
The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily
reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not
constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review
process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should
state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2001. Title of Presentation. ASAE Meeting
Paper No. xx-xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical
presentation, please contact ASAE at hq@asae.org or 616-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA).

Paper Number: 01-3072
An ASAE Meeting Presentation

Quadtree-Based Triangular Mesh Generation for Finite Element Analysis of

Heterogeneous Spatial Data.

Prabhakar Reddy GVS

Biological Resources Engineering Department

University of Maryland at College Park

College Park, MD, 20742.

Email: reddyg@eng.umd.edu

Hubert J. Montas
Biological Resources Engineering Department

University of Maryland at College Park

College Park, MD, 20742.

Hanan Samet
Computer Science Department

University of Maryland at College Park

College Park, MD, 20742.

Adel Shirmohammadi
Biological Resources Engineering Department

University of Maryland at College Park

College Park, MD, 20742.

Written for presentation at the
2001 ASAE Annual International Meeting

Sponsored by ASAE
Sacramento Convention Center

Sacramento, California, USA
July 30-August 1, 2001

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily
reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not
constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review
process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should
state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2001. Title of Presentation. ASAE Meeting
Paper No. xx-xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical
presentation, please contact ASAE at hq@asae.org or 616-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA).

Abstract. Applying mathematical models to practical situations often requires the use of
discrete geometrical models of the solution domain. In some cases destructive measurements
of the objects under examination is acceptable, but in several areas of research the
measurements comes from imaging techniques such as X-ray, computer assisted tomography
(CAT), magnetic resonance imaging (MRI), satellite imagery, or aerial photographs. A crucial
preprocessing step for such analysis involves the extraction of measurements/features from
these images, which form the basis of geometrical models and finite element mesh. In this
paper, we describe a simple algorithm for triangulating the solution domain represented in
images without a need for such prior feature extraction, albeit such a step may reduce the size
of the resulting mesh. The proposed algorithm generates quality triangular meshes with: (a)
provably good angle bounds between 26.565o and 90o, and (b) an aspect ratio of at most 2.5.

The proposed mesh generation algorithm (imageMesher) extends the mesh generation
technique of Bern et al. (1990) to images as input. Previous algorithms with shape and size
bounds have all been based on triangulating domains that are either: (a) vertex set, (b) lines, (c)
polygons, or (d) planar straight line graphs (PSLGs). The proposed algorithm matches their
bounds, but uses a fundamentally different kind of input. The implementation of the algorithm is
discussed and the theoretical bounds on the size and shape of the triangular patches are
evaluated. As an intermediate result, we also describe an improved algorithm for constructing
balanced quadtree. Finally, we illustrate real-time applications of the proposed approach, which
demonstrates its ability to use the solution domain described in images to fit directly into the
finite element analysis.

Keywords. finite element method (FEM), mesh generation, quadtree, balanced quadtree,
Delaunay triangulation, image analysis.

1

Quadtree-Based Triangular Mesh Generation for Finite Element
Analysis of Heterogeneous Spatial Data.

Prabhakar Reddy G.V.S., Hubert J. Montas, Hanan Samet and Adel Shirmohammadi

Biological Resources Engineering Department
(except H. Samet: Computer Science Department)

University of Maryland at College Park
College Park, MD, 20742.

Introduction

A necessary early step in finite element method is mesh generation, and the most
versatile type of two-dimensional mesh is an unstructured triangular mesh. A mesh, in
general, is a spatial discretization of geometric domain (usually, ℜ2 and ℜ3) into small
simple shapes (simplices), typically triangles or quadrilaterals in two-dimension (2D) and
tetrahedra or hexahedra in three-dimension (3D). Since late 1980's, there has been
tremendous advancement in mesh generation. Presently, even the most complicated
domains can be meshed gracefully with proven theoretical bounds using the algorithms
described in (Bern et al., 1990; Chew, 1989; Mitchell, 1994; Preparata and Shamos,
1985; Ruppert, 1993 and 1995). As far as two dimensional triangular unstructured mesh
generation is concerned, significant amount of work has been be dedicated on
triangulating domains like: (1) vertex sets, (2) lines, (3) simple polygons, and (4) planar
straight line graphs (PSLGs). Since, most of the solution domains associated with
physical processes can be represented using a combination of either: points, lines,
polygons, or PSLGs these algorithms can be used for generating quality meshes, thus,
facilitating the numerical simulation of such processes using numerical techniques.

However, with the advent of the sophisticated imaging techniques research community
begun to focus on using images to study several physical phenomena. For example, the
growth of tumor - using computer assisted tomography (CAT scans), spatial variation of
geophysical parameters - using satellite imagery, ground penetrating radar, etc. The
absence of appropriate mesh generation algorithm, which respects the heterogeneous
geometric domains represented in images, has compelled researchers to use a regular
grid for spatial discretization in their numerical simulations. (We are unaware of any
theoretical papers on this subject). In most instances, the pixels of the raster images are
used as the underlying grid in such numerical simulations (Tracqui et al., 1995; Montas
et al., 2000). The motivation of this paper has been the will to design a robust and
efficient algorithm capable of handling domains of arbitrary heterogeneity represented in
(preprocessed) digital images. The ultimate goal is to provide a quality triangular mesh
generation tool, which can adapt itself to the heterogeneous boundaries in images.

This paper is divided into four sections. Section 1 recalls the terminology used with the
quadtree-based decomposition and summarizes the general scheme of the quadtree-
based Delaunay mesh generation. Section 2 proposes the improved balanced quadtree

 2

algorithm along with imageMesher algorithm. The algorithm we describe in this paper
extends the algorithm of Bern et al. (1990) for triangulating images, unlike PSLGs as the
input. We then prove that the all the triangles in the output have angles bounded
between 26.56o and 90o and with aspect ratio1 of at most 2.5. As an intermediate result,
we also describe an improved algorithm for building a balanced quadtree. In the
penultimate section, two application examples are described to emphasize the practical
utility of the proposed algorithm. A brief section concludes the paper by mentioning the
possible extensions of this work.

1.Background

In this section, we recall the basic terminology related to quadtree-based Delaunay
triangulation technique. We also discuss the technique of generating quality triangular
mesh using quadtree-based techniques, first introduced by Bern et al. (1990). The
ensuing subsection(s) expands those topics pertinent to the content of this paper. For
further details, the two books by Samet (1990(a) and 1990(b)) provide extensive
information of the various types of quadtrees and their applications. See the lecture
notes of Shewchuk (1999) and the chapter of Bern and Plassmann (1999) for various
methodologies and recent developments in unstructured mesh generation.

1.1.Terminology

According to Samet (1990(a)), quadtree is proposed as a representation for raster
images because its hierarchical nature facilitates the performance of a large number of
operations (e.g. quadrant creation, finding cells adjacent to a given cell in a given
direction, finding cell(s) that contain a particular value, etc.) close to optimal
computational cost. The basic concept of the quadtree decomposition consists of
enclosing the domain Ω into a bounding box Β(Ω), usually a square, corresponding to
the root of the spatial decomposition tree. This box is subdivided into four equally sized
sons, one in each of the four directions: North-East (NE), North-West (NW), South-West
(SW), and South-East (SE), each of which is in turn recursively subdivided until a
stopping criterion2 is reached based on the local geometry of the domain (e.g., the local
curvature of the boundary) or user-defined maximum refinement. Any node that is not
subdivided is a leaf node and the subdivided cells are non-leaf nodes. The corner of a
node is the vertex of the square and the edges connecting consecutive corners are the
sides of the node. The size of a node c is the length of the side of c. Two nodes are said
to be adjacent if they share an edge and any node in the quadtree has four possible
edge-neighbors, one in each of the four cardinal directions (North - N, East - E, West -
W, and South - S). We say that the side of the node is split if either of the neighboring
nodes sharing it is split. The level of a node corresponds to its depth in the tree
structure, i.e., the number of subdivisions required to obtain the node. It is conventional
practice to represent the root at level 0.

1 Aspect ratio of an element is the ratio of its maximum to minimum width, width being the distance
between parallel supporting hyper-planes. For a triangle, the aspect ratio of a triangle is the length of the
longest edge divided by the length of the shortest altitude.
2 In imageMesher algorithm, a node is subdivided until all the pixel(s) inside it have the same

intensity/value.

 3

At each stage of recursive decomposition, any node can be subdivided into four sub-
cells. Hence, the resulting decomposition of the tree may be quite unbalanced and a
triangulation of such an unbalanced tree could result in ill-shaped elements in the final
output mesh. In order to overcome this, it is a normal practice to impose the balancing
condition: no node in the quadtree should be adjacent to one less than one-half its size.
This condition is known as 2:1 rule, first introduced by Yerry and Shephard (1983).
Figure 1 shows an example of a quadtree subdivision that has been balanced after
applying the 2:1 rule. Solid lines show the original quadtree subdivision whereas its
refinement is shown by dotted lines. From Figure 1, one may concluded that the
complexity of a balanced quadtree subdivision is quite higher than that of its unbalanced
version. But it has been proved that the balancing can be done efficiently and that a
balanced quadtree contains no more than the eight times as many nodes as its non-
restricted counterpart (Moore, 1992). Restricted quadtrees were initially used in terrain
modeling and computer graphics (Herzen and Barr, 1987). However, investigators
realized that balanced quadtrees could be a useful intermediate step towards generating
quality triangular meshes (Bern et al., 1990; Tanaka 95).

Figure 1. An example illustrating the region quadtree and balanced quadtree

decomposition of an image. (a) A 16 x 16 image, (b) its quadtree decomposition, and (c)
balanced quadtree decomposition after the imposing 2:1 rule. Notice that the nodes

labeled A and B in (b) are divided into four sub-blocks in (c). The original linear quadtree
subdivisions are shown as solid lines whereas the refinement is shown as dotted lines.

 4

The triangulation phase usually involves the well-known Delaunay Triangulation. In 2-D,
the Delaunay triangulation of a set of vertices {V} is a set of triangles {T}, whose: (a)
vertices collectively are {V}, (b) interiors do not intersect with each other, (c) union is the
convex hull of {V}, and (d) every triangle in the {T} intersects only at the vertices. Figure
2.1(b) shows Delaunay triangulation of a 2D vertex set shown in Figure 2.1(a). We can
also define Delaunay triangulation of {V}, first introduced by Delaunay (1934), as the
graph defined by the empty circle condition: a triangle abc, with vertices va vb vc, appears
in Delaunay triangulation DT(V) if and only if its circumcircle encloses no other points of
{V}. Figure 2(c) shows the triangulation satisfying empty-circle condition. However, there
is an exception for the latter definition when the points lie at special position: if an empty
circle passes through four or more points of {V}, we can complete the triangulation
arbitrarily. Figure 3 shows the exceptional case, with six cocircular vertices, and the
various possible arbitrary triangulations. Hence, DT(V) is a triangulation of the convex
hull of {V} and is unique if any only if no four points, or more, in the given vertex set, {V},
are co-circular. Another promising feature of Delaunay triangulation is: of all the possible
triangulations for a given vertex set Delaunay triangulation is the only triangulation that
maximizes the minimum internal angles. Since it is desirable to have the triangles in the
mesh closer to equilateral triangle, Delaunay triangulation has been the most celebrated
approach in 2-D triangular mesh generation. There are several Delaunay triangulation
algorithms available today, some are theoretically elegant and some are better for
practical implementation. Here we cite the well-known algorithms:

• Edge Flipping (Sibson, 1973).
• Divide-and-Conquer (Shamos and Hoey, 1975; Guibas and Stolfi, 1985; Lohner,

1988; Chew, 1989)
• Alternating Divide-and-Conquer (Dwyer, 1987)
• Sweepline (Fortune, 1987)
• Regular Grid and Sparse Matrix (Fang and Piegl, 1992 and 1993)
• Incremental Insertion (Bowyer, 1981; Watson, 1981; Joe, 1991,1993, and 1995;

Rajan, 1994)
• Randomized Incremental Insertion (Seidel, 1972; Clarkson and Shor, 1989; Chew,

1990; Guibas et al., 1992; Devillers, 1998)

Delaunay triangulation by itself does not generate a satisfactory mesh because of the
following reasons: (1) elements of poor quality may appear, and (2) input boundaries
may fail to appear in the final mesh. Both these problems have been treated in the
literature. The former problem is typically dealt by adding additional vertices at the
circumcenters and centriods of the ill-shaped elements. It is at times also treated with
the advancing front approach (Barth and Jesperson, 1988; Mavriplis, 1991).

1.2.Quadtree3 based mesh generation

The quadtree mesh generator due to Bern et al. (1990) starts by enclosing the entire
domain, Ω, inside an axis-aligned square (2n x 2n dimension). The provably good mesh
generation algorithm recursively divides each node(s) until each leaf node contains at
most one connected component of the domain's boundary, with at most one vertex. This
splitting phase was improved (Mitchell and Vavasis, 1992) by "cloning" those squares

3 In this section, quadtree refers to a point/line quadtree depending on the nature of the input.

 5

 (a) (b)

(c)

Figure 2. Illustration of Delaunay triangulation of a vertex set. (a) Vertex set. (b)
Delaunay triangulation of the vertex set. (c) Delaunay triangulation with empty-

circumcircles.

Figure 3.Three ways to define the Delaunay diagram in the presence of cocircular

vertices. (a) Include all Delaunay edges, even if they cross. (b) Exclude all crossing
Delaunay edges. (c) Choose a subset of Delaunay edges that forms a triangulation.

 6

that intersects Ω in more than one connected component, so that each copy contains
only a single connected component of the domain. The algorithm then splits squares
near the vertices of Ω two more times, so that each vertex lies within the buffer zone of
equal size squares. Quadtree squares are then wrapped and cut to conform the
boundary. Finally, the cells of the wrapped quadtree are triangulated so that all angles
are bounded away from 0o. Every triangle in the mesh generated using this technique
will have an aspect ratio of at most 4 and the number of triangles in the output will be a
constant factor of optimal: the minimum number of triangles in any triangulation of the
given input achieving the same aspect ratio bound.

This was the first triangulation technique that guaranteed theoretical size optimality and
bounded aspect ratio. As first presented, the algorithm assumes Ω to be a polygon with
holes. However, the approach can be easily adapted for multiple polygons and curved
domains. In fact, this approach handles curved domains more gracefully than the
Delaunay refinement algorithm approach (Ruppert, 1993 and 1995), because the
splitting phase can automatically conform to the curvature of the domain.

Neugebauer and Diekmann (1996) extended the results of Bern et al. (1990) by
replacing the squares of the quadtree with rhomboids so that the triangles in the final
mesh tend to be nearly equilateral. Assuming that there are no small input angles,
polygonal domains with polygonal holes and isolated interior points can be triangulated
with all the angles between 30o and 90o. Remarkably, provably good mesh generation
algorithm has been extended to polyhedra of arbitrary dimensionality based on octrees
(and their higher dimensional brethrens), which triangulates polyhedra producing size-
optimal meshes with guaranteed bounds on element aspect ratios (Mitchell and Vavasis,
1992, 1996 and 2000). However, the generalization to more than two dimensions is quite
intricate and the theoretical bounds on element quality are not strong enough to be
entirely satisfying in practice.

2. imageMesher

This section expands on the different procedures, data processing steps, and general
setup of triangular mesh generation for images. The entire process of mesh generation
for images can be subdivided into four phases: (a) building quadtree from a raster
image, (b) balancing the quadtree by imposing the 2:1 rule, (c) triangulation of the
balanced quadtree, and (d) post-processing. These steps are similar algorithm given by
Bern et al. (1990) for PSLGs. For further discussion, we assume that: (a) the input of the
problem is an arbitrary raster image4 I which is of dimension [0:U] x [0:U], where U = 2n
for some positive integer n, and (b) the compression technique of the image is known
and can conveniently extract the pixel value. Typically, the input image that comes from
an imaging device is preprocessed using: (a) commonly available picture editors and/or
(b) image analysis toolbox. However, this topic is not dealt in this paper. For details on
preprocessing of images, refer to Montas et al. (2001). It should be mentioned here that

4 A raster image is generally defined to be a rectangular array of regularly sampled values, known as pixels.

Each pixel (picture element) has a value associated with it, generally specifying a color, in which the
pixel should be displayed.

 7

the type of quadtree referred in all the ensuing sections is a region quadtree, unless
mentioned otherwise.

2.1 Building a quadtree from raster

The problem of converting a raster-scanned image into a linear quadtree has been dealt
in literature quite extensively (Samet, 1980(a), 1980(b), 1981, 1984(a), and 1990(a);
Burton, 1986;Goel and Venkatesh, 1991; Sivan, 1996). The implementation we use is a
variant of ALGORITHM G-V (Goel and Venkatesh, 1991) with appropriate modifications
made for accommodating a color image as the input instead of a binary image. The
modified ALGORITHM G-V, hereafter referred to as MGV (Image I), takes I as the input
and returns a linear quadtree, QT(I). In view of the constraints of the space, the
algorithm has been skipped.

2.2 Building a balanced quadtree

In this phase, we impose the 2:1 balancing rule on the quadtree constructed from the
input image. The balanced quadtree for an image, BQT(I), is generated from QT(I)
using a modified algorithm proposed by Sivan (1996). See also the algorithm proposed
by Sivan and Samet (1992). The pseudocode is described in Figure 4.

The procedure BalancedQuadtree takes a linear quadtree constructed from an raster
image as an input and then loads the entire collection of leaf nodes of size greater than
two and less than the size of root into a linear list, L. The procedure then enters a loop
until the list L is empty. During each cycle of the loop, the procedure pops out the top-
most node, µ, from L and fetches all its edge-neighbors into another linear list, NL. The
next step in the procedure performs a check for 2:1 balancing rule on the current node µ.
If the node has to be split, then µ is made as a non-leaf node and its four newly created
sons are added to the initial linear list L. Before inserting the newly created nodes into L,
a size check on µ is performed to ensure that the only potential nodes are being stored
in it. Since, µ has been split the neighbors (stored in the linear list NL) are also checked
for 2:1 balancing rule. The above process if repeated for all those neighbors in the list
NL of size greater than two and less than the size of root node.

The BalancedQuadtree is essentially same as the algorithm described by Sivan (1996),
except for the “extra size-filtering” conditions imposed at lines 4, 10, 13, 17, and 19 (refer
to the line numbers marked with an asterisk in Figure 4). According to Sivan (1996), all
the nodes of the quadtree, without any size-filtering criterion, are loaded into the
dynamic linear list L. This leads to unnecessary increase in processing time, because
nodes of size 1 and 2 will never be split. Hence by eliminating such nodes, we can: (a)
reduce the number of nodes to be processed, and (b) avoid the expensive step of finding
the edge-neighbors for a node (recollect that for checking if a node is to split, we first
need to fetch all it's edge neighbors). The balanced quadtree construction time using
both the algorithms is compared in Table 1. In Table 1, BQT1 is the algorithm proposed
by Sivan (1996) and BQT2 is the proposed algorithm with the size-filtering steps. For
illustration purpose, the algorithms were compared on: (a) raw CBV-MR image of a
normal brain (refer to Figure 7(a)) and (b) preprocessed image of normal brain (refer to
Figure 7(b)). The execution/construction time is reported in seconds.

 8

Procedure BalancedQuadtree (Quadtree QT(I))

 1. Input: A quadtree QT(I) .
2. Output: A balanced version of QT(I) .

3. begin

 4.∗ Insert all the leaf nodes of QT(I) whose size is greater than two and less
 than the size of root node into a linear list, L.
 5. while L is not empty do begin
 6. Remove a node, µ, from L.
 7. Find the edge-neighbors of µ and load them into a linear list, NL.
 8. if the size of any of the neighbor's of µ is less than
 one-half the size of µ then
 9. Make µ as non-leaf node with four children,

which are the sons of µ.
 10.* if size of µ is greater than 4 then
11. Insert the four new leaves into L.
12. end if
 13.∗ Retain only those neighbors in NL whose size is greater

than two and less than the size of root node.
14. while NL is not empty do begin
15. Remove a node, µ, from NL.
16. Find the edge-neighbors of µ.
17.* if the size of any of the neighbor’s of µ is less than

 one-half the size of µ then
18. Make µ as non-leaf node with four children, which

 are the sons of µ.
19.* if size of µ is greater than 4 then
20. Insert the four new leaves into L.
21. end if
 22. end if
 23. end while
 24. end if
25. end while
26. return QT(I) .

Figure 4. Procedure BalancedQuadtree which converts a linear quadtree into a balanced
quadtree, BQT(I).

 9

The results clearly demonstrate the following facts: (a) the proposed balanced quadtree
algorithm works faster than Sivan’s algorithm (1996), and (b) a meaningful
preprocessing step prior to discretization can help in reducing the number of triangular
elements in the final mesh.

Table 1: Comparison of the constructing balanced quadtree using Sivan’s algorithm
(BQT1) and BalancedQuadtree algorithm (BQT2). The execution times were obtained by
running both the algorithms, under similar conditions, implemented in Java™ 2 on an
Intel® PII desktop operating on SuSe® Linux 7.0 (kernel 2.2.16).

Construction Time
(secs.)

Input Image Size
(pixels)

Number of
Colors BQT1 BQT2

Brain
(refer to Figure 7(b)) 270x315 2 15.771 10.025

Brain MRI
(refer to Figure 7(a)) 267x307 160 421.667 140.002

2.3 Triangulation

In the triangulation phase all we need to do is to triangulate the leaf nodes of BQT(I).
There is more than one approach to accomplish this task. Nevertheless, here we
describe the Delaunay triangulation technique, refer to the work of Sivan (1996) for an
alternative approach.

In Section 1.1, we listed several practical Delaunay triangulation algorithms, which take
a set of vertices as input and return a set of triangles. Hence, our foremost task in this
phase would be to construct a set of vertices from the balanced quadtree, BQT(I). This is
accomplished by, building a unique sorted vertex list, SV(L), comprising of the four
corners of all the leaf nodes in BQT(I). Recall that one or more nodes share a corner,
hence the need to construct a "unique" sorted vertex list. Once we have SV(L), we can
construct Delaunay triangulation of such a list with the aide of any one of the algorithms
listed in Section 1.1. For convenience, the Delaunay triangulation procedure is called as
DelaunayTriangulation. This procedure takes a sorted list of vertices, SV(L), as input and
returns a set of triangles, DT(SV(L)). It is noteworthy as this juncture to mention that the
Delaunay triangulation of SV(L) will not be unique because we will encounter the special
case discussed earlier, refer to Section 1.1. Since the four corners of a node in BQT(I)
will always lie on the circumscribing circle of that node, this case is handled by arbitrarily
completing the triangulation (refer to Figure 3 (c)). Figure 5 illustrates the complete
pseudocode for generating quadtree-based triangular mesh using imageMesher
algorithm.

 10

2.4 Post-processing

In this phase, we clean up the mesh by discarding any unwanted triangles, which falls
outside our domain of interest. The process of cleaning the mesh is trivial, because once
we build the BQT(I) we know the value/color associated with each leaf node in the
BQT(I). And as each triangle in the final mesh falls entirely within a leaf node of the
BQT(I), we can use this inherent coloring scheme to retain only those triangles we desire
and discard the rest from the final mesh.

2.5 Theoretical bounds

The main result of this section proves that, given a image I, we can compute a Delaunay
triangulation, DT(SV(L)), of the unique four corners of the leaf nodes of BQT(I), such that
the all the triangles in the triangulation will be bounded by an aspect ratio of at most 2.5
and with a minimum internal angle bounded to 26.56o. This is the most basic result of
imageMesher algorithm. For further discussion, we define: the aspect ratio A(a, b, c) for
a ∆abc as: the length of the hypotenuse (longest side) divided by the length of its altitude
from the hypotenuse (shortest side), and A(T) is the maximum value of the A(a, b, c)
over all the triangles in a triangulation {T}.

Procedure imageMesher (Image I)

 1. Input: Raster Image, I.

2. Intermediate Output: Quadtree, QT(I).

 3. Intermediate Output: Balanced Quadtree, BQT(I).

 4. Intermediate Output: Sorted unique vertices of leaf nodes of BQT(I), SV(L).

5. Output: Delaunay triangulation, DT(SV(L)).

6. begin

 7. QT(I) = MGV(I).

 8. BQT(I) = BalancedQuadtree (QT(I)).

 9. Load sorted unique vertices of the leaf nodes of BQT(I) into SV(L).

 10. DT(SV(L)) = DelaunayTriangulation (SV(L)).

 11. return DT(SV(L))

Figure 5. Procedure imageMesher which generates the guaranteed quality mesh for an
input raster image.

 11

Proposition 1. The Delaunay triangulation method gives triangulation DT(SV(L)) for
which; A(DT(SV(L)) is at most 2.5 and the minimum value of θ is bounded by 26.565o.

The balanced quadtree, BQT(I), from imageMesher will comprise of sixteen templates
nodes/blocks. As an internal quadrant can have any combination of the four neighboring
quadrants, thus corresponding to 24 = 16 possible configurations. Figure 6.1 shows all
the possibilities. These sixteen configurations can be further reduced to only six
templates after eliminating similar type of configurations, based on symmetry (refer to
Figure 6.2). When we triangulate these six nodes, on close inspection, we can notice
that the final triangular mesh of the imageMesher algorithm will be a combination of only
four prototype triangular elements (refer to Figures 6.3 and 6.4). Hence, it is sufficient to
analyze these four triangles for our proof. For sake of convenience, we assume that the
leaf node in BQT(I) has a side of length 2L.

• Case (a): The triangle, shown in Figure 6.4(a), is a right isosceles with side lengths:

2√2L, 2L, and 2L; and internal angles: 90o, 45o, and 45o. Hence, the aspect ratio will
be 2 (length of the shortest altitude is √2L).

• Case (b): The triangle, shown in Figure 6.4(b), is an isosceles triangle with side
lengths: √5L, √5L, and 2L; and internal angles: 63.435o, 63.435o, and 53.13o. Hence,
the aspect ratio will be 1.25 (length of the shortest altitude is 4L/√5).

• Case (c): The triangle, shown in Figure 6.4(c), is a right angle triangle with side
lengths: √5L, 2L, and L; and internal angles: 63.435o, 26.565o, and 90o. Hence, the
aspect ratio will be 2.5 (length of the shortest altitude is 2L/√5).

• Case (d): The triangle, shown in Figure 6.4(d), is an isosceles triangle with side
lengths: √5L, √5L, and √2L; and internal angles: 71.56o, 71.56o, and 36.88o. Hence,
the aspect ratio will be 5/3 (length of the shortest altitude is 3L/√5).

• From the above discussion, it is follows that the minimum bounding angle, θ, is
26.565o and the bounding aspect ratio, A(DT(SV(L))), is at most 2.5 .

The imageMesher∗ algorithm has been implemented to handle three most-commonly
used image formats (.bmp, .gif, and .jpeg) using JDK 1.2.2 (JAVATM). It has a user-
friendly interface, which enables the user to use various options (e.g. selecting the
background, choosing different Delaunay triangulation algorithms, displaying the nodes
of the (balanced) quadtree and mesh, printing the mesh, etc.). The application also
writes the computed mesh into an ASCII file, which is compatible with Triangle
(Shewchuk, 2001). Albeit, it is theoretically possible to mesh any image, certain
programming limitations (especially, problems relating to image memory management in
JAVATM) restrict the current beta version from being a robust mesh generator for images.

3. Applications

In this section, we describe two examples: one from bio-medical and other from water-
resources engineering, which illustrates the application of imageMesher for performing
numerical simulations.

∗ The JAVATM application along with documentation is available for download on world-wide-web at:
http://www.glue.umd.edu/~reddyg/imageMesher/

 12

Figure 6.1.The sixteen possible quadnode configurations in a balanced quadtree

decomposition.

Figure 6.2.The six template quadnode configurations obtained after removing

symmetrical cases from the above sixteen possible patterns.

Figure 6.3.Possible Delaunay triangulations of a quadnode in a balanced quadtree

decomposition.

Figure 6.4.Four prototype triangles deduced from the set of Delaunay triangulation of

nodes in a balanced quadtree.

 13

The first example deals with numerical simulation of a simple mathematical model for
describing the proliferation and infiltration of glioma – anaplastic astrocytoma – based in
part on quantitative image analysis of histological sections of human brain, using a finite
element method (FEM) formulation. We use the equations and model parameters
estimated by (Tarcqui et al., 1995) in our numerical simulation for evaluating the tumor
growth dynamics of a patient suffering from anaplastic astrocytoma who received two
treatments of chemotherapy and neutron irradiation during the terminal year. The first
chemotherapy treatment was 5 cycles of 6 drugs (UW protocol) and the second
treatment comprised of cis-platinum dosage. The time course of the treatment along with
the spatial effects of tumor growth due to the geometry of the brain and its natural
barriers are also incorporated into the modeling. The investigators suggested a two cell
population hypothesis for modeling glioma growth: the first type, C1(x, t), being sensitive
to both the first course of chemotherapy and the second course: the second type, C2(x,
t), is assumed to be resistant to the first course of chemotherapy, but possibly sensitive
to the second course. The spatio-temporal evolution of the two cell populations: C1(x, t)
and C2(x, t) are evaluated by the solutions of the following governing partial differential
equations (GPDEs):










−+∇=
∂
∂

−−+∇=
∂
∂

22222
22

1211111
21

)(

)()(

CtKCrCD
t

C

CtKCtKCrCD
t

C

 (3.1)

where

otherwise
1,3,5,7,9i ttt if k

tK ii1,

0
)(1,11

1

=≤≤
= + (3.2.1)

otherwise

ttt if k
ttt if k

tK 2,3

2,1

0
2
64

)(4,22

2,22

2 +≤≤
+≤≤+

= (3.2.2)

 D = diffusion coefficient
 r1 and r2 = growth rates of the two types of cancer cells.
 C1 and C2 = concentrations to two types of cancer cells.

As an approximate initial condition, the investigators assumed that at the time of starting
of the series of chemotherapies, the diffusion process has already broken any previously
established uniform distribution of the cells. Hence, the cells are normally distributed with
a maximum cell density at the center, xo. That is:

 14
























 −−
=













 −−
=

≡

b
xx

axC

b
xx

axC

CI
o

o

2

22

2

11

exp)0,(

exp)0,(

. (3.3)

where the parameters a1 and a2 are the maximum initial density of the two types of cells
and b measures the spread of the tumor cells centered at xo. As associated boundary
conditions, Neumann condition (zero flux condition) is applied at the boundaries of the
brain and at ventricles. That is:

]0),(.. =∇≡ txCnCB i 21 ,i = (3.4)

Figures 7(a) and 7(b) show the MRI image of brain and the processed cross-section of
brain extracted from the MRI image, respectively. Figures 7(c) and 7(d) show the
balanced quadtree block-decomposition and the triangular mesh computed using
imageMesher, respectively. Figures 8(i), 8(ii), and 8(iii) show the spatio-temporal growth
of: type I, type II and total cancerous cell concentration (expressed in number of cells per
sq. cm), respectively, after: day 1, day 113, day 230, and day 300 during the treatment in
the terminal year. It should be mentioned here that all the model parameters in this
simulation are constant over the entire domain, i.e., they are not spatially varying. The
next example illustrates the modeling of equations that have spatially heterogeneous
parameters.

The second example models two-dimensional steady-state subsurface flow with
accretion for a spatially heterogeneous aquifer with a non-horizontal bottom. The GPDE
describing such a system, after applying Dupuit's approximation (Bear, 1972), is given
by:

 0)()(=+







∂
∂

−
∂
∂

+





∂
∂

−
∂
∂ N

y
hhK

yx
hhK

x
ηη (3.5)

where
K = K(x, y) = spatially heterogeneous profile soil permeability

),(yxηη = = non-horizontal aquifer bottom.
h = h(x, y) = phreatic surface.
N = accretion.

The boundary of the study area is assumed to act as no-flow condition (Neumann
condition) while water-bodies within the study area act as constant water table elevation
boundaries (Dirichlet boundary condition).

The model equation (3.5) is applied to simulate the sub-surface water movement in a
small agricultural watershed located in Dorchester County, on the Maryland eastern
shore, within the costal plain physiographic region. The watershed has a relatively flat
topography with sandy and loamy soils. The data required for this analysis was imported
from a raster-based GIS environment. Figure 9(a) shows the outline and streams of the
study area. The profile soil permeability, obtained from NRCS SSURGO digital

 15

coverage, underlying the watershed is shown in Figure 9(b). The bedrock elevation
developed for this watershed is shown in Figure 9(c). For simplicity, K andη are
assumed to be constant within the element while forming the elemental equations in a
Galerkin’s weighted-residual finite element formulation. This assumption simplifies
equation (3.5) into:

(a) (b)

(c) (d)

Figure 7. Illustrates the various steps usually involved in domain discretization of
images: (a) shows the CBV-MR map of normal brain (Data Source: The Whole Brain

Atlas, Harvard Medical School), (b) shows the preprocessed black-white image of brain,
(c) shows the corners of the nodes from the balanced quadtree decomposition of the

black-white brain image, and (d) shows the triangular mesh generated using
imageMesher algorithm.

 16

Figure 8(i). The image of the spatio-temporal evolution of type I cancerous cells, after:

(a) day 1 (initial condition), (b) day 113, (c) day 230, and (d) day 300.

Figure 8(ii). The image of the spatio-temporal spreading of type II cancerous cells, after:

(a) day 1 (initial condition), (b) day 113, (c) day 230, and (d) day 300.

 17

Figure 8(iii). The image of the spatio-temporal spreading of the tumor inside the brain,

after: (a) day 1 (initial condition), (b) day 113, (c) day 230, and (d) day 300.

 0)()()(

)(
)()(=+








∂
∂

−
∂
∂

+





∂
∂

−
∂
∂

e

e
ee

K
N

y
hh

yx
hh

x
ηη (3.6)

where the parameters with superscript e are assumed to constant within an element and
h is nodal value to be estimated. Thus, to use equation (3.6) in a FEM formulation over
the study area, we need to discretize the domain in such a manner that the value of K
andη within each triangular patch remains constant. This was accomplished by taking
the intersection of three images shown in Figures 9(a), 9(b), and 9(c). The result of
intersection is shown in Figure 9(d).

The nodes of the balanced quadtree decomposition and triangular mesh generated
using imageMesher are illustrated in Figures 10(a) and 10(b), respectively. Water table
elevation obtained from the numerical simulation is shown in Figure 11. The elevation is
expressed in meters. Table 2 summarizes the various properties of meshes used in the
above two application examples.

 18

 (a) (b)

 (c) (d)

Figure 9. Images used input in the analysis of steady-state subsurface water table
movement a watershed located in Dorchester County, Maryland. (a) shows the

watershed boundary along with the streams flowing through it, (b) shows the classified
bedrock elevation within the watershed, (c) shows the spatial variation of profile soil

permeability within the watershed, and (d) shows the thematic map resulting from the
intersection of streams, bedrock elevation and soil permeability.

 0 Km 1

 0 Km 1

 19

 (a) (b)

Figure 10. Shows (a) the nodes of balanced quadtree decomposition, and (b) the
domain discretization of the spatially heterogeneous image/map shown in of the image

shown in Figure 10(d).

Figure 11. Steady-state water table elevation obtained from the finite element numerical
simulation of Dupuit's equation for the study watershed in Dorchester County, Maryland.

(a) shows the top view, and (b) shows the perspective view of water table elevation in
meters.

 0 Km 1

 20

Table 2: Summary of the meshes used in the above two application examples. The table
shows the various characteristics of images, the number of nodes and elements
obtained by using the imageMesher algorithm, and the total processing time in seconds.

No. of Nodes No. of Elements
Input
Image

Size
(pixels)

Number of
Colors Unprocessed Processed Unprocessed Processed

Total
Processing

Time.
(secs)

Brain
(refer to

Figure 7(b))
270x315 2 7972 4910 15900 8046 17.56

Intersection
Map

(refer to
Figure 9(d))

288x446 14 12766 11511 25426 22288 23.22

4. Conclusion

In this paper, after presenting a brief review of some elementary definitions related to
quadtree-based mesh generation for PSLGs, we described a new method suitable for
generating theoretically guaranteed quality mesh for spatially heterogeneous data
represented in images. We proved that the triangular elements in the output mesh have:
(a) a bounded aspect ratio of at most 2.5, and (b) interior angles bounded between
26.565o and 90o. We also described a modified algorithm for constructing a balanced
quadtree and illustrated with suitable evidence that the proposed algorithm works faster
than the algorithm of Sivan (1996). Finally, we discussed applications of meshes derived
from images to illustrate the main features and utility of this approach.

Additional work would be needed to determine an appropriate preprocessing
methodology that can fit directly into the proposed algorithm, instead of using an external
tool. Secondly, as the proposed algorithm makes use of the complete balanced-quadtree
structure for mesh generation, the resulting output mesh will usually contain a large
number of triangular elements. For instance, the mesh used in the numerical simulation
of the second example comprised of elements in the order of 104. For a two-dimensional
analysis, this is considered very high. Hence, it would be worthwhile to investigate the
mesh generation of pruned-balanced-quadtree based on some threshold criterion. Our
approach can be extended for implementation on parallel processors based on the
algorithms proposed by Bern et al. (1993) for constructing linear and balanced quadtrees
on parallel processors Lastly, this work can be considered as a precursor for (re)-
construction of three-dimensional geometry and mesh from a stack of registered 2-D
images.

Acknowledgements

The authors would like to thank the financial assistance from the College of Agriculture
and Natural Resources through the Maryland Cooperative Extension Service (MCES)
and Maryland Agricultural Experimentation Station (MAES).

 21

References

Barth, T.J. and D.C. Jespersen . 1989. "The design and application of upwind schemes

on unstructured meshes". AIAA Paper No. 89-0366.

Bear, J. 1972. Dynamics of Fluids in Porous Media. New York, NY: American Elsevier

Publishing Company, Inc.

Bern, M., D. Eppstein and J.R.Gilbert. 1990. Provably good mesh generation. In Proc.

31st {IEEE} Symp. Foundations of Computer Science. 31:231-241. Also available
in J. Comp. Sys. Scis. 48:384-409.

Bern, M., D. Eppstein, and S. H. Teng. 1993. Parallel construction of quadtrees and

quality triangulations. In Proc. 3rd Workshop Algorithms and Data Structures.
LNCS 709: 188-199. New York, NY, Springer-Verlag.

Bern, M and P. Plassmann. 1999. Mesh generation. In Handbook of Computational

Geometry, Chap. 6, ed. J.-R. Sack and J. Urrutia. Elsevier Science Publishers
B.V. North-Holland, Amsterdam.

de Berg M., V.M.Kreveld, M.Overmars, and O. Schwarzkopf. 1997. Computational

Geometry, Algorithms and Applications. New York, NY: Springer Verlag.

Bowyer, A. 1981. "Computing Dirichlet tessellations". Comp. J. 24(2): 162-166.

Burton, W.F., V.J.Kollias, and Y.J.Kollias. 1986. "Real-time raster to quadtree and

quadtree to raster conversion algorithms with modest storage requirements".
Angew. Informatik 4:170-174.

Chew, P.L. 1989. "Constrained Delaunay triangulations". Algorithmica 4(1):97-108.

Chew, P.L. 1990. Building Voronoi diagrams for convex polygons in linear expected
 time. Tech. Report PCS-TR90-147, Department of Mathematics and Computer
 Science, Dartmouth College.

Clarkson, K.L., and P.W. Shor. 1989. "Applications of random sampling in computational

geometry- II". Disc. and Comp.Geo. 4(1):387-421.

Delaunay, B.N. 1934. “Sur la Sphere Vide”. Izvestia Akademia Nauk SSSR, VII Seria,

Otdelenie Mathematicheskii i Estestvennyka Nauk 7:793-800.

Devillers, O. 1998. “Improved incremental randomized Delaunay triangulation”. In Proc.

14th Annu. ACM Sympos. Comput. Geom., Paper No. 106115.

 22

 Dwyer, R.A. 1987. “A faster divide-and-conquer algorithm for constructing Delaunay
 triangulations”. Algorithmica 2(2): 137-151.

Fang, L.J., L. Piegl. 1992. "Algorithm for Delaunay triangulation and convex hull

computation using a sparse matrix". Comp. Aided Desg. 24(8): 425-436.

________. 1993. “Delaunay triangulation using a uniform grid”. IEEE Comp. Grap. and

Appls. 13(3): 36-47.

Fortune, S. 1987. “A sweepline algorithm for Voronoi diagrams”. Algorithmica 2(2): 153-

174.

 Goel, V., and Y.V. Venkatesh. 1991. “On an optimal and faster construction of linear

quadtrees from raster-scanned images”. The Computer J. 34(6): A073-A083.

Guibas, L.J., D.E. Knuth, and M. Sharir. 1992. “Randomized incremental construction of
 Delaunay and Voronoi diagrams”. Algorithmica 7(4): 381-413.

Guibas, L.J., and J. Stolfi. 1985. “Primitives for the manipulation of general subdivisions

and the computation of Voronoi diagrams”. ACM Trans. on Grap. 4(2): 74-123.

Herzen, V., and A. H. Barr. 1987. “Accurate triangulations of deformed, intersecting

surfaces”. Comp. Graph. 21:103-110.

Joe, B. 1991. “Construction of three-dimensional triangulations using local

transformations”. Comp. Aided Geo. Desg. 8:123-142.

________. 1993. “Construction of k-dimensional Delaunay triangulations using local
 transformations”. SIAM J. Scien. Comp. 14(6): 1415-1436.

________. 1995. “Construction of three-dimensional improved-quality triangulations

using local transformations”. SIAM J. Scien. Comp. 16(6): 1292-1307.

Lohner, R., 1988. “Generation of three-dimensional unstructured grids by the advancing
 front method”. Proc. 26th AIAA Aerospace Sciences Meeting, Reno, NV.

Mavriplis, D.J. 1991. “Unstructured and adaptive mesh generation for high Reynolds

number viscous flows”. ICASE, NASA Langley Research Center, Technical
Report 91-25.

Mitchell, S.A. 1994. “Cardinality bounds for triangulations with bounded minimum angle”.

In Sixth Canadian Conf. on Comp.Geo., 326—331. Wang., Can.:CCCG.

 23

Mitchell, S.A., and S. Vavasis. 1992. “Quality mesh generation in three dimensions”. In

Proc. 8th ACM Symp. Comp. Geom., 212-221.

________. 1996. “An aspect ratio bound for triangulating a d-grid cut by a hyperplane”.

In Proc. 12th ACM Symp. Comp. Geom., 48-57.

________. 2000. “Quality mesh generation in higher dimensions”. SIAM J. on Comp.

29(4): 1334-1370.

Montas, H.J., L.B. Moran, C. Peters, K. Shipman, T.H. Ifft, G.K. Felton, and A.

Shirmohammadi, 2000. “GIS Evaluation of Riparian Buffer Impacts in a Maryland
Watershed.” ASAE Paper No. 00-2182 Presented at the 93rd Annual
International Meeting of ASAE, July 9 –12, Milwaukee, WI, USA. ASAE, 2950
Niles Rd., St. Joseph, MI, 49085-9659, USA.

Montas, H.J., G.V.S. Prabhakar Reddy, T. Shorabi, W. Devaneny, and A.

Shirmohammadi. 2001.“Wavelet-Stochastic Analysis of Two-Dimensional
Biological Resources”. ASAE Paper No. 01-3154 Presented at the 94th Annual
International Meeting of ASAE, July 30 – Aug 1, Sacramento, CA, USA. ASAE,
2950 Niles Rd., St. Joseph, MI, 49085-9659, USA.

Moore, D.W. 1992. “Simplicial mesh generation with applications”. PhD Thesis, Cornell

University, Department of Computer Science, Ithaca, NY, Cornell University
Technical Report 92-1322.

Neugebauer, F., and R. Diekmann. 1996. “Improved mesh generation: Not simple but

good”. In 5th Int. Meshing roundtable, 257-270. Sandia National Laboratories.

Preparata, F.P., and M.I. Shamos. 1985. Computational Geometry: An Introduction. New

York, NY: Springer-Verlag.

Rajan, V.T. 1994. “Optimality of the Delaunay triangulation in Rd”. Disc. and Comp. Geo.

12: 189-202.

Ruppert, J. 1993. “A new and simple algorithm for quality 2-dimensional mesh

generation”. In 4th ACM-SIAM Symp. on Disc. Algos., 83--92.

________. 1995. “A Delaunay refinement algorithm for quality 2-dimensional mesh
 generation”. J. Algorithms 18(3): 548-585.

Samet, H. 1980(a). “Region representation: Quadtrees from binary arrays”. Comp.
 Grap. Image Pro. 13(1): 88-93.

 24

________. 1980(b). “Region representation: Quadtrees from boundary codes”. Comm.
ACM 23(3): 163-179.

________. 1981. “An algorithm for converting rasters to quadtrees”. IEEE Trans. Pattern
 Anal. Mach. Intell. 3(1): 93-95.

________. 1984(a). “Algorithms for the conversion of quadtrees to rasters”. Comp. Visi.,

Grap. and Image Pro. 26(1): 1-16.

________. 1984(b). “The quadtree and related hierarchical data structures”. Computing

surveys 16: 188-260.

________. 1990(a). The design and analysis of spatial data structures. Reading, MA:

Addison-Wesley.

________. 1990(b). Applications of spatial data structures: Computer Graphics, Image

processing and GIS. Reading, MA: Addison-Wesley.

Seidel, R. 1992. “Backwards analysis of randomized geometric algorithms”. Int.

Computer Science Institute, University of California at Berkeley, Berkeley,
California. Technical Report TR-92-014.

Shamos, M.I., and D. Hoey. 1975. “Closest-point problems”. In 16th Annual Symp. On

Foundations of Computer Science (Berkeley, California), 151-162. IEEE
Computer Society Press.

Shephard, M., and M. Georges. 1991. “Automatic three-dimensional mesh generation by

the finite octree technique”. Int. J. Numer. Meth. Eng. 32:709-749.

Shewchuk, J.R. Triangle - A Two-Dimensional Quality Mesh Generator and Delaunay

Triangulator. http://www.cs.cmu.edu/~jrs/quake.html. Accessed 21 Jan. 2001.

________. 1999. Lecture Notes on Delaunay Mesh Generation.

Sibson, R. 1973. “Locally equiangular triangulations”. The Comp. J. 2(3): 243-245.

Sivan, R. 1996. “Surface modeling using quadtrees”. PhD Thesis, Center for

Automation, University of Maryland, College Park, MD. Technical Report CAR-
TR-816.

Sivan, R. and H. Samet. 1992. Algorithms for constructing quadtree surface maps. In

Proc.of the 5th Intl. Sysp. on Spatial Data Handling, 361-370. Charleston, SC.

 25

Tanaka, H. T. 1995. “Accuracy-based sampling and reconstruction with adaptive
meshes for parallel hierarchical triangulation”. Int.J. of Comp. Visi. and
Image Und. 61: 335-350.

Tracqui, P., G.C. Cruywagen, D.E. Woodward, G.T. Bartoo, J.D. Murray, and E.C.

Alvord, Jr. 1995. “A mathematical model of glioma growth: The effect of
chemotherapy on spatio-temporal growth”. Cell Prolif. 28: 17-31.

Yerry, N.P., and M.S. Shephard. 1983. “A modified quadtree approach to finite element

mesh generation”. IEEE Comp. Graps and Appls. 3(1): 39-46.

