
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No.8, pp. 783{798, Aug. 1996.

MARCO: MAp Retrieval by COntent

Hanan Samet 1

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Science
University of Maryland at College Park

College Park, Maryland 20742
E-mail: hjs@umiacs.umd.edu

Telephone: (301) 405-1755 Fax: (301) 314-9115

and

Aya So�er 2

Computer Science and Electrical Engineering Department
University of Maryland Baltimore County

5401 Wilkens Avenue
Baltimore, MD 21228-5398 and

Center of Excellence in Space Data and Information Sciences
NASA Goddard Space Flight Center

E-mail: so�er@cs.umbc.edu
Telephone: (301) 286-2439

Abstract

A system named MARCO (denoting MAp Retrieval by COntent) that is used for the acquisition, storage,
indexing, and retrieval of map images is presented. The input to MARCO are raster images of separate map
layers and raster images of map composites. A legend-driven map interpretation system converts map layer
images from their physical representation to their logical representation. This logical representation is then
used to automatically index both the composite and the layer images. Methods for incorporating logical and
physical layer images as well as composite images into the framework of a relational database management
system are described. Indices are constructed on both the contextual and the spatial data thereby enabling
e�cient retrieval of layer and composite images based on contextual as well as spatial speci�cations. Example
queries and query processing strategies using these indices are described. The user interface is demonstrated
via the execution of an example query. Results of an experimental study on a large amount of data are
presented. The system was evaluated in terms of accuracy and in terms of query execution time.

Keywords: Map storage and retrieval, Document storage, Digital libraries, Automated indexing, Retrieval
by content, Map interpretation, Geographic Information Systems (GIS)

1the support of the National Science Foundation under Grant IRI-92-16970 is gratefully acknowledged.
2The support of USRA/CESDIS and NASA Goddard Space Flight Center is gratefully acknowledged.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 1

1 Introduction

The paper map has long been the traditional storage and retrieval medium for geographic data.
Today, we are seeing the emergence of geographic information systems (GIS) as a replacement. One
of the important issues in this �eld is how to integrate existing paper maps into a GIS. In particular,
we would like to store scanned images of paper maps (termed map images) and to be able to retrieve
portions of these maps based on the information that they convey, termed retrieval by content. An
example query is \�nd all map images containing camping sites within 3 miles of �shing sites". We
refer to such a system as a map image information system.

In this paper, we present a system for acquisition, storage, indexing, and retrieval of map images
named MARCO (denoting MAp Retrieval by COntent). MARCO does not attempt to fully convert
paper maps into one of the common GIS data formats (e.g. vector), and then let the GIS handle the
queries and discard the map images. Such a conversion is very time consuming and labor intensive
and is not feasible for a very large collection of maps such as those stored in map libraries [12].
Instead, MARCO's goal is to retrieve map images based on content from a database that contains
a large number of such maps.

The input to MARCO are raster images of separate map layers and raster images of map compos-
ites (the maps that result from composing the separate map layers). We refer to these raster images
as layer images and composite images, respectively. The map composite may be composed of layers
that are input to the system as separate map layers as well as of layers that are not input to the
system as separate map layers. Map layer images are processed with a system named MAGELLAN
(denoting Map Acquisition of GEographic Labels by Legend ANalysis) [27]. The goal of this process
is to extract contextual cues from the map layer that can be used to index the composite images.

MARCO uses the logical representation of a map image that is output by MAGELLAN to
automatically index both the composite and layer images. We describe how to incorporate both
layer and composite images into an existing spatial database. Our emphasis is on extracting and
storing both contextual and spatial information from the layer images. Indices are constructed on
both the contextual and the spatial data thereby enabling e�cient retrieval of layer and composite
images based on contextual as well as spatial speci�cations. Additional meta-data (e.g., how the
maps were formed, scanning resolution, scale, etc) is also stored as attributes in the same relations.
Indices may be constructed on these attributes to provide e�cient access by meta-data. Queries
may be posed to MARCO using either an SQL-like language or a graphical user interface (GUI).
Queries are processed using advanced techniques from the �eld of spatial databases that utilize the
available indices [23]. These include incremental nearest neighbor operators [9], and spatial join
operators [21].

The rest of this paper is organized as follows. Section 2 lays out the background for this problem
and discusses related work. Section 3 gives a short description of MAGELLAN (for a full description
see [27]). Section 4 describes how layer and composite images are stored and indexed in a relational
database management system including schema de�nitions and example relations. Section 5 presents
methods for retrieving map images and some sample queries. Section 6 describes our implementation
of MARCO along with some snapshots of the system performing an example query. Section 7 contains
an experimental evaluation of MARCO in terms of accuracy and in terms of query execution time.
Section 8 contains concluding remarks.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 2

2 Background and Related work

In order to support retrieval by content of map images, the maps should be interpreted to some degree
when they are inserted into the database. This process is referred to as converting a map image from
a physical representation to a logical representation. It is desirable that the logical representation
preserve the spatial information inherent in the map image (i.e., the spatial relationship between the
objects found in the map image). We refer to the information regarding the objects found in a map
image as contextual information, and to the information regarding the spatial relationship between
these objects as spatial information.

The process of converting a map image from its physical to its logical representation is the
subject of the �eld of map interpretation. This subject has been studied both in the context of the
data conversion process in the �eld of GIS research [18], and in the context of document analysis in
computer science research [11]. One of the most common means of performing this conversion is by
use of a digitizing tablet. This is a very time-consuming and expensive process. Optical scanners
have also been put to use for this purpose. The maps are �rst scanned resulting in a raster image
of the map. This raster data is then usually converted into vector format with very heavy user
intervention in order to assure the quality of this conversion [28].

Most research that deals with automating this process has focussed on skeletonization and vec-
torization methods [1, 30, 32]. The goal of these methods is to translate the raster scanned image
of the map into a complete vector description (i.e., a description in terms of primitive geometric
features such as point, lines, and polygons). The problem is that these geometric primitives do not
necessarily correspond to geographic entities of interest to the application on hand. The reason is
that a paper map is really an abstraction. The information found in maps is mainly symbolic rather
than an accurate graphical description of the region covered by the map. For example, the width of
a line representing a road has little to do with the road's actual width. Instead, most often the width
of the road on the map is determined by the nature or type of the road (i.e., highway, freeway, rural
road, etc.). As another example, graphical symbols are often used to indicate the location of various
sites such as hospitals, post o�ces, recreation areas, scenic areas etc. The actual key to interpreting
this symbolic information is usually found on the map itself in the map's legend. In contrast, in
our approach map recognition is driven by the legend. In particular, the user identi�es those sym-
bols in the legend that are relevant for their application, and the acquisition process extracts this
information from the raster scanned maps.

Much attention has been given to the subject of retrieval by content of images in the emerging
�eld of image databases [10]. Most research in this area has concentrated on retrieval of photographs,
where the image is treated as a whole and is indexed based mainly on color and texture. QBIC [15],
Photobook [17], and FINDIT [31] are examples of systems that use such methods. Thus the issue
of spatial information such as the relative position of di�erent components of the image is not
considered in these systems. In contrast, our approach combines indexing on spatial information as
well as permitting retrieval on the basis of contextual (i.e., semantic) information.

Some issues that deal with storing spatial information in a relational database have been dis-
cussed as part of the SEQUOIA 2000 project [29]. However, this work did not address the image
interpretation and contextual indexing aspects involved in map images (rather than just pure spatial
data) into a relational database management system (DBMS).

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 3

3 Map Acquisition and Conversion

Map acquisition and conversion is performed by a system named MAGELLAN (denoting Map Ac-
quisition of GEographic Labels by Legend ANalysis). The output of MAGELLAN is the logical
representation of the layer tiles. These logical layer tiles, along with the physical layer tiles and
composite tiles serve as input to MARCO. We �rst outline the MAGELLAN system, followed by a
detailed description of the symbol classi�cation process.

3.1 MAGELLAN System Description

LIBRARY

VERIFICATION

USER

VERIFY
BY

USER ?

System

Classifications
Generated

MAP IMAGE

DATABASE

MANAGEMENT

SYSTEM

EXTRACTION

FEATURELegend
Tile

SEGMENTATION

AND
PREPROCESSING

MODIFICATION

TILE CONVERSION PHASE

SEGMENTATION

AND
YES

NO

PREPROCESSING

EXTRACTION

FEATURE

CLASSIFICATION

OBJECT Set of:
Logical Map Tile

Classifications
User Verified

Physical Composite Tile

location)
(class, certainty,

Layer
Tile

Legend
Non-

Modified Training Set Library

Current Training
Set Library

Physical Layer Tile

MARCO

LIBRARY

CONSTRUCTION

USER

LABELING

Initial Training Set Library

LEGEND ACQUISITION PHASE

Figure 1: Block diagram of MAGELLAN (Map Acquisition of GEographic Labels by

Legend ANalysis)

Figure 1 is a block diagram of MAGELLAN. Map layers and composites are scanned and divided
into small tiles (i.e., of size 512� 512 pixels). Note that it is possible for a symbol to lie in two tiles.
In order to simplify our presentation, here we assume that this does not occur. If this is a concern,
then an overlap of half the size of the largest symbol is required between tiles. The map layer tiles
are processed one-by-one. Legend tiles are used to create an initial training set library. Non-legend
tiles are converted from a physical to a logical representation. The system has two phases, the
legend acquisition phase and the conversion phase, corresponding to the processing of legend and
non-legend tiles, respectively.

The purpose of the legend acquisition phase is two-fold. The �rst is for the user to indicate which
symbols of the legend are of importance to the application. These symbols are termed valid symbols.
Any other symbols that are found in map tiles but were not pointed out by the user at this stage are
termed invalid symbols. The second purpose of the legend acquisition phase is to construct an initial
training set library that is subsequently used in the map tile conversion phase. This initial training

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 4

set library contains a feature vector corresponding to one instance of each valid symbol along with
its semantic meaning (also termed classi�cation). This is the classi�cation that the classi�er should
assign to each instance of this valid symbol that is subsequently found in a map tile. For example
\�shing site" for a �sh symbol. For invalid symbols, a special classi�cation termed unde�ned is used
(i.e., invalid symbols should be classi�ed as unde�ned by the system). All other classi�cations (i.e.,
those that correspond to valid symbols) are termed valid classi�cations.

Each non-legend tile is processed in the conversion phase. This phase may operate in two
modes. In the user veri�cation mode, the user veri�es the classi�cations before they are input to the
database. The training set library is modi�ed to reect the corrections that the user made for the
erroneous classi�cations. Only feature vectors of symbols that could not be classi�ed correctly using
the current training set library are added to the library. Feature vectors of correct classi�cations are
not added to it. The training set library is stored as an adaptive k-d tree [7, 22]. In the automatic
mode, the classi�cations are generated by the system and input directly to the database. The user
determines the mode in which the system operates. In general, the �rst tiles will be interpreted in
user veri�cation mode. Once the user is satis�ed with the recognition rate achieved, the system is
placed in automatic mode to process the remaining tiles.

Classi�cation is performed using non-parametric statistical pattern recognition [6]. Each physical
layer tile is �rst segmented into its constituent elements using a connected component labeling
algorithm (e.g., [20]). This results in a labeled image in which each pixel has a region number as its
value. For each region in the labeled image, a set of features is computed. These features include
some global (e.g., �rst invariant moment, circularity, eccentricity, rectangularity) and some local
shape descriptors (e.g., intersections, gaps) [13] that we empirically identi�ed as useful features in
discriminating between geographic symbols. The results of the feature computation are composed
into a feature vector. The center of gravity (i.e., centroid) of each region is also computed. The
x and y coordinate values of this location are termed a location vector. The current training set
library is used to assign candidate classi�cations to each feature vector using a weighted bounded

several-nearest neighbor classi�er [4]. A value approximating the certainty of the correctness of
these candidate classi�cations is attached to each classi�ed symbol (see Section 3.2 for more details).
Note that while a symbol may be composed of more than one connected component, we assume
that the symbols may be distinguished from each other by one of these connected components. This
component is identi�ed in the legend acquisition phase, and is subsequently used to classify the
symbol in the classi�cation phase.

The output of the conversion phase is a logical map tile, consisting of the candidate classi�cations
that were made, the certainty of the classi�cations, and the corresponding location of the symbols
found in the physical map tile. Formally, the logical map tile representation of a physical map tile T
is a list of tuples, one for each valid symbol s 2 T . The tuples are of the form: (C; certainty; (x; y))
where C is a valid classi�cation (i.e. 6=unde�ned) , 0 < certainty � 1 indicates the certainty that
s 2 C, and (x; y) is the location of s in T . Using the terminology of spatial databases, the output
is point data where the classi�cations and certainty values are alphanumeric attributes of the point.
For more information about this system, see [26]. The logical map tile, physical layer tiles, and
composite tiles are input to MARCO.

3.2 Symbol Classi�cation

Geographic symbols identi�ed in the map tiles are classi�ed using a modi�cation of the weighted

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 5

WBSNN-classify(feature vector F I, training set library TSL)

1. Find FLN 2 TSL nearest to F I

2. D dist(FLN ,F I)=

qPN

i=1wi(F
LN
i � F I

i)
2

3. 'LI fF
L j FL 2 TSL ^dist(FL; F I) < min(��D; �)g

4. if 'LI = ;
return(unde�ned)

5. else begin

6. for each FL 2 'LI do begin

Vote
FL

1

dist(FL;F I)
end

7. for each Ci s.t. 9F
L 2 'LI ^ class(F

L) = Ci do begin

VotesCi
P

FL2'L
I
^class(FL)=Ci

Vote
FL

8. if VotesCi >MaxVotesC
certainty(I 2 Ci) 0:9999

9. else

certainty(I 2 Ci)
VotesC

i
�MinVotesC

MaxVotes
C
�MinVotes

C
end

end

Figure 2: AlgorithmWBSNN-classify to classify an input symbol I using a weighted

bounded several-nearest neighbor classi�er. Four constants: �, �, MinVotesC ,

MaxVotesC , are used.

several-nearest neighbor classi�er [4] termed a weighted bounded several-nearest neighbor classi�er.
This classi�er makes use of two pre-de�ned constants: �, which is a neighborhood-size factor that
determines the search range for nearest neighbors as a multiple of the distance between an input
feature vector and the nearest feature vector in the training set library, and �, which is a bound
that determines the maximum distance allowed between the feature vector of an input symbol and
its several-nearest neighbors in the training set library. Figure 3.2 summarizes the algorithm for
classifying an input symbol I using this classi�er. This classi�er �rst �nds the feature vector FLN in
the training set library (TSL) that is nearest to the feature vector of the input symbol F I . Letting
D be the weighted Euclidean distance between FLN and F I given by

D = dist(FLN ; F I) =

vuut NX
i=1

wi(F
LN

i
� F I

i
)2:

where FLN

i
is the ith feature of the training set library vector FLN , F I

i
is the ith feature of the feature

vector of the input symbol I , and wi is the weighting factor of the ith feature of the feature vector.
The weighing factor is computed so that features with a smaller variance have a larger weight as
described in [5]. Next, the classi�er �nds the set 'L

I
of all training set library feature vectors FL

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 6

whose distance to F I is less than the smaller of � times D, and �. Formally:

'L
I
= fFL j FL 2 TSL^ dist(FL; F I) < min(��D; �)g:

The range de�ned by min(alpha � D; �) is termed the ��-neighborhood. Each feature vector
FL 2 'L

I
is given a vote, whose strength is inversely proportional to its distance from the feature

vector of the input symbol F I , given by

Vote
FL =

1

dist(FL; F I)
:

The votes of all feature vectors that belong to the same classi�cation Ci are summed giving:

VotesCi
=

X

FL2'
L

I
^class(FL)=Ci

Vote
FL

:

If 'L
I
= ; (i.e., the distance to the nearest neighbor was > �), then the input symbol is classi�ed

as unde�ned. A certainty value between 0 and 1 is computed for each candidate classi�cation Ci

found in the ��-neighborhood of the input feature vector. This value approximates the certainty
that the input vector belongs to Ci. The certainty value is calculated by normalizing the value
of VotesCi

with respect to some minimal and maximal acceptable values of VotesC for any of the
possible candidate classi�cations C. The maximal acceptable vote value is determined by selecting
a minimal required distance dmin, for a \sure" classi�cation (i.e., if dist(FL; F I) < dmin, then F I

will be assigned the training set library classi�cation corresponding to FL with certainty 0.999).
Hence, the maximal value for VotesC is 1=dmin. The minimal acceptable vote value is determined by
selecting a maximal allowed distance dmax for a classi�cation to be considered as a candidate (i.e.,
if dist(FL; F I) > dmax, then the training set library classi�cation corresponding to FL will not be
considered as a candidate classi�cation for F I at all). Hence, the minimal value for VotesC is 1=dmax.
These two constants are denoted as MaxVotesC and MinVotesC , respectively. The motivation for
calculating the certainty values in this manner is that the certainty values must rank the candidate
classi�cations with respect to one another not only in one invocation of the classi�er, but must do so
with respect to the candidate classi�cations of all other invocations of the classi�er, also. Therefore,
some global method of calculating certainty values is required.

The nearest neighbors of the training set library that are within the ��-neighborhood are found
using a modi�cation of the priority k-d tree search algorithm [3]. The classi�cation module outputs
all of the candidate classi�cations along with their certainty. The classi�cation with the highest
certainty value is considered the best classi�cation for the input vector using the weighted bounded
several-nearest neighbor classi�er.

Figure 3 demonstrates the classi�cation process. It uses a sample set of symbol instances in
2-space as the training set library. Let X = (34; 31) be the feature vector (in 2-space) of an input
symbol. Let � = 2, � = 11, and w1 = w2 = 1 (i.e., both features are assigned an equal weight in
the distance computation). The classi�er assigns candidate classi�cations to X as follows. First,
the feature vector FLN in the training set library (TSL) that is nearest to the feature vector of X
(F I) is found. In this case, FLN = (35; 40);D =

p
82 � 9:055. The classi�er next �nds the set

'L
I
of all library feature vectors FL whose distance to F I is less than the smaller of � times D,

and � (i.e., in the ��-neighborhood). In this case, sizeof (��-neighborhood) = min(18:11; 11) = 11.
Thus, 'L

I
= f(35,40),(25,35)g, where (35,40) is an instance of the symbol \arrow" (holiday camp)

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 7

(0,0) (100,0)

(0,100) (100,100)

(5,45)

(20,30)

(45,5)

(60,75)

(98,45)

(80,65)

(95,35)

(85,15)

(70,50)
(50,45)

(25,35)

(10,48)

(90,5)

(34,31)
11

18

24
X

X

Y

(68,7)

(50,10)

(35,40)

Figure 3: Example classi�on of a symbolX (using a sample set of symbols in 2-space

as the training set) with a weighted bounded several-nearest neighbor classi�er. For

� = 2, �1 = 11, �2 = 24, the dotted circle is the ��1-neighborhood, the dashed

circle is the ��2-neighborhood, and the solid circle is the range de�ned by �2.

and (25,35) is an instance of the symbol \triangle" (camping site). Votesarrow = 1=
p
82 � 0:11,

Votestriangle = 1=
p
97 � 0:10. Thus, X will be assigned classi�cation \arrow" with a higher certainty

than classi�cation \triangle". Recall that the certainty value is calculated by normalizing the value
of VotesCi

with respect to some minimal and maximal acceptable values of VotesC for any of the
possible candidate classi�cations C. These values are determined according to dmin and dmax, the
minimal and maximal acceptable values for dist(FL; F I). Thus, to calculate the certainty values for
this example we must assign some values to these parameters. Using dmin and dmax values of

p
8 and

24, respectively, we get MaxVotesC = 1=
p
8 � 0:353 and MinVotesC = 1=24 � 0:042. Therefore,

certainty(X 2 arrow) = 0:218 and certainty(X 2 triangle) = 0:186 since we normalized 0.10 and
0.11, respectively.

However, if we let � = 24, then sizeof (��-neighborhood) = min(18:11; 24) = 18:11. Point
(20,30) which is another instance of \triangle" will now also be included in 'L

I
. Thus, V otesarrow =

1=
p
82 � 0:11, V otestriangle = 1=

p
97+1=

p
197 � 0:17. In this case, X will be assigned classi�cation

\triangle" with a higher certainty than classi�cation \arrow". Using the same dmin and dmax, we
get certainty(X 2 arrow) = 0:218 and certainty(X 2 triangle) = 0:411. Note that in this example
there is really no clear cut classi�cation for the input symbol. Therefore the classi�er outputs two
candidates with relatively low certainty values. The purpose of the certainty values is to rank the
classi�cations on a global scale of 0 { 1. It is not a probability function (i.e., the sum of all certainties
for a given input symbol need not equal 1). In practice, with a large training set, and if the input
symbol clearly falls into a particular classi�cation, most of its neighbors in the ��-neighborhood will
belong to the same classi�cation. Furthermore, the distance between them and the feature vector
of the input symbol will be small. Thus, the certainty value will be higher.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 8

4 Map Image Storage

Map images and other information pertaining to the application are stored in relational tables. The
database system that we use for this purpose is SAND [2] (denoting spatial and non-spatial database)
developed at the University of Maryland. It is a home-grown extension to a relational database where
the tuples may correspond to geometric entities such as points, lines, polygons, etc. having attributes
which may be both of a locational (i.e., spatial) and non-locational nature. Both types of attributes
may be designated as indices of the relation. For indices built on locational attributes, SAND makes
use of suitable spatial data structures. Attributes of type image are used to store physical images.
Query processing and optimization is performed following the same guidelines of relational databases
extended with a suitable cost model for accessing spatial indices and performing spatial operations.

4.1 Schema De�nitions

(create table classes (create table physical_map_images (create table logical_map_images

class CHAR[30], image_id INTEGER, l_image_id INTEGER,

semantics CHAR[50], descriptor CHAR[50], c_image_id INTEGER,

bitmap IMAGE); lower_left POINT, class CHAR[30],

raw IMAGE); certainty FLOAT,

l_location POINT,

c_location POINT);

Figure 4: Schemas for the relations classes, physical map images, and

logical map images.

name semant bitmap

S harbor
 square hotel
 scenic scenic view

R restaurant
P post office

K cafe

waves beach

 triangle camping site

fish fishing site

 air airfield

pi picnic site

Figure 5: Example instance of the classes relation.

The schema de�nitions given in Figure 4 de�ne the relations that are used by MARCO. We use
an SQL-like syntax. The classes relation has one tuple for each classi�cation that was identi�ed in
the legend acquisition phase. The class �eld stores the name of the classi�cation (e.g., star). The
semant �eld stores the semantic meaning of the classi�cation in the map (e.g., site of interest). The
bitmap �eld stores a bitmap of an instance of a symbol representing this class. It is an attribute
of type IMAGE. The classes relation is populated using the same data that is used to create the
initial training set library for the map interpretation system in the legend acquisition phase (i.e.,

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 9

image id descriptor raw lower left

image 1 red sign layer tile 003.012 of Finish road map Figure 7 (6144,7168)

image 2 red sign layer tile 003.013 of Finish road map N/A (6656,7168)

image 4 composite tile 1.13 of Finish road map Figure 8 (3328,4608)

image 5 composite tile 1.14 of Finish road map N/A (3584,4608)

Figure 6: Example instance of the physical map images relation.

Figure 7: Example layer image1. Figure 8: Example composite image4.

one example symbol for each classi�cation found in the legend along with its name and semantic
meaning). See Figure 5 for an example instance of the classes relation.

The physical map images relation has one tuple per map tile T in the database. These include
both layer tiles and composite tiles. The image id �eld is an integer identi�er assigned to the tile T
when it is inserted into the database. The descriptor �eld stores an alphanumeric description of
the tile T that the user gives when inserting T (this is meta-data). The raw �eld stores the actual

l image id c image id class certainty l location c location

image 1 image 4 fish 1 (6411,7043) (3438, 4605)

image 1 image 4 scenic 0.99 (6612,7042) (3572, 4605)

image 1 image 4 square 1 (6422,7011) (3445, 4584)

:

image 1 image 4 cross 0.79 (6291,6850) (3358, 4477)

image 2 image 5 pi 0.99 (6849,6948) (3730, 4542)

image 2 image 5 R 0.71 (6849,6948) (3730, 4542)

:

Figure 9: Example instance of the logical map images relation. The tuples cor-

respond to some of the symbols in the tile of Figure 7.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 10

tile T in its physical representation. It is an attribute of type IMAGE. The lower left �eld stores
an o�set value that locates the lower left corner of map tile T with respect to the lower left corner
of the non-tiled map image M . Subtracting this o�set value from the absolute location of s in the
non-tiled map image M yields the location of s in the map tile T that contains it. It is an attribute
of type POINT. Any additional meta-data that the user may wish to store about the map tiles such
as how they were formed, scanning resolution, scale, etc. can be added as �elds of this relation. See
Figure 6 for an example instance of the physical map images relation corresponding to the layer
tile given in Figure 7 and to the composite tile in Figure 8.

The logical map images relation stores the logical representation of the map tiles. It has
one tuple for each candidate classi�cation output by the map interpretation system for each valid
symbol s in each layer tile LT . Each tuple has six �elds. The l image id �eld is the integer identi�er
assigned to LT when it was inserted into the database. The c image id �eld is the integer identi�er
assigned to the corresponding composite tile CT that contains symbol s. The values of these �elds
are equal to the image id �eld of the tuples representing LT and CT in the physical map images

relation. The class and certainty �elds store the name of the class C to which MAGELLAN
classi�ed s and the certainty that s 2 C. The l location �eld stores the (x; y) coordinate values
of the center of gravity of s relative to the non-tiled layer image. The c location �eld stores the
(x; y) coordinate values of the center of gravity of s relative to the non-tiled composite image. Note
that l location and c location are not necessarily the same since the scanning resolution of the
non-tiled layer images and the non-tiled composite images may di�er. Therefore, since the size of
the entire non-tiled map image may vary, the location of the symbol in the non-tiled map image will
also vary. See Figure 9 for an example instance of the logical map images relation corresponding
to the layer tile given in Figure 7.

The coordinate values that are stored in the lower left attribute of the physical map images

relation and the l location and c location attributes of the logical map images relation are
absolute pixel values (with the lower left corner of the entire map at 0,0). These values can easily
be converted into long/lat values or any other required coordinate system. We chose to ignore this
issue since it is a simple transformation and not in the scope of this research.

Alphanumeric indices cl semant and cl class are constructed to search the classes relation by
the semant and class, attributes respectively. An alphanumeric index pi imid is used to search the
physical map images relation by the image id attribute. A spatial index on points pi ll is used
to search the physical map images relation by the coordinates of the lower left corner of the map
tiles. Alphanumeric index li cl is used to search the logical map images relation by the class

attribute. It has a secondary index on attribute certainty. Spatial indices li l loc and li c loc

are used to search the logical map images relation by location in the non-tiled layer images and
non-tiled composite images, respectively (i.e., to deal with spatial queries such as distance and range
queries on the locations of the symbols in the map images). The spatial indices are implemented
using a PMR quadtree for points [14].

4.2 Partitioning the Logical Map Images Relation

Many queries in a map image database application need to access all symbols that are assigned
the same classi�cation. The part of the query that selects all tuples that belong to the same
classi�cation is repeated each time such a query is posed. In order to make this repetitive selection
at query time unnecessary, we propose to partition the logical map images relation. We refer to

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 11

the case where the logical map images are in one relation as the integrated organization, and to
the case where the logical map images relation is partitioned as the partitioned organization. In
the partitioned organization, the tuples are partitioned into separate relations resulting in a one-to-
one correspondence between relations and the classi�cations that are present in the application (as
identi�ed in the legend acquisition phase). For example, tuples (C; certainty; (x; y)) of a logical image
for which C = C1 are stored in a relation corresponding to C1. Although this may be inappropriate
when the number of di�erent classes is large, this is not the case in a map image database system
since the number of classi�cations corresponds to the number of di�erent symbols found in the legend
of the map, which is typically not very large. The motivation for the partitioned organization is
that it enables e�cient use of spatial indices while processing spatial queries by using a spatial join
operator (e.g., [21]). For more details, see Section 5.

for each class CL in map

(create table CL_class

l_image_id INTEGER,

c_image_id INTEGER,

certainty FLOAT,

l_location POINT,

c_location POINT);

Figure 10: Schemas for the CL class relations in a partitioned organization.

star class:
l image id c image id certainty l location c location

image 1 image 4 0.99 (6540,6992) (3524, 4571)

image 1 image 4 1 (6474,6890) (3480, 4503)

pi class:
l image id c image id certainty l location c location

image 1 image 4 0.99 (6395,6963) (3427, 4552)

image 2 image 5 0.99 (6849,6948) (3730, 4542)

image 2 image 5 0.99 (6800,6897) (3697, 4508)

Figure 11: Example instances of class relations using the partitioned organization.

The tuples correspond to the symbols in the image of Figure 7.

Figure 10 gives the schema de�nitions for the relations of the partitioned organization that
correspond to the logical map images relation. Both the classes and physical map images def-
initions are identical to those in the integrated organization. The only di�erence between the two
organizations is in the way the logical representation of the map tiles is stored. In the partitioned
organization, there is one relation, CL class for each class CL in the map. Each relation CL class

contains the logical map images tuples (C; certainty; (x; y)) for which C = CL. This is equiva-
lent to the result of applying a selection operation, class = CL, on relation logical map images.
See Figure 11 for example instances of relations star class and pi class for the image given in
Figure 7. Each relation CL class has an alphanumeric index on certainty and a spatial index on
l loc and c loc. The spatial index is used to deal with queries of the type \�nd all images with
sites of interest within 10 miles of a picnic area" by means of a spatial join operator.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 12

5 Map Image Retrieval

In order to describe the methods that we use for retrieving map tiles by content, we �rst present
some example queries. Next, we demonstrate a few possible strategies that can be used to process
one of these queries.

5.1 Example Queries

The example queries in this section are �rst speci�ed using natural language. This is followed by an
equivalent SQL-like query for the �rst two queries. An SQL-like query for the other queries can be
created in a similar manner.

Query Q1: display all layer tiles that contain a beach.

display PI.raw

from logical_map_images LI, classes C, physical_map_images PI

where C.semant = "beach" and C.class = LI.class

and PI.image_id = LI.l_image_id

Query Q2: display all layer and composite tiles that contain a site of interest within 15 miles of a
hotel.

display PI1.raw PI2.raw

from logical_map_images LI1, logical_map_images LI2, classes C1,

classes C2, physical_map_images PI1, physical_map_images PI2

where C1.semant = "site of interest" and C2.semant = "hotel"

and C1.class = LI1.class and C2.class = LI2.class

and distance(LI1.l_location,LI2.l_location) < 15

and PI1.image_id = LI1.l_image_id

and PI2.image_id = LI1.c_image_id;

The function distance takes two geometric objects (e.g., two points in the example above) and
returns a oating point number representing the Euclidean distance between them.

Query Q3: display all composite tiles with a site of interest and output the semantics of anything
within 2 miles of these sites of interest.

Query Q4: display all composite and layer tiles that contain an air�eld north of a beach.

5.2 Query Processing

The problem of how to use the indices that have been constructed on the spatial, contextual, and
meta data in an e�cient matter is very complex. This is a question of query optimization in a
spatial database [2], a subject that is only recently receiving attention in the database literature.
To illustrate just how complex this issue may be, we present four di�erent strategies (plans) for
computing an answer to query Q2. The �rst three plans are suitable for the integrated organization.
They di�er in the selection of indices that are used to process the queries, and in whether or not they

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 13

build intermediate structures while processing the query. The fourth plan assumes that a partitioned
organization exists. We only sketch these plans here; see [25] for more detailed plans for all of the
example queries. Indices on alphanumeric attributes are capable of locating the closest value greater
than or equal to a given string or number. Indices on spatial attributes are capable of returning the
items in increasing order of their distance from a given point. Direct addressing of a tuple within
a relation is possible by means of a tuple identi�er (or tid for short). All index structures have an
implicit attribute that stores this tid.

Query Q2: display all layer and composite tiles that contain a site of interest within 15 miles of a
hotel.

Plan P2A Search for \hotel" and \site of interest" tuples using an alphanumeric index on class.
For each \hotel" tuple, check all \site of interest" tuples to determine which ones are within
the speci�ed distance.

Plan P2B Search for hotel tuples using an alphanumeric index on class. Search for all tuples
within 15 miles of each hotel using a spatial index on l location. Determine which of these
tuples are \sites of interest" by checking the class attribute.

Plan P2C Search for \site of interest" tuples using an alphanumerical index on class. Build a
temporary spatial index on the l location attribute of these tuples. Search for \hotel" tuples
using an alphanumeric index on class. For each hotel, search for all tuples within 15 miles in
the temporary spatial index on l location (these all correspond to \site of interest" tuples).

Plan P2D Search the \hotel" partition sequentially. For each hotel, search the \site of interest"
partition for all tuples within 15 miles using the spatial index on l location.

5.3 User Interface

Queries may be posed to MARCO using either an SQL-like language or a graphical user interface
(GUI). The SQL-like language used by MARCO is part of SAND and it includes primitives for
spatial queries such as distance, intersect, nearest neighbor, etc. By using this language, users can
pose a wide range of queries to the system. However, this extended SQL-like language is not trivial
and requires that the user know the schema de�nitions. In contrast, the graphical user interface
provides access to a number of query categories that are common in such a map image database
application. The variety of queries that can be posed using the GUI is limited; however, it is very
easy to use. Currently, we have de�ned �ve query categories as follows:

Contain Query: �nd all map tiles that contain symbol(s) from some given class(es) (query Q1 is
in this category).

One Within Query: �nd all map tiles in which a symbol from class2 is within a given distance

from a symbol from class1 (query Q2 is in this category).

All Within Query: �nd all map tiles in which a symbol from any class is within a given distance

from a symbol from class1 (query Q3 is in this category).

Nearest Query: �nd all tiles with the nearest symbol from class2 to a symbol from class1.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 14

Directional Location Query: �nd all map tiles in which a symbol from class1 is located in a
given direction relative to a symbol from class2 (query Q4 is in this category).

An additional di�erence between queries speci�ed using SQL and queries speci�ed using the GUI
is in the cost (in terms of time) of responding to the queries. For queries that are speci�ed using
SQL, the query plan is generated automatically. Thus the cost of computing the result is determined
by the quality of SAND's query optimizer. As mentioned above, the problem of writing a query
optimizer for a spatial database is very complex, and thus these plans will most likely not be optimal.
On the other hand, using the GUI, the user has access to only a limited number of query categories.
The plans for these query categories are hard-wired into the system, and thus they are very e�cient.

6 Implementation

The MARCO system was tested on the red sign layer and the composite of the GT3 map of Finland.
This map is one of a series of 19 GT maps that cover the whole area of Finland. The red sign
layer contains geographic symbols that mostly denote tourist sites. This layer was chosen because it
contains the symbols on which we wanted to base the map image indexing and because MAGELLAN
was designed to recognize such symbols. The map layer was scanned at 240dpi. This layer was split
into 425 tiles of size 512� 512. See Figure 7 for an example layer tile.

Of these 425 tiles, 280 contained at least one valid symbol. These 280 tiles contained 1093
valid symbols. Thus, there were a total of 280 logical images corresponding to 1093 tuples in the
logical images relation. The map composite was scanned at 160dpi. The layer was split into 551
tiles of size 256� 256. See Figure 8 for an example composite tile. The composites were scanned
at a lower resolution in order to reduce the space required to store these tiles. The red sign layer
tiles are binary images, whereas the composite tiles are full color images. Thus each composite tile
requires much more storage space. In addition, the red sign layer tiles are used for indexing purposes
{ that is, the conversion from physical to logical representation is performed on them, and thus a
high resolution is desired in order to get good recognition rates. The composite tiles, on the other
hand, are only used for the purpose of display and thus the lower resolution is adequate for this use.

The initial training set was created by using one example symbol of each class as taken from
the legend of the map. There were 22 classes in the map. The tiles were input in random order to
the map image database via MAGELLAN as outlined in Section 3. MAGELLAN was implemented
using Khoros [19], an integrated software development environment for information processing and
visualization. The �rst 50 tiles were processed in user veri�cation mode. At that point, the training
set contained 100 instances of symbols and the current recognition rate was determined su�cient.
The remaining tiles were processed automatically. In [26] we reported results of experimenting with
various values for �, and tested whether considering more than just the classi�cation with the highest
certainty improves the recognition rates. A � value of 0:1 was found to be best for this data set. A
valid symbol recognition rate of 91% and an invalid symbol recognition rate of 99% were achieved
with this value. In addition, 10% of the symbols that were assigned valid classi�cations were results
of multiple classi�cations for a valid symbol. We also found that only the candidate classi�cations
with the highest and second-highest certainty values should be considered (i.e., transferred to the
database). The improvement in the valid symbol recognition rate when considering all candidate
classi�cations rather than just the �rst two was very small while resulting in numerous cases of
multiple classi�cations for the same input symbol. Therefore, considering all candidate classi�cations
does not seem to be bene�cial.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 15

We thus ran MAGELLAN with a � value of 0.1, and inserted the candidate classi�cations with the
highest and second-highest certainty values into the logical map image. These logical images were in-
put to SAND and inserted into the logical map images relations as de�ned in Section 4. The phys-
ical layer and composite tiles were also input to SAND and inserted into the physical map images

relation. The GUI and the plans for the �ve query categories were implemented using Tcl (short for
Tool Command Language), an interpreted scripting language, and Tk, a toolkit for the X window
system, developed by Ousterhout [16]. For query Q2, we created plans following all of the strategies
outlined in Section 5.2. These plans were executed on a Sparc 10 running UNIX, and statistics
regarding the execution were recorded.

We currently have only scanned one small portion of the map of Finland. Thus, our data set is
not very large. In order to test our system on a larger and more realistic data set, we derived semi-
synthetic data from the original data set. This was done by replicating the map tiles by a constant
factor M . Each original tile was replicated M times. The lower-left coordinate of these new images
was computed so that it seems that the entire map is duplicated M times. The objects inside each
image were relocated randomly within the 512� 512 area of the image. The values selected for M
were 2, 4, 8, 16, 32, and 64, yielding map image multiples of the original map image of size 1 � 2,
2�2, 2�4, 4�4, 4�8, and 8�8, respectively. Therefore, the data sets with which we experimented
consisted of 280, 560, 1120, 2240, 4480, 8960, and 17920 logical map images, corresponding to 1093,
2184, 4368, 8736, 17472, 34984, and 69952 tuples in the logical images relation (since the basic
data set has 1093 valid symbols).

6.1 An Example Query Execution

Figure 12: Graphical User Interface for query initiation. User has selected a \One

Within Query" between a \hotel" and a \site of interest".

The following scenario describes how example query Q2 is speci�ed using the GUI and how the
results are presented. Recall, that Q2 was the query \display all layer and composite tiles that
contain a site of interest within 15 miles of a hotel". Figure 12 shows the GUI for initiating a query.
It consists of a button for each query category and an icon for each of the symbol classes. The icon
is composed of the bitmap and semant �elds of the tuples in the classes relation. Recall that these
�elds are populated with data from the map legend. Thus the GUI can automatically adjust to a
di�erent set of symbols simply by updating the classes relation.

To perform a \one within" query, the user �rst selects the icons of the two required classes

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 16

Figure 13: Results of query computation. The user has selected to display the layer

tiles of the �rst four results.

followed by clicking the \symbol1 Within x of symbol2" button. The user is then prompted for the
required distance. Once the user enters the required distance, the result of the query is computed
using one of the four plans outlined in Section 5.2. The result of this query is displayed in a
window as seen in Figure 13. A thumbnail (i.e., a reduced bitmap of the whole tile) is displayed
for each layer tile that was found that meets the query speci�cation. Recall, that each tuple in the
logical map images relation has a certainty value that estimates the certainty that the symbol in
the location corresponding to the tuple belongs to the class corresponding to the tuple. The result
tiles are displayed in decreasing order of the certainty value. Therefore, the �rst result tiles are
more likely to be correct (i.e., meet the query speci�cation) and the last tiles are more likely to be
incorrect. The user may now display any of the result tiles by selecting the corresponding thumbnails
followed by clicking either the \Display Layer" or \Display Composite" buttons. A square is drawn
around the two symbols that were given to the query. By clicking the \Information" button, the user
can see the information stored regarding each of these tiles in the physical map images relation and
the locations of the symbols in these tiles. In addition, the user may choose to display the non-tiled
map with the query result tiles highlighted.

7 Evaluation Procedure and Results

Our experimental evaluation of MARCO was designed to test two performance metrics. The �rst is
accuracy of the results. That is, how many result tiles are missed and how many result tiles do not
meet the query speci�cation. The second performance metric is query execution time. In particular,
we performed an empirical comparison in terms of execution time between the four plans for queries
that fall into the \One Within Query" category such as query Q2.

7.1 Accuracy

We evaluated MARCO in terms of accuracy using two error types that are commonly used in
document analysis studies. Type I error occurs when an image that meets the query speci�cation
was not retrieved by the system (a miss), and a Type II error occurs when an image that the system
retrieved for a given query does not meet the query speci�cation (a false hit). Note that Type I
and Type II errors correspond to the recall and precision metrics, respectively, used in information

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 17

retrieval experiments.

0

5

10

15

20

25

30

35

Total Cafe Beach Post
Ofc

Service Picnic

query symbol

er
ro

r
ra

te
 (

%
)

Type I
Type II

Figure 14: Type I and Type II error rates

when considering all certainty values.

0

5

10

15

20

25

30

35

Total Cafe Beach Post
Ofc

Service Picnic

query symbol

er
ro

r
ra

te
 (

%
)

Type I
Type II

Figure 15: Type I and Type II error rates

when considering only results with cer-

tainty value > 0.25.

Type II errors are detected by visual inspection of the result tiles. Each result tile that does not
meet the query speci�cation, is counted as a Type II error. In order to calculate the type II error
rate in MARCO, we performed a \contain query" for each of the symbols in our application. We
counted how many results did not meet the query speci�cation for each symbol. We computed the
type II error rate for each symbol. In addition, we computed the total type II error rate as the total
number of incorrect results divided by the total number of results.

In order to count the Type I errors, we need to visually inspect the physical map tiles (in contrast
to just looking at the result tiles as we did for Type II errors) or the paper map and look for all
required results in order to determine whether any result tiles were missed (since we do not have
ground truth for this data set). We did this for 50 tiles (out of the 425 tiles) chosen at random
and for each one of the symbols. Once again, we computed the type I error rate for each symbol in
addition to a total type I error rate which is the total number of missed results divided by the total
number of results we should have had.

Figure 14 reports the total type I and type II error rates, as well as these error rates for a
few of the symbols. The total type I error rate was 6% (i.e., 94% of the tiles that should have
been retrieved were in fact retrieved by the system). Note however, that this rate varies for the
di�erent symbols. The rates varied from 0% for the \post o�ce" symbol to 11% for the \cafe"
symbol. The total type II error rate was 19% (i.e., 81% of the tiles that were retrieved did in fact
contain the desired symbol). The type II error rates varied from 1% for the \beach" symbol to
33% for the \service station" symbol. We attribute the variance in the error rates between di�erent
symbols to the speci�c classi�cation method and to the contents of the training set that is used when
inserting the map images into the database. In particular, the variance is attributed to the ability
of the system to di�erentiate between di�erent symbols. The results that we report here are for one
particular training set (feature vector). However, we experimented with various con�gurations, and
these results were consistent in all cases. In order to achieve lower error rates, more features would
be required.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 18

Recall, that the results are ranked by certainty. The type II error rate can be improved by
considering only those results with a certainty value greater than some cuto� value. This, of course,
may increase the type I error rate as some results that were correct may have a certainty value
that is smaller than the chosen cuto� certainty value. Figure 15 shows the type I and type II error
rates for a cuto� certainty value of 0.25. The total type I error rate went up to 10% while the total
type II error rate went down to 7.5%. Although the Type II error rates may seem rather high (i.e,
a relatively large percent of the images retrieved did not conform to the query speci�cation), the
ranking of the results was very good { that is, the �rst result images in almost all cases did conform
to the query speci�cation. Even for a the lowest setting of the certainty cuto� value, only 6% of the
images in the database were retrieved on average for the queries that we performed.

Note that these results are a direct consequence of the settings chosen for the parameters of
MAGELLAN, the map input system. In [26] we saw that we can achieve higher valid symbol
recognition rates by increasing the values of the search range, �. However, this results in lower invalid
symbol rates. Thus, by changing this value we could improve our type I error rates, while degrading
our type II error rates. In addition, with more user intervention (i.e., running MAGELLAN in user
veri�cation mode), the valid and invalid symbol recognition rates can be improved, thus resulting
in better type I and type II error rates. The ideal search bound value and amount of intervention
should be selected according to the requirements of the application. If it is critical for the map
image database not to miss any tiles when responding to a query, then a larger search bound value
should be selected. If accuracy is not as important as the time required to weed out the incorrect
tiles manually, then a smaller search bound value should be selected.

7.2 Query Execution Time

We performed an empirical comparison in terms of execution time between the four query plans for
queries that fall into the \One Within Query" category such as query Q2. This was done by executing
numerous variations of this query using the plans as outlined in Section 5.2. An important aspect in
selecting the the appropriate query plan is the selectivity of the various parts of the query. That is,
what percent of the tuples of the relation conform to the spatial and non-spatial components of the
query (we refer to these as the spatial and contextual selectivity factors, respectively). The variations
of the query were selected so that we could test its execution under di�erent levels of spatial and
contextual selectivities. This was achieved by varying parameters that a�ect these selectivity factors.
The spatial selectivity was changed by varying the search radius (i.e. the \within" distance). The
contextual selectivity was varied by the particular selection of the symbols speci�ed by the query.

We repeated the queries for two cases. In the �rst case, the two symbols were chosen so that
the contextual selectivity of their respective classes is similar (i.e., about the same percent of tuples
of the entire data set belong to both symbol classes). In the second case, the symbols were chosen
such that there are signi�cantly more tuples that belong to one symbol class than to the other (i.e.,
one symbol had a very low contextual selectivity). We repeated these variations of this query for
the various data-set sizes to see how they scale up. Two steps were taken in order to ensure that
the data was in fact read from disk every time a query was executed (i.e., neutralize the e�ects of
any bu�ering that the �le system may perform). The �rst step was to clear the machine's memory
by calling a routine that �lls the entire memory with the value 0. The second step was to alternate
the queries so that they were posed to di�erent data sets. This ensured that the same data set was
never referenced consecutively thereby requiring that it be read from the disk.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 19

1

4

16

64

256

1024

4096

16384

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

Plan 2A
Plan 2B
Plan 2C
Plan 2D

Figure 16: Retrieval time in seconds for

various data set sizes for various plans

and organizations search radius 2 miles;

small di�erence in contextual selectivity.

1

4

16

64

256

1024

4096

16384

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

Plan 2A
Plan 2B
Plan 2C
Plan 2D

Figure 17: Retrieval time in seconds for

various data set sizes for various plans

and organizations search radius 2 miles;

large di�erence in contextual selectivity.

1

4

16

64

256

1024

4096

16384

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

Plan 2A
Plan 2B
Plan 2C
Plan 2D

Figure 18: Retrieval time in seconds for

various data set sizes for various plans

and organizations search radius 16 miles;

small di�erence in contextual selectivity.

1

4

16

64

256

1024

4096

16384

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

Plan 2A
Plan 2B
Plan 2C
Plan 2D

Figure 19: Retrieval time in seconds for

various data set sizes for various plans

and organizations search radius 16 miles;

large di�erence in contextual selectivity.

Figures 16 { 21 report the retrieval time in seconds for query Q2 using the four plans for various
data set sizes. Figures 16, 18, and 20 correspond to the case where the di�erence in the contextual
selectivity between the two symbols involved in the query is small, for progressively smaller spatial
selectivities (i.e., larger search radii). Similarly, Figures 17, 19, and 21 correspond to the case
where the di�erence in the contextual selectivity between the two symbols involved in the query is
large for progressively smaller spatial selectivities (i.e., larger search radii). From these �gures, it
is apparent that plan P2D, which uses a partitioned organization, is almost always the best plan.
Only in the case of a relatively small data set and a low spatial selectivity (64 mile search radius)
is plan P2A better. Note however, that for queries where the contextual selectivity is low such as
query Q3 the partitioned organization performs very poorly (see Figure 29).

Between the plans that utilize an integrated organization, plan P2C (which builds an intermediate
spatial data structure before performing the spatial join) is best in most cases. The cost of building
the temporary spatial data structure pays o� in the much more e�cient spatial join due to the fact

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 20

1

4

16

64

256

1024

4096

16384

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

Plan 2A
Plan 2B
Plan 2C
Plan 2D

Figure 20: Retrieval time in seconds for

various data set sizes for various plans

and organizations search radius 64 miles;

small di�erence in contextual selectivity.

1

4

16

64

256

1024

4096

16384

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

Plan 2A
Plan 2B
Plan 2C
Plan 2D

Figure 21: Retrieval time in seconds for

various data set sizes for various plans

and organizations search radius 64 miles;

large di�erence in contextual selectivity.

4

8

16

32

64

128

256

512

1024

2048

4096

0.01 0.04 0.17 0.68 2.7 10.9 43.8

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

search area as a percent of total area (log scale)

Plan 2A
Plan 2B
Plan 2C
Plan 2D

Figure 22: Retrieval times in seconds for

various plans and organizations varying

the search range, for the 4480 image data

set | small di�erence in contextual se-

lectivity.

8

16

32

64

128

256

512

1024

2048

4096

0.01 0.04 0.17 0.68 2.7 10.9 43.8

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

search area as a percent of total area (log scale)

Plan 2A
Plan 2B
Plan 2C
Plan 2D

Figure 23: Retrieval times in seconds for

various plans and organizations varying

the search range, for the 4480 image data

set | large di�erence in contextual selec-

tivity.

that the tree is smaller and contains only symbols of the desired class. However, when the spatial
selectivity is high (small search radius) and the di�erence in contextual selectivities is large, plan
P2B outperforms plan P2C (see Figure 17). The reason for this is that the number of symbols that
need to be inserted into the temporary spatial data structure is relatively large, while the area of
the search range that is searched in the spatial index that holds all of the symbols (as is done in
plan P2B) is small and thus the search is relatively inexpensive. Therefore, the overhead incurred
when building the temporary spatial data structure does not pay o� in this case.

Figures 22 and 23 show the execution time in seconds for query Q2 using the four plans varying
the spatial selectivity for a constant dataset size. Figure 22 corresponds to the case where the
di�erence in the contextual selectivity between the two symbols involved in the query is small, while
Figure 23 corresponds to the case where the di�erence in the contextual selectivity between the two
symbols involved in the query is large. Here we can see that when the spatial selectivity is low (i.e.,

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 21

2 4 8 16 32 64
280

560
1120

2240
4480

8960

1

100

10000

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

2 4 8 16 32 64
280

560
1120

2240
4480

8960

search radius
(in miles)

number of
images

Figure 24: Retrieval times in seconds for

Plan P2A for various search radii and var-

ious data set sizes.

2 4 8 16 32 64
280

560
1120

2240
4480

8960

1

100

10000

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

2 4 8 16 32 64
280

560
1120

2240
4480

8960

search radius
(in miles)

number of
images

Figure 25: Retrieval times in seconds for

Plan P2B for various search radii and var-

ious data set sizes.

2 4 8 16 32 64
280

560
1120

2240
4480

8960

1

100

10000

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

2 4 8 16 32 64
280

560
1120

2240
4480

8960

search radius
(in miles)

number of
images

Figure 26: Retrieval times in seconds for

Plan P2C for various search radii and var-

ious data set sizes.

2 4 8 16 32 64
280

560
1120

2240
4480

8960

1

100

10000
ex

ec
ut

io
n

tim
e

(in
 s

ec
on

ds
)

2 4 8 16 32 64
280

560
1120

2240
4480

8960

search radius
(in miles)

number of
images

Figure 27: Retrieval times in seconds for

Plan P2D (partitioned organization) for

various search radii and various data set

sizes.

a large search area), plan P2B becomes very ine�cient. This can also be seen in Figure 25 which
shows the execution time of plan P2B as both the search radius and the data set grows. Notice the
steep slope as the size of the radius and the data set increases. In contrast, in Figure 24, which
shows the execution time of plan P2A as both the search radius and the data set grows, the size
of the search radius does not e�ect the execution time. The reason for this is that plan P2A does
not use the spatial index at all. It computes the distance between every two symbols conforming to
the query speci�cation. Thus, it is not sensitive to the changing distance and it becomes attractive
when the spatial selectivity is low.

Plan P2C seems to be the best compromise. It makes use of both a contextual and spatial index.
It �rst uses the contextual index to only get the tuples that correspond to the classes speci�ed by
the query. It then builds a spatial index on these tuples and performs a spatial join between them.
Even though some overhead is incurred when building this temporary data structure, in most cases
this pays o�. Plan P2C is sensitive to increasing both the search radius and the size of the data set.
However, the changes are much more subtle compared to those of plan P2B as can be seen from

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 22

1

2

4

8

16

32

64

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

Integrated
Partitioned

Figure 28: Retrieval time in seconds for

various data set sizes for query Q1 using

the integrated and partitioned organiza-

tions.

4

8

16

32

64

128

256

512

1024

2048

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

Integrated
Partitioned

Figure 29: Retrieval time in seconds for

various data set sizes for query Q3 using

the integrated and partitioned organiza-

tions.

the moderate slopes in Figure 26. The partitioned organization serves the same purpose; however,
there is no need to build the spatial index on the y when processing the query, since this spatial
index already exists as part of the database in the partitioned organization. Thus, plan P2D, which
utilizes this organization, usually outperforms plan P2C. Notice, however, that as the search radius
increases and as the size of the data set increases, the di�erence between plan P2C and plan P2D
becomes small (see Figures 23, 26 and 27).

Finally, we compare the execution time of query Q1 and Q3 using both organizations. Figures 28
and 29 report the retrieval times that were required to process queries Q1 and Q3 for various sizes
of the data set. The retrieval time for Q1 is almost identical for both organizations. However, for
query Q3 which has a low contextual selectivity, the partitioned organization performs very poorly.

8 Concluding Remarks

MARCO, a system for retrieving map tiles by content, has been presented. The input to MARCO
are physical images of separate map layers, physical images of map composites, and their logical
representations. MAGELLAN, a legend-driven map interpretation system, converts map layer im-
ages from their physical to their logical representation. This logical representation is then used to
automatically index both the composite and the layer images. Indices are constructed on both the
contextual and the spatial data thereby enabling e�cient retrieval of layer and composite images
based on contextual as well as spatial speci�cations. Users may �ne-tune the performance MARCO
in terms of the accuracy that they require by setting the search bound value and minimum certainty
values to �t their particular application. In terms of query execution times, the performance varies
according to the contextual and spatial selectivity factors of the query, the plan chosen to execute
the query, and the organization of the logical images. By choosing the appropriate query processing
strategy based on the results of the empirical comparison presented in this paper, MARCO can be
very e�cient.

The small amount of user intervention required during map image input, the advanced indexing
mechanisms on contextual, spatial, and meta data, and the e�cient query processing strategies
employed by MARCO, make it highly suitable to handle large repositories of maps such as those

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 23

that will be abundant in digital libraries. Although MARCO was designed for maps it can easily
be adapted to many other types of images that are of a symbolic nature (termed symbolic images).
These include CAD/CAM documents, engineering drawings, oor plans, etc. Note that we have
used a similar system for the interpretation of oor plans [24]. The results of this interpretation
could be incorporated into a database in a similar manner. The main di�erence would be in the
graphical query interface that would need to be adapted to query categories suitable for such a oor
plan application.

Another complication that could arise in these applications is that the spatial extent of the
symbol may be of importance. In MARCO, the symbols found in an image were represented by a
point (the center of gravity of the symbol relative to the entire image). In other applications, we
may need to use bounding boxes or other geometric entities to represent the symbols in the logical
image. However, by using the methods suggested in this paper we can handle objects with spatial
extent just as easily. The only di�erence would be in the selection of the spatial data structure
that is used to index the locational information in the logical images. For example, if we chose to
represent the symbols by bounding boxes, then we could use any data structure that is suitable for
indexing a large number of rectangles such as an R-tree [8]. We could then utilize the well-known
algorithms that exist for range queries on these data structures.

In the system that we describe in this paper, the automatic indexing of map composites is done
according to a map layer that contains geographic symbols. In order to index by other layers that
contain additional types of symbolic information such as roads, bodies of water, etc., other methods
that are suitable for interpreting this kind of symbolic information need to be developed. The results
of such an interpretation can then be integrated into the map image database system using spatial
indexing methods that are suitable for corresponding data types such as lines, polygons, etc. This
would enable the system to provide a comprehensive tool to utilize the vast amount of data that is
found in paper maps.

9 Acknowledgements

We are grateful to Karttakeskus, Map Center, Helsinki, Finland for providing us the map data.

References

[1] S. V. Ablameyko, B. S. Beregov, and A. N. Kryuchkov. Computer-aided cartographical system
for map digitizing. In Proceedings of the Second International Conference on Document Analysis

and Recognition., pages 115{118, Tsukuba Science City, Japan, October 1993.

[2] W. G. Aref and H. Samet. Optimization strategies for spatial query processing. In G. Lohman,
editor, Proceedings of the Seventeenth International Conference on Very Large Data Bases,
pages 81{90, Barcelona, September 1991.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm
for approximate nearest neighbor searching. In Proceedings of the Fifth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 573{582, Arlington, VA., January 1994.

[4] J.L. Blue, G.T. Candela, P.J. Grother, R. Chellappa, and C.L. Wilson. Evaluation of pattern
classi�ers for �ngerprints and OCR applications. Pattern Recognition, 27(4):485{501, April
1994.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 24

[5] G.L Cash and M. Hatamian. Optical character recognition by the method of moments. Computer
Vision, Graphics, and Image Processing, 39(3):291{310, September 1987.

[6] P. Devijver and J. Kittler. Statistical Pattern Recognition. Prentice-Hall, Englewood-Cli�s, NJ,
1982.

[7] J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for �nding best matches in loga-
rithmic expected time. ACM Transactions on Mathematical Software, 3(3):209{226, September
1977.

[8] A. Guttman. R{trees: a dynamic index structure for spatial searching. In Proceedings of the

SIGMOD Conference, pages 47{57, Boston, June 1984.

[9] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In M. J. Egenhofer and J. R.
Herring, editors, Advances in Spatial Databases | Fourth International Symposium, SSD'95,
number 951 in Lecture Notes in Computer Science, pages 83{95, Portland, ME, August 1995.

[10] R. Jain. NSF workshop on visual information management systems. SIGMOD RECORD,
22(3):57{75, September 1993.

[11] R. Kasturi, R. Raman, and C. Chennubhotla. Document image analysis an overview of tech-
niques for graphics recognition. In Proceedings of the IAPR Workshop on Syntactic and Struc-

tural Pattern Recognition, pages 192{230, Murray Hill, New Jersey, June 1990.

[12] M. L. Larsgaard. Map Librarianship: an Introduction. Libraries Unlimited, Littleton, CO, 2nd
edition, 1987.

[13] M.D. Levine. Vision in Man and Machine. McGraw-Hill, New York, 1982.

[14] R. C. Nelson and H. Samet. A consistent hierarchical representation for vector data. Computer
Graphics, 20(4):197{206, August 1986. (also Proceedings of the SIGGRAPH'86 Conference,
Dallas, August 1986).

[15] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, and P. Yanker. The
QBIC project: Querying images by content using color, texture, and shape. In Proceeding of

the SPIE, Storage and Retrieval of Image and Video Databases, volume 1908, pages 173{187,
San Jose, CA, February 1993.

[16] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA, April 1994.

[17] A. Pentland, R. W. Picard, and S. Sclaro�. Photobook: Content-based manipulation of image
databases. In Proceeding of the SPIE, Storage and Retrieval of Image and Video Databases II,
volume 2185, pages 34{47, San Jose, CA, February 1994.

[18] D. J. Peuquet. An examination of techniques for reformatting cartographic data part 1: The
raster-to-vector process. Cartographica, 18(1):34{48, January 1981.

[19] J. Rasure and C. Williams. An integrated visual language and software development environ-
ment. Journal of Visual Languages and Computing, 2(3):217{246, September 1991.

[20] A. Rosenfeld and A.C. Kak. Digital Picture Processing. Academic Press, New York, second
edition, 1982.

IEEE Transactions on PAMI, Vol. 18, No. 8, pages 783{798, August 1996. 25

[21] D. Rotem. Spatial join indices. In Proceedings of the Seventh International Conference on Data

Engineering, pages 500{509, Kobe, Japan, April 1991. IEEE Computer Society, IEEE Computer
Society Press.

[22] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA,
1990.

[23] H. Samet. Spatial data structures. In W. Kim, editor, Modern Database Systems, The Object

Model, Interoperability and Beyond, pages 361{385. ACM Press and Addison-Wesley, 1995.

[24] H. Samet and A. So�er. Automatic interpretation of oor plans using spatial indexing. In
S. Impedovo, editor, Progress in Image Analysis and Processing III, pages 233{240. World
Scienti�c, Singapore, 1994.

[25] H. Samet and A. So�er. Integrating images into a relational database system. Technical Report
CS-TR-3371, University of Maryland, College Park, MD, October 1994.

[26] H. Samet and A. So�er. A legend-driven geographic symbol recognition system. In Proceedings of
the 12th International Conference on Pattern Recognition, volume II, pages 350{355, Jerusalem,
Israel, October 1994.

[27] H. Samet and A. So�er. Magellan: Map acquisition of geographic labels by legend analysis.
Technical Report CS-TR-3386, University of Maryland, College Park, MD, December 1994.

[28] J. Star and J. Estes. Geographic Information Systems, chapter 6, pages 85{91. Prentice-Hall,
Englewood Cli�s, NJ, 1990.

[29] M. Stonebraker, J. Frew, and J. Dozier. The SEQUOIA 2000 project. In D. Abel and B. C. Ooi,
editors, Advances in Spatial Databases | Third International Symposium, SSD'93, number 692
in Lecture Notes in Computer Science, pages 397{412, Singapore, June 1993.

[30] S. Suzuki and T. Yamada. MARIS: Map recognition input system. Pattern Recognition,
23(8):919{933, August 1990.

[31] M. Swain. Interactive indexing into image databases. In Storage and Retrieval for Image and

Video Databases, pages 95{103. SPIE, Vol. 1908, 1993.

[32] N. Tanaka, T. Kamimura, and J. Tsukumo. Development of a map vectorization method
involving a shape reforming process. In Proceedings of the Second International Conference

on Document Analysis and Recognition, pages 680{683, Tsukuba Science City, Japan, October
1993.

