data. The algorithms are generally applicable to anjadiadex based on hierarchical clustering.

*This work was supported in part by the National Science Fatiod under Grants 11S-12-19023 and 11S-13-20791. Thiptdra
and all its figures copyright 2015 by Hanan Samet. All Rightsé&ved.
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The rest of this chapter is organized as follows. Sectionsd®23) describe the depth-first and best-first

k nearest neighbor methods, respectively, for arbitraryesbfk, while Section 4 compares them. Next,
Section 5 shows how to extend the best-first method to rejpgetts in increasing order of distance from the
guery object thereby freeing us from having to know the valuein advance, and, more importantly, there is
no need to restart tHenearest neighbor search process wkarcreases as we can simply resume/continue
the search for thé+ 15t and additional nearest neighboring objects from where #zech last left off.
The context of the discussion is in terms of spatial objdtas$ &re points in a Euclidean space. Section 6
shows how to modify the best-first incremental method to déti spatial objects that have extent and
whose representation decomposes them with respect to dice fpat they occupy so that there are multiple
references to them, yet they are only reported once. Seétifmllows with a demonstration of how to
modify the best-first method to yield approximate nearegthi®rs given an error tolerance value. Section 8
concludes by mentioning other domains where similar aligors have been applied.

2 Depth-First k Nearest Neighbor Method

The most common strategy for finding tkeearest neighbors is the depth-first method which expltres t
elements of the search hierarchy in a depth-first manner, (1). Thek nearest neighbors found so far are
kepttrack of in a sdt with the aid of a variabl®y that indicates the distance, using a suitably defined distan
functiond (Euclidean in this paper), of the currekth-nearest object from the query objectThe depth-first
method visits every element of the search hierarchy.Brach and boundariant of the depth-first method
yields better performance by not visiting every nonobjext és objects when it can be determined that it is
impossible for the nonobject to contain any of #wearest neighbors gff11, 19]). For example, this is true
if we know that for every nonobject elemembf the search hierarchg(q,e) < d(q,ep) for every objecky

in e (known as thecorrectness criterioff16]) and that the relatiod(q, €) > Dy is satisfied. This can indeed
be achieved if we defind(qg,e) as the minimum possible distance franto any objectey in nonobjecte
(referred to as MNDIST in contrast to MaxDIST, the maximum possible distance, which unlikeNdD1ST
cannot be used for pruning).

Letting A(e) denote the set of nonobject immediate descendamtsnonobject elemert of the search
hierarchy, using the above definition of distance for noacbglements (i.e., MiDIST) makes it possible
to obtain even better performance as a result of speedingpeigdnvergence dby to its final value by
processing elements of A(e) in increasing order ofi(q,&) (i.e., a MNDIST ordering). In this way, once
an elemeng in A(e) is found such thatl(g,&) > Dy, thend(q,ej) > Dy for all remaining elements; of
A(e). This means that none of these remaining nonobject desctnofee need to be processed further, and
the algorithm backtracks to the parentpbr terminates igis the root of the search hierarchy.

1This stopping condition ensures that all objects at thexdist of thekth-nearest neighbor are examined. Note that if the sizei®f
limited tok and if two or more objects are at distari@g, then some of them may not be reported in the setok nearest neighbors.
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3 Best-First K Nearest Neighbor Method

An alternative strategy to the depth-first method is the-Eesttmethod (e.qg., [8, 13, 14, 15]) which explores
the nonobject elements of the search hierarchy in incrgasiter of their distance from (hence the char-
acterization as “best-first”) rather than in a predetermiimieler, as in the depth-first method. In other words,
at each step of the algorithm, the next nonobject elemeng tadited is the closest one tpwhich has yet

to be visited. This is achieved by storing the nonobject elatsof the search hierarchy in a priority queue
Queueaccording to this ordeQueuseis initialized to contain the root of the search hierarchg dtstance of

0 fromgq, and as nonobject elements are dequeued, theirimmedidentdants that are nonobject elements
are enqueued with their corresponding distances fyaimd(q,e) < Dk, while immediate descendarasghat
are objects are inserted intoif d(g,0) < Dx, whereDy, the distance of the currekth-nearest neighbor of
q, is initialized toe. The algorithm repeatedly removes nonobject elements Qoueuntil it is empty or
until encountering a nonobject element that is farther fpthan Dy, at which time it halts as it has found
thek nearest neighbors, now Inwhich, as in the depth-first algorithm, keeps track of theriwhe aid of
variableDy. In order for the algorithm to be correct, the distad¢g, e) of any nonobject elemestfrom the
guery objecty must be less than or equal to the distance fopim any object ine's descendants [16]. Again,
as in the depth-first algorithm, this property is satisfieddtting d(q,e) be MiNnDIST. The best-first method
finds much use in computer vision where it serves as a key sfabe SIFT algorithm [21].

4 Comparison of the Depth-First and Best-First Algorithms

The drawback of the best-first method is that the prioritywumay be rather large as can be seen in the
example space decomposition represented by an R-treepjeditdierarchy in Figure 1. Using a Euclidean
distance metric, the necessary amount of storage may beyasisithe total number of nonobjects (and hence
on the order of the number of objects) if the distance of ed¢heononobjects from the query objegtx in

the figure) is approximately the same. In low dimensionshsarcevent is relatively rare as its occurrence
requires two seemingly independent events — that is, thaibgécts lie in an approximate hypersphere
centered at some poimt and that the query objectbe coincident withp. However, in high dimensions,
where most of the data lies on the surface (e.g., [5]) anduhgemf dimensionality [6] comes into play, and
in metric spaces with concentrated distance histograrisssituiation is less rare. In contrast, the amount of
storage required by the depth-first method is bounded. Iticpdar, it is proportional to the sum & and

the maximum depth of the search hierarchy, where, in thetwaise, all of the sibling nonobject elements
must be retained for each partially explored nonobject eletrm the search hierarchy while executing the
depth-first search.

Nevertheless, the advantage of the best-first method oeetapth-first method is that it has been shown
to be 1/0O optimal fokk = 1 [4]. This means that the algorithm does not visit more tl@rhinimum number
of nonobject elements—that is, it avoids visiting nonobgements that will eventually be determined to
be too far fromq due to poor initial estimates @y. This is equivalent to stipulating that the algorithm is
range-optimal [16], which means that the cost of findingkthearest neighbors is the same as that of a range
search with the search radius set to the distance €tarits kth-nearest neighbor.
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Figure 1: An example of an R-tree of points with a cluster size of 8, showing a worst case for
the size of the priority queue for nearest neighbor search using the best-first algorithm around
query point x with a Euclidean distance metric.

As we saw above, the implementations of both the depth-firdtieest-first methods make heavy use of
a lower bound MNDIST corresponding to the minimum distance at which a nearestbban be found vis
a vis the distanc®y to the currenkth-nearest object fromy. It has also been shown [26] that an upper
bound MAXNEARESTDIST corresponding to the maximum possible distance at whichaaeise neighbor
is guaranteed to be found can be used to overcome the shamg®ihat we pointed out earlier of both
the depth-first (i.e., pruning) and best-first (i.e., sizahaf priority queuek-nearest neighbor methods for
arbitrary values ok (i.e.,k > 1). MAXNEARESTDIST was first introduced in [20] for the case lof= 1 for
the purpose of improving the initial estimate B in the depth-first method. It was also proposed in [24]
as an alternative to the MDIST ordering for the processing of the nonobject immediate eledants of a
nonobject element in the depth-first method but again lidnitek = 1. However, for the purpose of ordering,
MINDIST has been shown to be more useful [15, 24]. Thus®MEARESTDIST is not used for this purpose.

5 Finding the k Nearest Neighborsin Incremental Order

Some implementations of the best-first nearest neighbdradde.g., [13, 14, 15, 22]) store both the objects
and the nonobijects in the same priority queue thereby enabiie algorithms that employ this method to
be incremental. This means that now both the objects andhjects are visited in increasing order of
their distance frong, and the objects are also reported in increasing order af distance fromg. These
implementations are designed for the caseltigshot known in advance, thereby making them inappropriate
for use with the M\XNEARESTDIST upper bound as no nonobject elements can be excluded@uaue
since they may all be eventually needed shdwudeet sufficiently large.

6 Finding k Nearest Neighbors for Non-Point Objects

The incremental implementation of the best-first nearagti®r method in Section 5 can only handle spatial
indexes where each object is represented just once (e.B-t@ae). This is fine when the multidimensional
data consists of points. However, in many applicationsh sisccomputer graphics, geographic information
systems (GIS), computer vision, and so on, the multidinmraidata also has extent (e.g., lines, rectangles,
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regions, surfaces, volumes). In this case, it may not beatgsi or even possible, to represent the objects as

points or by one entity such as a minimum bounding box (as iedio the R-tree), as these entities are not
disjoint thereby complicating certain search queriestelad, the domain of the data (i.e., the space occupied
by the objects) is decomposed into disjoint blocks contajithe objects or disjoint segments of the objects,
and the spatial index is used to facilitate the identificaémd access of the blocks that are occupied by
the objects as well as to indicate the identity of the obje&samples of such indexes include the region
guadtree [25], members of the PM and PMR quadtree [17] fathi&/R"-tree [34], and so on.

The disadvantage of spatial indexes that use disjoint Blackl that segment the objects is the presence of
duplicates in the sense that some objects may be reportexhtgmnes for queries (e.g., finding all objects in a
rectangular query regiom since the object could have been decomposed into severakseg, each of which
overlaps a part ofv). Nevertheless, there has been some work on developingtalys for spatial queries
that report objects just once, even though they may be datplicin several blocks or nodes (e.g., [1, 2]).
Therefore, the extension of the incremental implementatibthe best-firsknearest neighbor method to
handle these spatial indexes means that we must be able ltevitledahe possible presence of duplicate
instances of the objects in the search hierarchy. Theravaréssues here. The first is to avoid inserting into
the priority queue duplicate instances of an object thatlrasdy been reported. The second is to make sure
to detect all duplicate instances that are currently in tharity queue when reporting the object.

The first issue is resolved by noting that it could occur if vae@unter an objead as a descendant of
an ancestor elemewt where the distance af from query objecty is smaller than that o from g. This
situation, which could arise when using a spatial index asea disjoint decomposition of the underlying
space, is actually a violation of the correctness crite¢defined in Section 2), which stipulates that, for any
objectey in the subtree represented §ywe havedi (g, &) < do(q,ep). Therefore, we modify the correctness
criterion to be “for all object® € S(note that there could be multiple occurrences of partrcoligects), there
exists at least one elemestin the search hierarchy that represemtnd that satisfied: (q, &) < do(q, o)
for all ancestor® of ey.” So, onceo has been reported, subsequent encounters of it with a srdatance
from q than a distance to one of its nonobject ancestor elemengaoedd by not inserting it into the priority
gueue. However, duplicate instances of an object can gtilhberted into the priority queue prior to the
object being reported.

The second issue arises when it is possible that there atglauhstances of an objeotin the priority
gueue at the same time when reporting the object. This situé detected by stipulating that the objects
be ordered in the priority queue by their identity so that wttee priority queue contains duplicate instances
of two or more objects with the same distance, then all dafdiinstances of one of the objects will appear
before all duplicate instances of the remaining objectss €hsures that duplicate instances of two different
objects at the same distance are not obtained from the goneueinterleaved manner. We also stipulate that
nodes must be retrieved from the queue before spatial sbethe same distance. Otherwise, an olject
may be retrieved from the queue and reported before a Adtiat contain® (i.e., A is an ancestor node,
where we note that the presence of duplicate instances e€tshjneans that an object may have more than
one ancestor of a given type) that is at the same distancetfremuery object as. This means that was
contained in another nodithat has already been dequeued by virtue of being an ancéstowithout such
a stipulation, we would have the situation where wbevas encountered again in noélgthere would be no
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way of knowing thab had already been reported on account of being a descend@nt of

7 Incremental Approximate k Nearest Neighbor Method

In many applications, obtaining exact results is not ailtid@herefore, users are willing to trade accuracy for
improved performance by using an approximation error &zlees. The approximation criterion is that the
distance between the query objgeind the resulting candidate nearest neighth@ within a factor of 1-¢

of the distance to the actual nearest neightsetthat is,d(q,0’) < (1+¢€)-d(qg,0). This is the basis of the
bulk of the results on approximate nearest neighbor seargh (3]).

Both the depth-first and best-filstnearest neighbor methods can be adapted to return thexamaite
nearest neighbors although it is more common to adapt thefibganethods and this is our focus here. The
reason is that the motivation for loosening the criteriomoaghat constitutes a nearest neighbor is to speed
up the process, which is more in the spirit of the best-firsthnods that are inherently designed to cease
processing as soon as the desired number of neighbors id fatimer than possibly exploring the entire
search hierarchy, as is the case for the depth-first methedardless of whether the approximkteearest
neighbor algorithm is an adaptation of the best-first or lidjpstk-nearest neighbor method, it is important to
observe that, as a result, somegsfexactk nearest neighbors that are within a factor af 4 of the distance
Dy of g's approximateth-nearest neighbor (including the exatti-nearest neighba,) may be missed (i.e.,
those neighbors whereDy/(1+ €) < d(g,0) < Dy).

A number of approximatk-nearest neighbor algorithms use of a priority qu@ueueto support a “best-
first” traversal of the search hierarchy. Most of these atgors (e.g., [3]) only store the nonobject elements
of the spatial index ifQueue(of course, sorted in the order of their distance frgmIn particular, they do
not store the objects (usually points)@ueue Thus, these algorithms have the same control structute tha
we described for the best-first algorithm in Section 3.

These algorithms work by shrinking the distamze(Dg) from g to the neareskth-nearest, in which case
thek objects are maintained Ir) objecto by a factor of 1+ & and by only inserting the nonobject elemept
into Queuef the minimum distance fromy to an object ire, (i.e., MinDist(q, ep)) is less than this shrunken
distance D1 (Dk) ando (L) are updated as nonobiject leaf elements are removedQ@uaene

The algorithms process the element§ineuen increasing order of their distance fragpand halt when
the element corresponding to nonobject elemenwith distance Bt) (i.e., MinDist(q,e)) is removed from
Queue where Ot) is greater than the shrunken distance as all remaining fectodlements irQueueare
at the same or greater distance, and thus the objects tlyatdnéain are too far away from. Of course,
letting € = 0 means that this method can also be used to find the kxaerest neighbors, in which case it is
equivalent to the best-firktnearest neighbor algorithm. In [3] it is shown that the usthif algorithm with
a BBD-tree [25] enables finding tleenearest neighbor in time inversely proportionatto

The drawback of implementations that make use of the smin&pproach (e.g., [3]) is that they can only
be used to find the approximate nearest neighbor ok #proximate nearest neighbors. In particular, such
implementations cannot obtain the neighbors incremgnfedbardless of whether or not they are approxi-
mate) because, once a nearer object than the offjearrently deemed to be the nearest has been found or
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once it has been decided not to enqueue a nonobject elegeetcannot go back and procesor a later

when more neighbors are needed.

Hjaltason and Samet [16] observe that instead of shrinkisigudces (e.gDx) by a factor of 1+ €, the
distances of the nonobject elemeagg(i.e., MinDist(q, ep)) could be expanded by a factor of-le and used
in all comparisons wittDy rather than the shrunken distances. In other words, theyestignultiplying the
key values for all nonobject elements in the priority qu€uesueby 1+ €; that is, for a nonobject element
ep, use(1+¢)-MinDist(qg,ep) as a key. The advantage of using this simple and equivalgmbzajmnation
mechanism is that it enables them to transform an increrheréet nearest neighbor algorithm that uses
it into an incremental approximate nearest neighbor algari wherek need not be known in advance, by
simply always also enqueueing the objects with their trstadice, as well as always enqueueing a nonobject
element with its expanded distance.

From a practical point of view, in the incremental approxienaearest neighbor algorithm, enqueueing
a nonobject elemerg; with a larger distance value (i.e., by a factor of % in this case) means that we
delay its processing, thereby allowing objects to be regabtbefore their time.” In particular, onag is
finally processed, all of the objectsthat we have reported satistl(q,0) < (1+¢€) - di(g,&) (which is
greater thartk(qg,&) if € > 0). Therefore, it could be the case that there exists an bbjet e with a
distanced(g,c) < d(g,0), yeto is reported before. It should be clear that in this case the algorithm does
not necessarily report the resulting objects in strictigr@asing order of their distance frogn With this
modification, for the objecb; returned as théth-nearest neighbor by the algorithm and the ackad
nearest neighba, we haved(q,0,) < (1+¢)-d(q,0x). The same technique of expanding all distances by a
factor of 1+ € can also be applied to both the nonincremental best-firsttendepth-firsk-nearest neighbor
algorithms to yield a corresponding approximiteearest neighbor algorithm.

8 Concluding Remarks

We have discussed methods for finding nearest neighbors inckdBan vector space. They are also ap-
plicable to non-vector data (e.g., [18]) such as data lymg imetric space many of which are surveyed
in [7, 9, 18, 25, 35] but are beyond the scope of this chaptinil® ideas have also been applied to find
nearest neighbors in spatial networks (e.g., [23, 28, 2933032, 33]).

Cross-References

Spatial data structures; Indexing; Spatial databases

Further Reading:

1. See [25] for a comprehensive treatment of multidimeradias well as metric data structures and how to
perform nearest neighbor queries.
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2. Seehttp://donar.umiacs.umd.edu/quadtree/index.html for JAVA applets that illustrate the in-

cremental best-first nearest neighbor method for a varfedpatial data structures.
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