
In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

Multiresolution Select-Distinct Queries on
Large Geographic Point Sets

Sarana Nutanong Marco D. Adelfio Hanan Samet

Center for Automation Research, Institute for Advanced Computer Studies,
Department of Computer Science, University of Maryland

College Park, MD 20742, USA
{nutanong, marco, hjs}@cs.umd.edu

ABSTRACT

Many spatial applications require the ability to display locations
of data entries on an online map. For example, an online photo-
sharing service may wish to display photos according to where they
were taken. Since many photos can occupy the same area and over-
lap each other within a display window, less popular or older im-
ages (based on a given measure of importance) can be discarded
so that these more popular or newer photos become more distinct.
A straightforward solution to this problem is (i) to use a window
query to retrieve data entries within a given display window; (ii)
to discard data entries in proximity of a more important one. This
method works well in a high spatial selectivity setting, e.g., when
the window query returns a small number of entries, but the perfor-
mance drastically degrades as the spatial selectivity decreases. We
consider this problem as selecting distinct data entries from a given
dataset, where the “distinctiveness” of a data entry depends on its
relative importance in comparison to that of other data entries in
proximity. In this paper, we propose a new query type called the
multi-resolution select-distinct (MRSD) query. The main novelty
of our query processing method is a voting system built upon an
ensemble of interrelated indexes, which allows us to efficiently de-
termine the degree of distinctiveness of all points within a query
window. Using a real dataset of over 9 million locations, our exper-
imental results show that our proposed method is capable of con-
sistently producing subsecond response times, while the window
query-based method takes more than 10 seconds on average in a
low spatial selectivity setting.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Spatial

databases and GIS; H.2.4 [Database Management]: Systems—
Query Processing

General Terms

Algorithms, Design

Keywords

Spatial databases, Query processing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo Beach,
CA, USA
Copyright 2012 ACM ISBN 978-1-4503-1691-0/12/11...$15.00.

1. INTRODUCTION
All queries on spatial data can be classified as location-based

(e.g., QUILT [9, 14] and the SAND Browser [7]) or feature-
based (also known as spatial data mining) [1]. In this paper, we
focus on a variant of a location-based query where the location is
a map window, which is motivated by the problem of displaying
the locations of data entries on an online map where a user manip-
ulates the display window and the zoom level to specify an area
of interest. For example, an online photo-sharing service may wish
to display photos according to where they were taken and to allow
its users to browse these images through an online map interface.
Since many photos can occupy the same area in a display window,
we may choose to display only a subset of photos instead. These
photos can be laid out based on a scoring system denoting their im-
portance, which can be derived, for example, from how recent each
image was taken and the number times it has been viewed.

Our problem can be formally described as finding an appropriate
layout for a collection of spatial data entries in a display window.
Specifically, given a large geographic dataset S and a geographic
query window W , select a subset T of data entries from S that
fall within W . Our investigation focuses on a case where data en-
tries are represented as equally-sized image thumbnails. Figure 1(a)
shows the locations of all images from an example database that
fall within a sample query window W . Only the image outlines are
displayed, in order to expose the differences in density of images
around the map. Figure 1(b) shows a set T of images selected us-
ing our method from a database of images from news article [11].
Notice that the selected images do not result in large overlaps, and
are distributed throughout the query window. In particular, we want
the way in which the data entries in T are selected to satisfy the fol-
lowing design objectives which have also been used to evaluate the
iOS6 Apple Maps API [8].

(i) Minimize overlaps. Displaying or labeling any entry from S
on a map requires some amount of display space. If multiple prox-
imate data entries are selected, their representations or labels may
overlap, resulting in reduced legibility and less data clarity than is
desired. In some spatial sampling applications, overlap between en-
tries of T must be avoided completely. Assume that each data entry
is represented as an image thumbnail with a size of (ǫ× ǫ). We can
completely avoid overlaps by ensuring that no two data entries in
T have a chessboard distance smaller than a proximity threshold
ǫ. In applications where a slight overlap between pairs of entries is
acceptable, this proximity threshold can be relaxed.

(ii) Respect relative importance of entries. Consider geographic
datasets that include an importance measure for each entry. When
two data entries/points are in proximity and one of them has to be
discarded, we should keep the more important one and discard the
other entry. In other words, T should include the most important
entry for different regions inW .

In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

(a) Outlines of all images (b) Distinct images selected using the MRSD query

Figure 1: Selecting images from a set of geographically overlapping images obtained from a database of geotagged news articles.

(iii) Maximize spatial fullness. The subset T should cover most
of the area that is covered by all entries of S within W . That is,
if one geographic region within W contains far more entries than
others, we still expect to see entries in all regions ofW that contain
data points in S.

(iv) Provide panning/zooming consistency. If a geographic win-
dow W contains a region R, and another geographic window W ′,
obtained by panning the map, also contains R, the spatial sample
withinR should be identical in both cases. Similarly, zooming con-
sistency requires that entries selected within W should also be se-
lected withinW ′, when W ′ is obtained by zooming in from W .

(v) Enable efficient sampling. Even with millions of candidate
entries of S within W , we still desire a fast response time to se-
lect the subset T . Note that this property restricts us from using
standard map labeling algorithms that provide super-linear running
time (with respect to the number of entries in W) for the selection
and placement of non-overlapping map labels.

(vi) Support filtering conditions. Allow feature-based filters to
guide the spatial sampling process, so that T does not contain any
data entries that are filtered out. The filters may vary in their selec-
tivity, in the sense that some filters could remove many data entries
from being selected into T , while others may have little effect on
T because they do not exclude many of the entries. This goal (in
combination with the spatial fullness property) precludes the use of
some precomputation-based approaches [13].

In order to fully appreciate the challenges of designing a solution
to satisfy these properties, we describe three sample approaches
and their drawbacks. One approach is to randomly sample a sub-
set of n entries within W , and iteratively select elements from
the subset that do not overlap previously selected entries. This ap-
proach can be implemented efficiently (using a spatial index) and
avoids overlaps, but does not fulfill the spatial fullness or pan-
ning/zooming consistency properties, nor does it respect entry rel-
evance. A second approach is to select the most important n im-
ages within W , and then to iteratively select elements from this
subset that do not overlap with previously selected entries. This
can be done efficiently and avoids overlaps, but again does not ful-
fill the spatial fullness or panning/zooming consistency properties.
A third approach is to start with all entries within W ordered by
importance, and then iteratively select entries that do not overlap
with previously selected entries. This is optimal for minimizing
overlaps, achieves spatial fullness, and respects relative importance
of entries. However, it can be very inefficient to consider all ele-
ments in W (when W is large or S is dense within W) and pan-
ning/zooming consistency will be violated in border areas.

We model this layout problem as a problem of selecting “dis-
tinct” data entries/points based on a measure of importance where
a data point is considered distinct if there are no other nearby data
points with a greater importance. Our solution is motivated by the
SELECT DISTINCT query used in relational database manage-
ment systems (RDBMS) which provides a way of selecting rep-

resentative data entries by (i) grouping identical values from a
given column; (ii) selecting one representative/distinct data entry
from each group based on a set of ordering criteria. This query
can be efficiently processed using an appropriate index, which will
be further explained in Section 5. Since grouping works for only
discretized attributes, it cannot be directly applied to spatial data
where grouping is based on proximity instead of an exact match.

One way to adapt the SELECT DISTINCT query to our layout
problem is to partition the data space into a grid where the grid cell
size is given by a proximity threshold ǫ. We can then group data
points according to the grid cells in which they reside. However,
when two data points are separated by a grid boundary, this method
considers them as being in two different groups regardless of how
close they are. If these two data points are represented as image
thumbnails with a geographic size of (ǫ× ǫ), they can significantly
overlap. It is also important to point out that a user may change the
zoom level while the pixel size of thumbnails remain unchanged,
which effectively changes the proximity threshold relative to the
map area. Hence, our indexes need to be able to answer queries as
the proximity threshold ǫ changes according to the zoom level.

We introduce a new query type called Multiresolution Select-

Distinct (MRSD). Our query differs from the one which detects
spatial duplicates [2] in the sense that MRSD uses a proximity
threshold which is determiend by the current zoom level/resolution
of the map. Specifically, the query accepts a proximity threshold
ǫ (e.g., the width of each image thumbnail) and a query window
(x1, y1, x2, y2) and returns a result set containing data points re-
siding in the query window. The crux of our method is a voting
system built upon an ensemble of interrelated indexes, which al-
lows us to efficiently determine the degree of distinctiveness of all
points within a query window. Specifically, our indexes are derived
from the Morton code representations [5] of data points under mul-
tiple translations. As we explain, the fractal nature of the Morton
order combined with our choice of translations enables us to sup-
port the MRSD queries at multiple resolutions efficiently.

In summary, contributions of our work are given as follows.
• A new query type called Multiresolution Select-Distinct

(MRSD) which can be used to solve image layout problems.
• A complete RDBMS solution containing a method to process

MRSD queries and a set of indexes that work with multiple
map resolutions.

• Experimental studies which demonstrate the effectiveness
of our proposed solutions in comparison to an alternative
method which considers all entries in the query window.

The rest of this paper is organized as follows. In Section 2, we
discuss work related to the image layout and proximity query prob-
lems. Section 3 contains background materials. Section 4 provides
the definitions of our MRSD query and the distinctiveness score.
Section 5 presents our proposed method to process MRSD queries.
In Section 6, we report results from our experimental studies. Sec-
tion 7 concludes the paper.

In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

2. RELATED WORK
Our problem can be defined as one of spatial sampling. That is,

our aim is to present an appropriate sample of available data by
taking spatial considerations into account. The related problems of
map labeling and “thinning” geographic datasets involve similar
requirements. In the map labeling scenario, the desired output is a
selection of features to label, along with positions for those labels
that avoid overlaps [3, 17]. Map labeling has been the subject of a
large body of work, which generally focuses on selecting a max-
imal set of labels to display, and finding optimal placements for
those labels. In contrast, our focus is on highly selective pruning
of large datasets. For example, when labeling a country-level map,
neighborhood street names can be safely pruned without consider-
ing their spatial properties.

A similar problem of “thinning” large geographic datasets for
display has been defined by Sarma et al. [13], which is currently
being used to perform spatial sampling by Google Maps. Specifi-
cally, they focus on selecting a finite list of features to appear within
uniform regions at each zoom level. The authors argue that features
displayed on their mapping application hardly change and can be
precomputed periodically. Specifically, features are sampled in ad-
vance using an integer programming model, which includes con-
straints that enforce consistency while panning and zooming. The
precomputation approach prioritizes query speed, at the expense of
flexibility to perform run-time query filtering, and increased costs
of inserting and updating data features. Our approach differs be-
cause it computes the list of data entries to display separately for
each query, instead of during precomputation, which allows us to
handle filters and avoids recomputation after each insert, update,
or delete operation. Yet, as our experiments show, querying is still
very efficient, even with several million entries in our dataset.

3. BACKGROUND
The notion of selecting distinct/representative data entries from

a large collection of data is well known in relational database
management systems (RDBMSs). In this section, we discuss the
concept of selecting distinct data entries from different groups in
the RDBMS context and a simple technique to apply this query
type to spatial data. Let us consider an example of the SELECT
DISTINCT query in Table 1. Assume that we use the population
as our importance score and the cities are grouped according to
their states. That is, we wish to select the largest city by population
in each state from Table 1 (table_1). This operation can be done
using the following SQL statement in PostgreSQL [4].

SELECT DISTINCT ON (State) * FROM table_1

ORDER BY State DESC, Population DESC

This SQL statement produces the data entries highlighted in Ta-
ble 1. The DISTINCT ON (State) clause dictates that only
one entry from each state can be selected and ORDER BY State

DESC, Population DESC dictates that we want the data en-
tries to be sorted by states and with in each state we want the en-
try with the largest population to appear as the first one. Given that
the column pair (State, Population) is indexed in a B-tree,
this query can be processed via a loose index scan [18]. Specif-
ically, we can traverse the index in descending order (from Provi-
dence, Rhode Island to Waterbury, Connecticut). Once the city with
the largest population in a state is found, the rest of the cities in that
state need not be considered. When the selectivity is high, the loose
index scan method allows us to retrieve the desired results by con-
sidering a small portion of the dataset.

Alternatively, the given SELECT DISTINCT query statement
can also be rewritten using the PARTITION BY operator to orga-
nize the data entries into states and to select the one with the highest

population in each partition. For our presentation, we use the for-
mer alternative because we wish to keep our query statements con-
cise and emphasize the fact that we want to select “distinct” spatial
data entries from a dataset.

Table 1: Cities in New England with population of 100,000 or

greater where the largest city in each state is highlighted.
State City Lat Long Population

Connecticut Waterbury 41.09 -73.00 107,902
Connecticut Stamford 41.01 -73.09 120,045
Connecticut Hartford 41.13 -72.11 124,397
Connecticut New Haven 41.05 -72.15 124,791
Connecticut Bridgeport 41.03 -73.03 139,008
Massachusetts Cambridge 42.06 -71.02 101,355
Massachusetts Lowell 42.11 -71.05 105,167
Massachusetts Springfield 42.02 -72.10 152,082
Massachusetts Worcester 42.04 -71.13 172,648
Massachusetts Boston 42.06 -71.01 589,141
New Hampshire Manchester 42.16 -71.08 109,691
Rhode Island Providence 41.14 -71.07 176,862

A simple method to allow the SELECT DISTINCT query to
be applied to spatial data is to discretize the data space using a
space filling curve like the Morton order. The Morton order is a
grid decomposition technique, where the data space is subdivided
into (2b × 2b) equal sized blocks, where b is the number of decom-
position levels. This decomposition scheme is common to a family
of spatial data structures, namely the quadtree and its variants [5].
The Morton order exhibits a recursive structure, which we exploit
to support our query on multiple map resolutions. Figure 2 shows
how a Morton order of data points in 2D can be calculated. Given
a set D of data points in a finite space, Morton order of the data
points in D can be obtained by subdividing the space into 2b × 2b

equal sized blocks, where b is a positive integer. These blocks are
then numbered according to the Z-order curve. We can consider
b as the number of levels of decompositions. In this example, the
value of b is 2, which means that we have two levels where the first
level corresponds to the decomposition which subdivides the space
into four blocks and the second level corresponds to the decom-
position which subdivides the space into 16 blocks. All blocks in
the same quadrant share the same first two digits. For example, all
blocks in the top left quadrant (1000, 1001, 1010 and 1011) share
the same first two digits of 10. A further decomposition (the third
level) would result with a similar pattern. This recursive nature of
the Morton order can be exploited to allow us to use the same set of
codes in multiple map resolutions where each level adds the num-
ber of Morton code digits we have to consider by two. Consider the
data entries c and d at their original locations as an example. At the
first level, we only need to consider the first two digits. In this case,
c and d share the same first two digits of 00, and hence they are
considered nearby. When we examine blocks at the next level, we
consider the next two digits of c and d, which indicates that they
are no longer considered nearby in this zoom level.

4. DETERMINING DISTINCTIVENESS
In this section, we describe how to identify a set of spatially dis-

tinct data entries from a large geographic dataset. Unlike the ex-
ample given in Table 1, where grouping is done on a discretized
attribute, the continuous nature of spatial data means that grouping
has to be done based on proximity rather than an exact match. We
derive our distinctiveness measure which reflects the importance of
a data entry relative to its surroundings. This cannot be captured
by simply discretizing the data space into grid cells, because two
points that are in proximity but on different sides of a cell boundary
are not grouped together. Consider points a and b (at their original
locations) in Figure 2 as an example. For the second level, these two

In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

Figure 2: Handling boundary cases through shifting.

points a and b are not considered nearby since they are in different
blocks 1100 and 1101, respectively. However, b is much closer to
a than a lot of points that could be in the same block as a.

4.1 Morton Index with Translations
Our proposed method is based on the fact that two points that are

in proximity are likely to be in the same block. Figure 2 shows four
data points, along with translated locations, slightly shifted to the
right. The two data points a and b are in different blocks according
to their original locations, but are in the same block according to
the shifted locations. We can also see that there are a number of
other translations that would yield a similar result. Hence, for each
dataset, we can compute Morton codes with different translations.
Determining whether two points are in proximity can be done by
comparing the two points in all translations, and checking whether
they share the same block for a majority of the translations.

Let us now consider Figure 3, which contains five data entries a,
b, c, d and q under three different translations. The figure shows
that the number nt of translations in which two data points share
the same block has a negative correlation with the distance between
them. For example, a, which is the closest entry to q, shares the
same block as q in all three translations. We can also see that far-
ther entries such as c and d have a smaller number nt of transla-
tions in which they share the same block as q. The lower and upper
bound of the distance from q is given in Table 2 for each possible
value of nt. In order to optimize proximity detection, these offsets
must be “well-interleaved” (Definition 1). In the next subsection,
we describe the way we determine a set of well-interleaved offsets
for multiple levels.

DEFINITION 1 (WELL-INTERLEAVED OFFSETS). Given a

block size w, a set {o1, o2, ..., on} of n translation offsets is well

interleaved if and only if the difference between any two adjacent

offsets (i.e., oi and oi+1) is equal to (w/n).

Table 2: Correlation between the number of shared blocks and

the distance between two points.
Number nt of Distance from q

Example
blocks shared with q Lower Bound Upper Bound

3 0 (1/3) · w a
2 0 (2/3) · w b
1 (1/3) · w w c
0 (2/3) · w ∞ d

To prevent calculating offsets for different levels of decomposi-
tion, we devise a set of offsets that are well-interleaved at all levels
of decomposition. Note that the block size decreases as the level
increases. For example, if the block width at a level d is w, then

the block width at (d + 1) becomes (w/2). As a result, a trans-
lation offset with respect to the block width at one level increases
by a factor of 2 for the next level, which means that we can have
translation offsets that are greater than the block width. Our obser-
vation is that, the arrangement of data entries returns to the original
pattern every time the offset o is divisible by w. Using Figure 3 as
an example, if we perform a third translation (i.e., Translation 3,
where o = 3/3w = w), then we will obtain the same arrangement
of points as in Translation 0. Specifically, each data point will have
the same distances from the left and right boundaries of the block
in which it resides, and if a pair of data points x and y share a block
according to their original locations, then after applying an offset
of w or any multiple of w, they will again share the same block. As
a result, an offset o is equivalent to o any multiple of w as long as
it does not put any data point outside the dataspace.

Figure 3: Data points under three different translations in 1D.

We introduce a notion of modulo offset (Definition 2) to express
an effective offset from a given original offset.

DEFINITION 2 (MODULO OFFSET). The modulo offset can

be defined as a function MO(o, w) of an offset o and a block size

w and is calculated as the floating point modulo (o mod w) nor-
malized by w. That is, MO(o, w) = (o mod w)/w.

According to this notion, we need to find a set {o1, o2, ..., on}
of n offsets such that the modulo offsets in

{MO(o1, w/2z),MO(o2, w/2z), ...,MO(on, w/2z)}

are well-interleaved for any integer value of z from 0 to ∞. To
better explain this concept, let us first consider a “bad example”
(Example 1) of an offset set.

Example 1. Given a set {o1, o2, o3, o4} of a well-interleaved
offset at level 1, which has a block size of w, this implies that
we have an offset set of {0, w

4
, 2·w

4
, 3·w

4
}. At level 2, the corre-

sponding modulo offsets are given as • o1 : MO(0, w/2) = 0;
• o2 : MO(w

4
, w/2) = 1/2; • o3 : MO(2·w

4
, w/2) = 0;

• o4 : MO(3·w
4
, w/2) = 1/2. Since the block size is normalized to

1 unit, the four modulo offsets need to be separated by 1/4 units to
be considered well-interleaved; which is clearly not the case here.

The main problem of the offsets in Example 1 is that o1 and o3
yield the same modulo offset of 0 and o2 and o3 yield the same
modulo offset of 1/2 as the offset with respect to the block size
increases by a factor of 2. Ideally, we want these modulo off-
sets to assume different values in any given level. As a result,
we turn the problem of finding a set of n offsets that work for
all levels to finding values of n such that when the offsets are
well-interleaved at level z they are also well-interleaved at level
(z + 1). In other words, the two expressions

{

0, 1
n
, ..., n−1

n

}

and
{

0, 1·2 mod n

n
, ..., (n−1)·2 mod n

n

}

have to be equivalent.

From our investigation, we find that any odd integer value of n
satisfies the condition above as formally shown in Lemma 1 and its
associated proof.

In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

LEMMA 1. For any odd integer n, the set
{

0, 1
n
, ..., n−1

n

}

= is

equal to
{

0, 1·2 mod n

n
, ..., (n−1)·2 mod n

n

}

.

PROOF. First, we cancel out all denominators n in the equa-
tion in Lemma 1 and try to prove for any odd integer n that
{0, 1, ..., n− 1} = {0, 1 · 2 mod n, ..., (n− 1) · 2 mod n} .
Note that we only want the two sets to be equal. Hence, offset i
at level z does not have to correspond to (i · 2 mod n) at the
next level (z + 1). Proving that the two sets are equal can be done
by showing that the function f(i) = (i · 2 mod n) is a one-
to-one function. In other words, for any two integers i and j in
{0, 1, ..., (n− 1)} where i is not equal to j,

i · 2 mod n 6= j · 2 mod n. (1)

In order for (i · 2 mod n) to be equal to (j · 2 mod n), the dif-
ference |i · 2 − j · 2| has to be a multiple of n. Since both i and j
are less than n, |2 · (i− j)| has to be less than (2 · n). This condi-
tion leaves us with only two options: (0 · n) and (1 · n), which are
also impossible because i is not equal to j and n is an odd number,
respectively. As a result, we can conclude that the inequality (1)
holds for any odd number n.

In our two-dimensional layout problem, the same set of off-
sets is applied to each dimension. For example, if we use
three offsets in each dimension, then 9 translations are ap-
plied to each point (x, y) using translation offset tuples of
{

(0, 0) ,
(

0, 1·w
3

)

, ...,
(

2·w
3
, 2·w

3

)}

, where w is the block size at
level 0. In this way, the degree of similarity between two locations
can be expressed as a “similarity score” ranged from 0 to 9 denot-
ing the number of translation in which they share the same Morton
block. In the next subsection, we show that the same concept can
also be used to represent the degree of distinctiveness of a data
point among its surroundings.

Figure 4: Illustration of how entries a and b get separated at

different levels in 9 different offsets.

In Figure 4, we demonstrate how the 3 × 3 offsets can provide
proximity detection at different levels. In this example, level 1 cor-
responds to the Morton code length of 2, which corresponds to the
level whichs subdivides the data space into the four regions label
as the Morton codes of 00, 01, 11, 10. At each level increment, the
Morton code length is increased by 2 digits. Given a Morton code
length l and two data entries a and b, we use the notion of proxim-
ity score to denote the number of offsets in which a and b share the
same Morton block using the Morton code length of l. At level 1
(i.e., l is 2 digits), the proximity score is 9, since a and b share the
same Morton code for all offsets. As we increase the Morton code

length l, we can see that a and b get separated at different levels.
At the next level (l is 4 digits), we further subdivide each of the
regions in level 0 into four subregions. This subdivision separates
a and b for the offset numbers 0, 3, 6. Hence, the proximity score
of a and b at this level is 6. At level 3, a and b are further separated
by the offset numbers 7 and 8 and the proximity score becomes 4.
Finally, at level 4, a and b occupy the different Morton blocks for
all offsets and the proximity score becomes 0.

As we have shown, the proximity score reflects the degree of
closeness between a pair of data entries based on the number of
times they reside in the same Morton block for a given block size
over all offsets. In the next subsection, we will make use of the
same mechanism to determine the degree of distinctiveness of a
data entry relative to others in its proximity.

4.2 Distinctiveness Score
In this subsection, we describe how to compute distinctiveness

scores from multiple translations of the data points by evaluat-
ing a simple version of theMultiresolution Select-Distinct (MRSD)

query. We can consider the distinctiveness score of a data entry as
a vote count, where each vote indicates whether the data entry is
considered distinct in a particular translation. Table 3 shows data
points where each point is associated with Morton codes for the 9
translations. Two sample translations are given in Figure 5.

The main MRSD query consists of 9 subqueries where each sub-
query performs an independent SELECT DISTINCT subquery on
one of the Morton orders (ordered by the importance score (IMP)).
The result set consists of distinctiveness scores of data points which
represents the number of times a data point is returned as a dis-
tinct result from the subqueries. Assume that the columns id, ps,
and t0 to t8 from Table 3 are stored in a relational database ta-
ble called table_3. An MRSD query can be evaluated using the
following statement.

SELECT id, COUNT(*) AS ds FROM (

SELECT DISTINCT ON (t0) id FROM table_3

ORDER BY t0 DESC, imp DESC

UNION ALL

SELECT DISTINCT ON (t1) id FROM table_3

ORDER BY t1 DESC, imp DESC

UNION ALL

...

UNION ALL

SELECT DISTINCT ON (t8) id FROM table_3

ORDER BY t8 DESC, imp DESC

) temp GROUP BY id;

The UNION ALL operator is used to combine results from 9
SELECT DISTINCT subqueries on 9 different columns t0 to t8.
Note that the subqueries corresponding to columns t2 to t7 are
omitted. Each SELECT DISTINCT operation produces the list of
entries that have the highest importance score in each Morton block
(for a particular translation). The final result set contains the counts
(i.e., distinctiveness scores) of entries returned by the 9 SELECT
DISTINCT subqueries.

A distinctiveness score of 9 guarantees that if we set the image
width/height ǫ for each data entry to (2w/3), then no two entries
with a distinctiveness score of 9 can overlap. This is because the
smallest chessboard distance between two entries with a distinc-
tiveness score of 9 is 2/3 of the Morton block size w, e.g., entries
a and d in Figure 5. If one wishes to allow some overlaps and in-
crease the number of displayed data entries, then we can set the
image width ǫ to be greater than (2w/3). For example, setting ǫ to
w means that in the worst case, we allow a (1/9) of a data entry
to overlap with a data entry with a greater importance. We use this
value of ǫ in our experimental studies (Section 6).

In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

Table 3: Data points (from Figure 5) where each point is associated with a importance score (IMP) andMorton codes from 9 different

translations. The resultant distinctiveness score (DS) for each data point is given in the right most column.

Object
Identifier

(id)

Importance
Score
(imp)

Morton Codes in Different Translations Distinctive-
ness Score

(ds)
(0, 0) (w

3
, 0) (2·w

3
, 0) (0, w

3
) (w

3
, w
3
) (2·w

3
, w
3
) (0,2·w

3
) (w

3
, 2·w

3
) (2·w

3
, 2·w

3
)

(t0) (t1) (t2) (t3) (t4) (t5) (t6) (t7) (t8)

a 0.95 1000 1000 1001 1000 1000 1001 1000 1000 1001 9
b 0.52 1001 1001 1100 1001 1001 1100 1001 1001 1100 3
c 0.47 0010 0010 0011 1000 1000 1001 1000 1000 1001 3
d 0.80 0011 0011 0110 1001 1001 1100 1001 1001 1100 9
e 0.65 0011 0011 0110 0011 0011 0110 1001 1001 1100 1
f 0.45 0011 0011 0110 0011 0011 0110 1011 0011 0110 2
g 0.66 0011 0110 0110 0011 0110 0110 0011 0110 0110 7
h 0.14 0000 0001 0001 0000 0001 0001 0010 0011 0011 8
i 0.90 0001 0100 0100 0001 0100 0100 0011 0110 0110 9

Figure 5: Data points {a, ..., i} under translations T0 and T5

(the other translations can be computed in a similar manner).

5. INDEXING AND QUERYING
We now discuss how to set up a set of indexes to help process

the distinctiveness score query described in Section 4.2. We have
shown how the distinctiveness scores of data entries can be cal-
culated using multiple SELECT DISTINCT subqueries. Hence,
the efficiency with which these subqueries are processed is impor-
tant to the overall performance of the whole query. As stated in
the introduction, our indexes need to allow efficient sampling. To
enable efficient sampling, our indexes need to be able to discard
non-distinct entries without having to consider each entry individu-
ally. In the database context, this can be accomplished by creating a
B-Tree index similar to that described in the example of Section 3.
Specifically, we can create a B-Tree index on the columns holding
the corresponding Morton code and importance score. This index
enables us to skip to the most important entries of each group shar-
ing the same Morton code using a loose index scan [18].

Note that certain RDBMSs do not directly support loose index
scans on SELECT DISTINCT statements but provide an alterna-
tive. In PostgreSQL [4], for example, a loose index scan can be
implemented using the WITH RECURSIVE statement, which pro-
vides us a mechanism for customized index traversal and enables us
to apply arbitrary filters to index traversal process. See Appendix A
for a working implementation. For conciseness, however, we con-
tinue to use the notion of SELECT DISTINCT to denote an oper-
ation of grouping based on one column and selecting the maximum
based on another column from each group.

The described method allows us to efficiently process a SELECT
DISTINCT subquery which covers the entire map area at the zoom
level corresponding to a selected Morton code length. However, in
the actual application environment, the display window may cover
any portion of the total map area and can be at any zoom level.
In the following subsections, we show how these concerns are ad-
dressed and how the main MRSD query is constructed.

5.1 Supporting subregion selection
Given a query bounding box (x1, y1, x2, y2), one way to use the

Morton index for a subregion selection is to convert the bound-
ing box into a Morton code range using the corners (x1, y1) and
(x2, y2) to compute the starting and ending codes, respectively.
Representing a 2D query window using a range on a space filling
curve like the Morton order has the drawback that such a range
is likely to cover many extra blocks, i.e., those outside the ac-
tual query window. In the example shown in Figure 6, the corners
(x1, y1) and (x2, y2) yield a block range of [001100,110100]. We
can see that (i) the number nw of blocks that overlap with the query
window is 15 and (ii) the number nr of Morton blocks in this range
is 41 (the entire length of the z-order curve shown in Figure 6). We
measure the efficiency of a Morton code range as nw/nr , which is
only 37% in this example.

To address the efficiency problem, we apply the quadtree decom-
position principle [5, 16] to recursively split the original range into
more efficient ranges. Our prefix-based splitting algorithm (Algo-
rithm 1) accepts a starting Morton code cs and the ending Morton
code ce and returns a list of Morton code ranges. The first step is
to compute the efficiency of the input range and if it satisfies the
threshold then it can be returned immediately. Otherwise, the al-
gorithm continues. The next step is to compute the common prefix
length l. If the common prefix length is an even number, then we
know that the first digit that differs between the two Morton codes
corresponds to the y dimension. As a result, we split the range
along the x-axis to create one portion above and another portion
below the axis. Otherwise, we split the range along the y-axis to
create left and right portions. Within each portion the common pre-
fix length is extended by one digit. We then continue to split each
of the new ranges by recursive calls of SplitRange(). The query re-
turns the concatenation of the results of the two SplitRange() calls.

Using the example given in Figure 6, we show that our method
can improve the overall efficiency from 37% to 57% in only
two splits. As exemplified in the bottom left corner of the fig-
ure assume the same block labelling scheme as that in Figure 2.
For conciseness, we omit the rest of the Morton block labels.
The resultant ranges of each splitting step is shown in Table 4.
Assume that we set the efficiency threshold to 50%. The first
split happens along the x-axis, which divides the original range
[001100,110100] into [001100,011110] and [100100,110100] con-
taining 19 and 17 blocks respectively. The first range (the bottom
portion) has an efficiency of 10

19
, which is greater than the thresh-

old and hence does not require a further split. The second range
(the top portion) has an efficiency of 5

17
, which is smaller than

the threshold and hence is further split into [100100,110100] into
[100100,100101] and [110000,110100], with efficiencies of 2

2
=

100% and 3
5
= 60%, respectively. These two splits result in three

In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

ranges [001100,011110], [100100,100101] and [110000,110100]
with an aggregate efficiency of 10+2+3

19+2+5
= 57%.

Figure 6: Representation of a query window (x1, y1, x2, y2) us-
ing multiple ranges of Morton blocks.

Algorithm 1: SplitRange(cs, ce)

input : Morton Code Range [cs, ce]
output : A list of ranges
env : Predefined efficiency threshold ET

if Efficiency of the range is greater than ET then1

return [(cs, ce])];2

l← Common prefix length of cs and ce;3

if (l mod 2) is 0 then4

((cs, c1), (c2, ce))← Split (cs, ce) along the x-axis;5

else6

((cs, c1), (c2, ce))← Split (cs, ce) along the y-axis;7

return SplitRange(cs , c1) ++ SplitRange(c2 , ce);8

Table 4: Resultant ranges and efficiency for each of the two

splits with the original range [001100,110100].
Split Input Range Resultant Ranges Eff. Cont.

1 [001100,110100] [001100,011110] 53% No
[100100,110100] 29% Yes

2 [100100,110100] [100100,100101] 100% No
[110000,110100] 71% No

We can also see that we can increase the threshold variableET if
a greater efficiency is desired. For example, an efficiency threshold
of 60% would result with a further split of [001100,011110] along
y-axis will result in an aggregate efficiency of 4+6+2+3

4+7+2+5
= 83%.

The choice of the efficiency threshold ET represents the balance
between the number of Morton code ranges we need to consider
and the number of extra blocks. Setting ET too high will result in
too many Morton ranges, which each incurs a separate SELECT
DISTINCT subquery, while setting ET too low will result in the
inclusion of too many irrelevant results. In our implementation, we
empirically determined that 60% is an appropriate value for ET .

5.2 Supporting multiple zoom levels
To efficiently support multiple zoom levels, we share indexes be-

tween levels. Recall that the length of the Morton code that we
use for a SELECT DISTINCT subquery corresponds to the level
of decomposition, where each decomposition level in turn corre-
sponds to a zoom level of a map API (e.g., Google Maps and Bing
Maps). A brute-force method to handle SELECT DISTINCT sub-
queries at all zoom levels is to create multiple B-Tree indexes with
different Morton code lengths for each zoom level. We devise a
more space-saving solution based on the observation that the re-
sults of SELECT DISTINCT at a zoom level z can be computed
from the results at the next zoom level (z + 1) by grouping blocks
which share the same prefix with the length corresponding to the

Morton code length of zoom level z. Let us reconsider the exam-
ple in Table 3. Assume that zoom levels 0 and 1 correspond to a
Morton code length of 2 and 4 respectively. According to the im-
portance scores in the second column, the statement

SELECT DISTINCT ON substr(t0,1,4) id

FROM table_3

ORDER BY substr(t0,1,4) DESC, imp DESC

returns entries a, b, c, d, h and i for the Morton blocks 1000,
1001, 0010, 0011, 0000, 0001 at zoom level 2. We can use the
returned results to find out the entry at one zoom level above by
grouping these entries according to the first two digits of their Mor-
ton code, which can be done using the following statement.

SELECT DISTINCT ON substr(r.t0,1,2) r.id

FROM (

SELECT DISTINCT ON substr(t0,1,4) id, t0

FROM table_3

ORDER BY substr(t0,1,4) DESC, imp DESC

) r

In this case, we have two entries a and i for the Morton blocks
10 and 00 as our results at zoom level 1.

This additional prefix grouping step allows multiple zoom levels
to share the same index. Note that the amount of work required
to perform this additional step depends on the difference between
the zoom level of the desired result and the zoom level of the index.
Choosing the number of indexed zoom levels is a trade-off between
the query processing time and the space used for indexes. In our
implementation, we find that indexing every 3 zoom levels ensures
a response time suitable for our interactive application.

We now describe how each subquery is formulated. For a given
Morton code length, each subquery handles data retrieval for a
Morton order and a Morton code range. We can consider a sub-
query as the following SELECT DISTINCT statement defined by
four parameters. • $1: one of the 9 offset columns, e.g., [t0, t1,
..., t8] in table_3; • $2: the starting Morton code; • $3: the
ending Morton code; • $4: the Morton code length.

SELECT DISTINCT ON (substr((d).$1,1,$4)) id

FROM

(

SELECT DISTINCT ON (substr($1,1,idx_len($4)))

id, substr($1,1 idx_len($4))

FROM table_3

WHERE substr($1,1,idx_len($4))

BETWEEN $2 and $3

ORDER BY substr($1,1,idx_len($4)) DESC,imp DESC

) as f

Assume that idx_len() is a predefined function which ac-
cepts a Morton code length and returns the Morton code length
corresponding to the next indexed level. An equivalent of this query
statement using WITH RECURSIVE is given in Appendix A.

5.3 Main MRSD Query
The main query combines results from multiple subqueries and

counts the occurrences of each entry, which may appear at most
once per offset. Algorithm 2 illustrates how the main query state-
ment is constructed as the union of multiple subqueries defined in
the previous subsection (line 11). The main part of the statement
(lines 1 and 10), i.e., the distinctiveness score calculation part, is
identical to the basic query statement given in Section 4.2. At line
2, we calculate the Morton code length corresponding to the prox-
imity threshold ǫ (which is given by the width of each image rela-
tive to the entire map width). Formally, in a data space of one unit
square, the Morton code length l corresponds to a Morton block
width w of (2−l). As discussed in Section 4.2, we set the proxim-
ity threshold ǫ to w. Hence, the Morton code length l is calculated
as (−⌊log2 ǫ⌋). The algorithm loops though the 9 offset columns.
At each iteration, we compute Morton code ranges corresponding
to the query window using Algorithm 1 described in Section 5.1.

In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

Algorithm 2: CreateMainMRSDQuery((x1, y1, x2, y2), ǫ)

input : Query window (x1, y1, x2, y2), Proximity threshold ǫ
output : A SQL statement st
st← “SELECT id, count(*) as ds FROM (”;1

l← Compute the Morton code length as (−⌊log2 ǫ⌋);2

foreach col in [“t0”...“t8”] do3

(codes, codee)← Compute Morton code range for4

(x1, y1, x2, y2) with respect to the offset of col;
ranges← SplitRange(codes, codee) ;5

foreach (cs, ce) in ranges do6

st← st ++ “(” ++ Subquery(col, cs, ce, length) ++ “)”;7

if not last subquery then8

st← st ++ “UNION ALL”;9

st← st ++ “) temp GROUP BY id”;10

return st;11

6. EXPERIMENTS
In this section, we compare two image layout solutions.
• Our multiresolution select distinct (MRSD) query, which (i)

performs a loose index scan on each of the 9 Morton orders
to find the most important entry in each Morton block in the
query window, and then (ii) counts the total number of times
each entry occurs as the distinctiveness score of that entry.

• A window-query-based (WQB) method, which (i) retrieves
all data entry in the query window, and then (ii) performs
proximity check to prune data entries that are within a prox-
imity threshold of ǫ from a more important entry.

We used two real datasets downloaded from cloudmade.com.
Our first dataset contains 1,793,622 locations of tourist destinations
(TD) around the world. Our second dataset contains 9,964,607 lo-
cations of general points of interest (POI) around the world. In their
original form, these datasets did not contain scoring information of
how important each data entry is. As a result, we assigned an im-
portance score for each data entry as a random floating point value
between 0 and 1. In order to obtain a realistic set of geographic
query windows, we collected a sample of 2,000 query windows
from newsstand.umiacs.umd.edu, a system for browsing
news articles geographically [6, 10, 15] (see also the related Twit-
terStand system [12]). We transform the coordinates of the queries
and data points using theMercator projection for compatibility with
Google Maps and Bing Maps. For ease of exposition, all coordi-
nates are normalized onto the unit square. The query size distribu-
tion of our query set is given in Figure 7.

We use the example context of web-based mapping applications
to determine the relationships between the query window size SQ

and other parameters. In particular, for each query window with a
size SQ, we calculate the corresponding zoom level z, proximity
threshold ǫ and Morton code length l. The relationships between
these parameters are summarized in Table 5 and can be worked
out as follows. Let us first establish the corresponding zoom level
z for a given value of SQ. Using the Google or Bing Maps API,
at the zoom level z of 0, the map size is (256 × 256) pixels. At
each zoom level increment, the number of pixels is increased by a
factor of 2 for each dimension. That is, the total map size is equal
to (256 · 2z × 256 · 2z) pixels. This means that a typical display
window size of 900 × 900 pixels would cover 77% of the total
map area at the zoom level z of 2. As a result, we associate the
first bin [2−2, 20] with the zoom level z of 2. Each bin in Figure 7
corresponds to one zoom level increment.

The relationship between the zoom level z and the Morton code
length l depends on the image size. Each location is represented
as an image thumbnail with a typical size of (128 × 128) pixels.
At the zoom level z of 2, the image width of 128 pixels in a total

 0

 100

 200

 300

 400

 500

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

C
o
u
n
t

Query Size SQ (Each x value corresponds to a bin with a range of [2
x-2

, 2
x
])

Figure 7: Distribution of query windows by query size

map width of 1024 pixels is normalized to 0.125 units. For each
zoom level increment, the normalized image width is reduced by a
factor of 2 due to the increase in the total pixel width of the map.
We use this normalized pixel width as the proximity threshold ǫ. As
described in Section 4.2, we want to match the proximity threshold
ǫ with the Morton block size. In a unit square, ǫ of 0.125 units is
equal to the width of Morton blocks in a (23 × 23) grid, which
requires the Morton code length l of 6 digits to identify each grid
cell. Hence, we can conclude that z of 2 corresponds to l of 6 digits.
And at each zoom level increment, the length l is increased by 2
digits as ǫ is reduced by a factor of 2.

Table 5: Relationships between the query size SQ, zoom level z,
proximity threshold ǫ and Morton code length l.

Query Zoom Proximity Code
size SQ Level z Thresholds ǫ Length l

[2−2, 20] 2 2−3 6
[2−4, 2−2] 3 2−4 8

..
.

..
.

..
.

..
.

[2−26, 2−24] 14 2−15 30

Experiments were conducted on an Intel i7-2720QM @ 2.20
GHz with 16GB RAM. We used PostgreSQL 9.1.4 to store the data
entries and to index the Morton codes. For the MRSD query, we
index the Morton code lengths of 6, 12, 18, 24 and 30 digits, which
correspond to the zoom levels of 2, 5, 8, 11 and 14, respectively.
For WQB, we used the spatial index in the PostGIS extension to
index the coordinates of the data entries to accommodate window
query processing. Query statements were prepared in a Java pro-
gram connecting to a local PostgreSQL server via JDBC 4.1.

6.1 Performance
We compared MRSD to WQB using the three following mea-

sures. The first measure is the query response time. For MRSD,
the query response time includes the time taken to convert a query
window into ranges of Morton codes, statement preparation time,
and the actual query processing time. ForWQB, the query response
time includes the window query statement preparation, data retrie-
veal and overlap removal. The second measure is the number of en-
tries returned from the query. For WQB, this measure corresponds
to the number of entries in the query window. For MRSD, this mea-
sure corresponds to the number of data entries returned from the
main MRSD query, which includes data entries of all distinctive-
ness scores 1 to 9. The third measure is the number of displayed
entries. WQB selects entries to display by iterating through all re-
trieved entries to find entries p such that (i) does not have other
entries nearby (entries within a proximity threshold of ǫ); or (ii)
all nearby entries are less important than p. For MRSD, we dis-
play only data entries with a distinctiveness score of 9 (the hightest
possible score) to minimize the overlaps between thumbnails.

Figure 8(a) shows the total response time for the TD dataset. We
can see that the performance of WQB drastically degrades as the
query size increases. This is because an increase in the query size

In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

 0.01

 0.1

 1

 10

 100

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

T
im

e
 (

s
e

c
)

Query Area (Each x value corresponds to Bin [2
x-2

, 2
x
])

WQB
MRSD

(a) Query response time (TD)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

N
u

m
b

e
r

o
f

E
n

tr
ie

s

Query Area (Each x value corresponds to Bin [2
x-2

, 2
x
])

WQB (Retrieved)
MRSD (Retrieved)
WQB (Displayed)

MRSD (Displayed)

(b) #Retrieved and #displayed entries (TD)

Figure 8: Results for the TD dataset (1.79 million entries)

 0.01

 0.1

 1

 10

 100

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

T
im

e
 (

s
e

c
)

Query Area (Each x value corresponds to Bin [2
x-2

, 2
x
])

WQB
MRSD

(a) Query response time (POI)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

N
u

m
b

e
r

o
f

E
n

tr
ie

s

Query Area (Each x value corresponds to Bin [2
x-2

, 2
x
])

WQB (Retrieved)
MRSD (Retrieved)
WQB (Displayed)

MRSD (Displayed)

(b) #Retrieved and #displayed entries (POI)

Figure 9: Results for the POI dataset (9.96 million entries). Note that WQB failed to produce results for the last three bins due to

excessive memory consumption.

provides more data entries for WQB to retrieve and consider, while
the image size restriction keeps the number of displayed images
stable as shown in Figure 8(b). In other words, for a large query
window, WQB retrieves much more than what is really needed to
display. The performance of MRSD, on the other hand, is unaf-
fected by changes in the query size. As the query size SQ increases
and the zoom level decreases, the size of Morton blocks increases
at the same rate as SQ. Consequently, the number of Morton blocks
we have to consider remains unchanged relative to SQ. MRSD uses
a loose index scan to prune data entries that are in proximity of
more important ones for each Morton block in range. Hence, the
query cost of MRSD depends on the number of considered Morton
blocks in the indexes rather than the query size SQ. Figure 8(a) also
shows the sawtooth pattern of the total response time with troughs
(local minimums) at bins [2−2, 2−0], [2−8, 2−6], [2−14, 2−12] and
[2−20, 2−18]. This is because these bins correspond to the indexed
zoom levels of 2, 5, 8 and 11 where query results can be directly
obtained from one of the indexes. To obtain results from a non-
indexed level z1, we have to combine results from the next indexed
level z2. The number of Morton blocks we have to consider in-
creases as the difference between z1 and z2 increases.

Figures 9(a) and 9(b) show results from the POI dataset, which
is approximately 5.6 times as large as TD. A greater density of
data entries means that WQB has to retrieve more data entries for
each window query as shown in Figure 9(b). Figure 9(a) shows that
the total response times of WQB for the POI dataset are almost
one order of magnitude greater than the corresponding response
times for TD due to the increase in the number of data entries. The
response time of MRSD, on the other hand, remains unchanged in
comparison to that of the TD dataset. This again demonstrates the
usefulness of our indexes which allow us to prune data entries that
are in proximity of more important ones.

6.2 Layout Consistency
We use precision and recall to measure the layout consistency

of MRSD with respect to WQB. Let nm be the size of the MRSD

result set, nw be the size of theWQB result set, and ni be the size of
the intersection of the two result sets. Then precision is ni/nm and
recall is ni/nw . In this case, precision indicates how often MRSD
results are truly non-overlapping, and recall indicates how often
truly non-overlapping entries are returned by MRSD.

Figures 10(a) and 10(b) shows the precision and recall of the
TD and POI datasets. The fact that the precision is approximately
75% indicates that around 25% of the results produced by MRSD
are those that overlap with more important ones. However, as dis-
cussed in Section 4, each of these overlaps can occupy at most 1

9
of the thumbnail area representing the data entry. The fact that the
recall is approximately 85% means that around 15% of the non-
overlapping results returned by WQB are not included in the re-
sult set of MRSD. One way to improve the recall is to reduce the
distinctiveness score threshold from 9 to a lower value. However,
this may negatively affect the precision by introducing more over-
laps. Setting the value of distinctiveness score threshold is there-
fore a trade-off between precision and recall, or between overlap
minimization and spatial fullness maximization, respectively. On
the other hand, if we wish to improve the precision (i.e., reducing
overlapped entries), we can increase the proximity threshold ǫ by
decreasing the corresponding Morton prefix length at each level. As
discussed in Section 4.1, by ensuring that the image width/height
ǫ is not greater than two thirds of the block width w, we can com-
pletely eliminate overlaps and hence obtain a precision of 100%.

7. CONCLUDING REMARKS
We proposed an efficient layout solution for selecting spatially

distinct data entries from a large geographic point set. The nov-
elty of our method lies in an ensemble of interrelated indexes, and
a query algorithm which performs separate SELECT DISTINCT

subqueries on these indexes and combines the results of these sub-
queries to determine the degree of spatial distinctiveness of each
entry in a query window.

Our proposed method satisfies the design objectives given in
Section 1. Specifically, our measure of distinctiveness reflects the

In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Redondo Beach, CA, USA, November 2012.

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

P
re

c
is

io
n

/R
e

c
a

ll

Query Area (Each x value corresponds to Bin [2
x-2

, 2
x
])

Recall
Precision

(a) Precision and recall for the TD dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

P
re

c
is

io
n

/R
e

c
a

ll

Query Area (Each x value corresponds to Bin [2
x-2

, 2
x
])

Recall
Precision

(b) Precision and recall for the POI dataset

Figure 10: Precision and recall. Note that for the POI dataset, the results for the last 3 bins are omitted, since WQB failed to produce

results in those query sizes.

importance of each data entry relative to its surroundings. We can
use it to remove overlaps between image thumbnails represent-
ing the data entries by setting a distinctiveness threshold to dis-
card data entries with a low distinctiveness score, since these en-
tries are likely to be in proximity of a more important one causing
their image thumbnails to overlap. The design of our distinctiveness
measure ensures that it satisfies the first three objectives, namely
it minimizes overlaps, respects relative importance of entries, and
maximizes spatial fullness. With regard to the fourth objective, our
method also provides panning and zooming consistency, since the
distinctiveness score of each entry does not change when panning
and can only increase when zooming in. As discussed in Section 5
and demonstrated by the experimental results in Section 6, our
method supports efficient index scans hence it satisfies the fifth ob-
jective. Appendix A shows how we can incorporate filtering condi-
tions (the sixth objective) into our query processing method.

We compared our solution to a competitive window-query-based
method. For a dataset of more than 9 million data points, we
showed that our solution is capable of providing a respond time
suitable for interactive applications where most query results are
returned in less than a second. The competitive method on the other
hand spends more than 4 seconds as the query window starts to oc-
cupy more than 2−8 of the total map area and the query response
time consistently increases as the query window size increases. The
experimental results showed that our solution is more scalable with
respect to the sizes of the query window and dataset and produces
results comparable to the window-query-based method.

ACKNOWLEDGEMENTS. This work was supported in part by
the National Science Foundation under Grants IIS-07-13501, IIS-
08-12377, CCF-08-30618, IIS-09-48548, IIS-10-18475, and IIS-
12-19023.

8. REFERENCES
[1] W. G. Aref and H. Samet. Efficient processing of window queries in

the pyramid data structure. In PODS, pages 265–272, 1990.
[2] W. G. Aref and H. Samet. Hashing by proximity to process duplicates

in spatial databases. In CIKM, pages 347–354, 1994.
[3] S. Doddi, M. V. Marathe, A. Mirzaian, B. M. E. Moret, and B. Zhu.

Map labeling and its generalizations. In SODA, pages 148–157, 1997.
[4] T. P. G. D. Group. Postgresql 8.4 Official Documentation - volume iii.

Server Programming. Fultus Corporation, 2009.
[5] H. Samet. Foundations of Multidimensional and Metric Data Struc-

tures. Morgan-Kaufmann, San Francisco, 2006.
[6] H. Samet, M. D. Adelfio, B. C. Fruin, M. D. Lieberman, and B. E.

Teitler. Porting a web-based mapping application to a smartphone
app. In GIS, pages 525–528, 2011.

[7] H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R. Hjaltason,
F. Morgan, and E. Tanin. Use of the SAND spatial browser for digital
government applications. Commun. ACM, 46(1):61–64, 2003.

[8] H. Samet, B. C. Fruin, and S. Nutanong. Duking it out at the smart-
phone mobile app mapping api corral: Apple, Google, and the com-
petition. In MobiGIS, 2012.

[9] H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. A ge-

ographic information system using quadtrees. Pattern Recognition,
17(6):647–656, 1984.

[10] H. Samet, B. E. Teitler, M. D. Adelfio, and M. D. Lieberman. Adapt-
ing a map query interface for a gesturing touch screen interface. In
WWW (Companion Volume), pages 257–260, 2011.

[11] J. Sankaranarayanan and H. Samet. Images in news. In ICPR, pages
3240–3243, 2010.

[12] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and
J. Sperling. Twitterstand: news in tweets. In GIS, pages 42–51, 2009.

[13] A. D. Sarma, H. Lee, H. Gonzalez, J. Madhavan, and A. Y. Halevy.
Efficient spatial sampling of large geographical tables. In SIGMOD
Conference, pages 193–204, 2012.

[14] C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a geographic
information system based on quadtrees. IJGIS, 4(2):103–131, April–
June 1990.

[15] B. E. Teitler, M. D. Lieberman, D. Panozzo, J. Sankaranarayanan,
H. Samet, and J. Sperling. Newsstand: a new view on news. In GIS,
pages 18:1–18:10, 2008.

[16] H. Tropf and H. Herzog. Multidimensional range search in dynami-
cally balanced trees. Angewandte Informatik, 23(2):71–77, 1981.

[17] F. Wagner and A. Wolff. An efficient and effective approximation al-
gorithm for the map labeling problem. In ESA, pages 420–433, 1995.

[18] M. Widenius and D. Axmark. MySQL Reference Manual. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1st edition, 2002.

Appendix A.
To enable a loose index scan in PostgreSQL, the final SELECT

DISTINCT statement in Section 5.2 is rewritten as a WITH

RECURSIVE statement. The query performs an index scan on the
specified column ($1) starting at the first Morton code ($2) and ter-
minating at the last one ($3) for a given Morton code prefix length
($4). Note that here we introduce a fifth parameter ($5), which can
be used as a filtering condition for the index scan.

SELECT DISTINCT ON (substr((d).$1,1,$4)) id FROM

WITH RECURSIVE t AS (

SELECT d FROM (

SELECT d FROM poi_table d

WHERE substr($1, 1, idx_len($4)) <= $3

AND $5

ORDER BY substr($1, 1, idx_len($4)) DESC,

score DESC

LIMIT 1

) q

UNION ALL

SELECT

(SELECT di FROM poi_table di

WHERE (substr(di.$1, 1, idx_len($4))

> substr((t.d).$1, 1, 6))

AND substr(di.$1, 1, idx_len($4)) >= $2

AND $5

ORDER BY substr(di.$1,1,idx_len($4)) DESC,

di.score DESC

LIMIT 1)

FROM t

WHERE d IS NOT NULL

)

SELECT d FROM t WHERE d IS NOT NULL

) AS f;

