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Abstract. Applying mathematical models to practical situations often requires the use of 
discrete geometrical models of the solution domain. In some cases destructive measurements 
of the objects under examination is acceptable, but in several areas of research the 
measurements comes from imaging techniques such as X-ray, computer assisted tomography 
(CAT), magnetic resonance imaging  (MRI), satellite imagery, or aerial photographs. A crucial 
preprocessing step for such analysis involves the extraction of measurements/features from 
these images, which form the basis of geometrical models and finite element mesh. In this 
paper, we describe a simple algorithm for triangulating the solution domain represented in 
images without a need for such prior feature extraction, albeit such a step may reduce the size 
of the resulting mesh. The proposed algorithm generates quality triangular meshes with: (a) 
provably good angle bounds between 26.565o and 90o, and (b) an aspect ratio of at most 2.5. 

 

The proposed mesh generation algorithm (imageMesher) extends the mesh generation 
technique of Bern et al. (1990) to images as input. Previous algorithms with shape and size 
bounds have all been based on triangulating domains that are either: (a) vertex set, (b) lines, (c) 
polygons, or (d) planar straight line graphs (PSLGs). The proposed algorithm matches their 
bounds, but uses a fundamentally different kind of input. The implementation of the algorithm is 
discussed and the theoretical bounds on the size and shape of the triangular patches are 
evaluated. As an intermediate result, we also describe an improved algorithm for constructing 
balanced quadtree. Finally, we illustrate real-time applications of the proposed approach, which 
demonstrates its ability to use the solution domain described in images to fit directly into the 
finite element analysis.  

Keywords. finite element method (FEM), mesh generation, quadtree, balanced quadtree, 
Delaunay triangulation, image analysis. 



1 

Quadtree-Based Triangular Mesh Generation for Finite Element 
Analysis of Heterogeneous Spatial Data. 

 
 

Prabhakar Reddy G.V.S., Hubert J. Montas, Hanan Samet and Adel Shirmohammadi 
 

Biological Resources Engineering Department 
(except H. Samet: Computer Science Department) 

University of Maryland at College Park 
College Park, MD, 20742. 

 

Introduction 
 
A necessary early step in finite element method is mesh generation, and the most 
versatile type of two-dimensional mesh is an unstructured triangular mesh. A mesh, in 
general, is a spatial discretization of geometric domain (usually, ℜ2 and ℜ3) into small 
simple shapes (simplices), typically triangles or quadrilaterals in two-dimension (2D) and 
tetrahedra or hexahedra in three-dimension (3D). Since late 1980's, there has been 
tremendous advancement in mesh generation. Presently, even the most complicated 
domains can be meshed gracefully with proven theoretical bounds using the algorithms 
described in (Bern et al., 1990; Chew, 1989; Mitchell, 1994; Preparata and Shamos, 
1985; Ruppert, 1993 and 1995). As far as two dimensional triangular unstructured mesh 
generation is concerned, significant amount of work has been be dedicated on 
triangulating domains like: (1) vertex sets, (2) lines, (3) simple polygons, and (4) planar 
straight line graphs (PSLGs). Since, most of the solution domains associated with 
physical processes can be represented using a combination of either: points, lines, 
polygons, or PSLGs these algorithms can be used for generating quality meshes, thus, 
facilitating the numerical simulation of such processes using numerical techniques.  
 
However, with the advent of the sophisticated imaging techniques research community 
begun to focus on using images to study several physical phenomena. For example, the 
growth of tumor - using computer assisted tomography (CAT scans), spatial variation of 
geophysical parameters - using satellite imagery, ground penetrating radar, etc. The 
absence of appropriate mesh generation algorithm, which respects the heterogeneous 
geometric domains represented in images, has compelled researchers to use a regular 
grid for spatial discretization in their numerical simulations. (We are unaware of any 
theoretical papers on this subject). In most instances, the pixels of the raster images are 
used as the underlying grid in such numerical simulations (Tracqui et al., 1995; Montas 
et al., 2000). The motivation of this paper has been the will to design a robust and 
efficient algorithm capable of handling domains of arbitrary heterogeneity represented in 
(preprocessed) digital images. The ultimate goal is to provide a quality triangular mesh 
generation tool, which can adapt itself to the heterogeneous boundaries in images. 
 
This paper is divided into four sections. Section 1 recalls the terminology used with the 
quadtree-based decomposition and summarizes the general scheme of the quadtree-
based Delaunay mesh generation. Section 2 proposes the improved balanced quadtree 
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algorithm along with imageMesher algorithm. The algorithm we describe in this paper 
extends the algorithm of Bern et al. (1990) for triangulating images, unlike PSLGs as the 
input. We then prove that the all the triangles in the output have angles bounded 
between 26.56o and 90o and with aspect ratio1 of at most 2.5. As an intermediate result, 
we also describe an improved algorithm for building a balanced quadtree. In the 
penultimate section, two application examples are described to emphasize the practical 
utility of the proposed algorithm. A brief section concludes the paper by mentioning the 
possible extensions of this work.  
 
 
1.Background 
 
In this section, we recall the basic terminology related to quadtree-based Delaunay 
triangulation technique. We also discuss the technique of generating quality triangular 
mesh using quadtree-based techniques, first introduced by Bern et al. (1990). The 
ensuing subsection(s) expands those topics pertinent to the content of this paper. For 
further details, the two books by Samet (1990(a) and 1990(b)) provide extensive 
information of the various types of quadtrees and their applications. See the lecture 
notes of Shewchuk (1999) and the chapter of Bern and Plassmann (1999) for various 
methodologies and recent developments in unstructured mesh generation. 

 
1.1.Terminology 
 
According to Samet (1990(a)), quadtree is proposed as a representation for raster 
images because its hierarchical nature facilitates the performance of a large number of 
operations (e.g. quadrant creation, finding cells adjacent to a given cell in a given 
direction, finding cell(s) that contain a particular value, etc.) close to optimal 
computational cost. The basic concept of the quadtree decomposition consists of 
enclosing the domain Ω into a bounding box Β(Ω), usually a square, corresponding to 
the root of the spatial decomposition tree. This box is subdivided into four equally sized 
sons, one in each of the four directions: North-East (NE), North-West (NW), South-West 
(SW), and South-East (SE), each of which is in turn recursively subdivided until a 
stopping criterion2 is reached based on the local geometry of the domain (e.g., the local 
curvature of the boundary) or user-defined maximum refinement. Any node that is not 
subdivided is a leaf node and the subdivided cells are non-leaf nodes. The corner of a 
node is the vertex of the square and the edges connecting consecutive corners are the 
sides of the node. The size of a node c is the length of the side of c. Two nodes are said 
to be adjacent if they share an edge and any node in the quadtree has four possible 
edge-neighbors, one in each of the four cardinal directions (North - N, East - E, West - 
W, and South - S). We say that the side of the node is split if either of the neighboring 
nodes sharing it is split. The level of a node corresponds to its depth in the tree 
structure, i.e., the number of subdivisions required to obtain the node. It is conventional 
practice to represent the root at level 0.  
 

                                                 
1 Aspect ratio of an element is the ratio of its maximum to minimum width, width being the distance 
between parallel supporting hyper-planes. For a triangle, the aspect ratio of a triangle is the length of the 
longest edge divided by the length of the shortest altitude. 
2 In imageMesher algorithm, a node is subdivided until all the pixel(s) inside it have the same 

intensity/value.  
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At each stage of recursive decomposition, any node can be subdivided into four sub-
cells. Hence, the resulting decomposition of the tree may be quite unbalanced and a 
triangulation of such an unbalanced tree could result in ill-shaped elements in the final 
output mesh.  In order to overcome this, it is a normal practice to impose the balancing 
condition: no node in the quadtree should be adjacent to one less than one-half its size. 
This condition is known as 2:1 rule, first introduced by Yerry and Shephard (1983). 
Figure 1 shows an example of a quadtree subdivision that has been balanced after 
applying the 2:1 rule. Solid lines show the original quadtree subdivision whereas its 
refinement is shown by dotted lines. From Figure 1, one may concluded that the 
complexity of a balanced quadtree subdivision is quite higher than that of its unbalanced 
version. But it has been proved that the balancing can be done efficiently and that a 
balanced quadtree contains no more than the eight times as many nodes as its non-
restricted counterpart (Moore, 1992). Restricted quadtrees were initially used in terrain 
modeling and computer graphics (Herzen and Barr, 1987). However, investigators 
realized that balanced quadtrees could be a useful intermediate step towards generating 
quality triangular meshes (Bern et al., 1990; Tanaka 95).  
 

 
Figure 1. An example illustrating the region quadtree and balanced quadtree 

decomposition of an image. (a) A 16 x 16 image, (b) its quadtree decomposition, and (c) 
balanced quadtree decomposition after the imposing 2:1 rule. Notice that the nodes 

labeled A and B in (b) are divided into four sub-blocks in (c). The original linear quadtree 
subdivisions are shown as solid lines whereas the refinement is shown as dotted lines. 
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The triangulation phase usually involves the well-known Delaunay Triangulation. In 2-D, 
the Delaunay triangulation of a set of vertices {V} is a set of triangles {T}, whose: (a) 
vertices collectively are {V}, (b) interiors do not intersect with each other, (c) union is the 
convex hull of {V}, and (d) every triangle in the {T} intersects only at the vertices. Figure 
2.1(b) shows Delaunay triangulation of a 2D vertex set shown in Figure 2.1(a). We can 
also define Delaunay triangulation of {V}, first introduced by Delaunay (1934), as the 
graph defined by the empty circle condition: a triangle abc, with vertices va vb vc, appears 
in Delaunay triangulation DT(V) if and only if its circumcircle encloses no other points of 
{V}. Figure 2(c) shows the triangulation satisfying empty-circle condition. However, there 
is an exception for the latter definition when the points lie at special position: if an empty 
circle passes through four or more points of {V}, we can complete the triangulation 
arbitrarily. Figure 3 shows the exceptional case, with six cocircular vertices, and the 
various possible arbitrary triangulations. Hence, DT(V) is a triangulation of the convex 
hull of {V} and is unique if any only if no four points, or more, in the given vertex set, {V}, 
are co-circular. Another promising feature of Delaunay triangulation is: of all the possible 
triangulations for a given vertex set Delaunay triangulation is the only triangulation that 
maximizes the minimum internal angles. Since it is desirable to have the triangles in the 
mesh closer to equilateral triangle, Delaunay triangulation has been the most celebrated 
approach in 2-D triangular mesh generation. There are several Delaunay triangulation 
algorithms available today, some are theoretically elegant and some are better for 
practical implementation. Here we cite the well-known algorithms: 
 
• Edge Flipping (Sibson, 1973). 
• Divide-and-Conquer (Shamos and Hoey, 1975; Guibas and Stolfi, 1985; Lohner, 

1988; Chew, 1989) 
• Alternating Divide-and-Conquer (Dwyer, 1987) 
• Sweepline (Fortune, 1987) 
• Regular Grid and Sparse Matrix (Fang and Piegl, 1992 and 1993) 
• Incremental Insertion (Bowyer, 1981; Watson, 1981; Joe, 1991,1993, and 1995; 

Rajan, 1994) 
• Randomized Incremental Insertion (Seidel, 1972; Clarkson and Shor, 1989; Chew, 

1990; Guibas et al., 1992; Devillers, 1998)  
 
Delaunay triangulation by itself does not generate a satisfactory mesh because of the 
following reasons: (1) elements of poor quality may appear, and (2) input boundaries 
may fail to appear in the final mesh. Both these problems have been treated in the 
literature. The former problem is typically dealt by adding additional vertices at the 
circumcenters and centriods of the ill-shaped elements. It is at times also treated with 
the advancing front approach (Barth and Jesperson, 1988; Mavriplis, 1991). 
 
1.2.Quadtree3 based mesh generation 
 
The quadtree mesh generator due to Bern et al. (1990) starts by enclosing the entire 
domain, Ω, inside an axis-aligned square (2n x 2n dimension). The provably good mesh 
generation algorithm recursively divides each node(s) until each leaf node contains at 
most one connected component of the domain's boundary, with at most one vertex. This 
splitting phase was improved (Mitchell and Vavasis, 1992) by "cloning" those squares 

                                                 
3 In this section, quadtree refers to a point/line quadtree depending on the nature of the input. 
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   (a)            (b) 

 

 
(c) 

Figure 2. Illustration of Delaunay triangulation of a vertex set. (a) Vertex set. (b) 
Delaunay triangulation of the vertex set. (c) Delaunay triangulation with empty-

circumcircles. 
 

 
Figure 3.Three ways to define the Delaunay diagram in the presence of cocircular 

vertices. (a) Include all Delaunay edges, even if they cross. (b) Exclude all crossing 
Delaunay edges. (c) Choose a subset of Delaunay edges that forms a triangulation.  
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that intersects Ω in more than one connected component, so that each copy contains 
only a single connected component of the domain. The algorithm then splits squares 
near the vertices of Ω two more times, so that each vertex lies within the buffer zone of 
equal size squares. Quadtree squares are then wrapped and cut to conform the 
boundary. Finally, the cells of the wrapped quadtree are triangulated so that all angles 
are bounded away from 0o. Every triangle in the mesh generated using this technique 
will have an aspect ratio of at most 4 and the number of triangles in the output will be a 
constant factor of optimal: the minimum number of triangles in any triangulation of the 
given input achieving the same aspect ratio bound.  
 
This was the first triangulation technique that guaranteed theoretical size optimality and 
bounded aspect ratio. As first presented, the algorithm assumes Ω to be a polygon with 
holes. However, the approach can be easily adapted for multiple polygons and curved 
domains. In fact, this approach handles curved domains more gracefully than the 
Delaunay refinement algorithm approach (Ruppert, 1993 and 1995), because the 
splitting phase can automatically conform to the curvature of the domain. 
 
Neugebauer and Diekmann (1996) extended the results of Bern et al. (1990) by 
replacing the squares of the quadtree with rhomboids so that the triangles in the final 
mesh tend to be nearly equilateral. Assuming that there are no small input angles, 
polygonal domains with polygonal holes and isolated interior points can be triangulated 
with all the angles between 30o and 90o. Remarkably, provably good mesh generation 
algorithm has been extended to polyhedra of arbitrary dimensionality based on octrees 
(and their higher dimensional brethrens), which triangulates polyhedra producing size-
optimal meshes with guaranteed bounds on element aspect ratios (Mitchell and Vavasis, 
1992, 1996 and 2000). However, the generalization to more than two dimensions is quite 
intricate and the theoretical bounds on element quality are not strong enough to be 
entirely satisfying in practice.  
 
 
2. imageMesher 
 
This section expands on the different procedures, data processing steps, and general 
setup of triangular mesh generation for images. The entire process of mesh generation 
for images can be subdivided into four phases: (a) building quadtree from a raster 
image, (b) balancing the quadtree by imposing the 2:1 rule, (c) triangulation of the 
balanced quadtree, and (d) post-processing. These steps are similar algorithm given by 
Bern et al. (1990) for PSLGs. For further discussion, we assume that: (a) the input of the 
problem is an arbitrary raster image4 I which is of dimension [0:U] x [0:U], where U = 2n 
for some positive integer n, and (b) the compression technique of the image is known 
and can conveniently extract the pixel value. Typically, the input image that comes from 
an imaging device is preprocessed using:  (a) commonly available picture editors and/or 
(b) image analysis toolbox. However, this topic is not dealt in this paper. For details on 
preprocessing of images, refer to Montas et al. (2001). It should be mentioned here that 

                                                 
4 A raster image is generally defined to be a rectangular array of regularly sampled values, known as pixels. 

Each pixel (picture element) has a value associated with it, generally specifying a color, in which the 
pixel should be displayed. 
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the type of quadtree referred in all the ensuing sections is a region quadtree, unless 
mentioned otherwise. 
 
2.1 Building a quadtree from raster 
   
The problem of converting a raster-scanned image into a linear quadtree has been dealt 
in literature quite extensively (Samet, 1980(a), 1980(b), 1981, 1984(a), and 1990(a); 
Burton, 1986;Goel and Venkatesh, 1991; Sivan, 1996). The implementation we use is a 
variant of ALGORITHM G-V (Goel and Venkatesh, 1991) with appropriate modifications 
made for accommodating a color image as the input instead of a binary image. The 
modified ALGORITHM G-V, hereafter referred to as MGV (Image I), takes I as the input 
and returns a linear quadtree, QT(I). In view of the constraints of the space, the 
algorithm has been skipped.  
 
2.2 Building a balanced quadtree 
 
In this phase, we impose the 2:1 balancing rule on the quadtree constructed from the 
input image. The balanced quadtree for an image, BQT(I),  is generated from QT(I) 
using a modified algorithm proposed by Sivan (1996). See also the algorithm proposed 
by Sivan and Samet (1992). The pseudocode is described in Figure 4. 
 
The procedure BalancedQuadtree takes a linear quadtree constructed from an raster 
image as an input and then loads the entire collection of leaf nodes of size greater than 
two and less than the size of root into a linear list, L. The procedure then enters a loop 
until the list L is empty. During each cycle of the loop, the procedure pops out the top-
most node, µ, from L and fetches all its edge-neighbors into another linear list, NL. The 
next step in the procedure performs a check for 2:1 balancing rule on the current node µ. 
If the node has to be split, then µ is made as a non-leaf node and its four newly created 
sons are added to the initial linear list L. Before inserting the newly created nodes into L, 
a size check on µ is performed to ensure that the only potential nodes are being stored 
in it. Since, µ has been split the neighbors (stored in the linear list NL) are also checked 
for 2:1 balancing rule. The above process if repeated for all those neighbors in the list 
NL of size greater than two and less than the size of root node.  
 
The BalancedQuadtree is essentially same as the algorithm described by Sivan (1996), 
except for the “extra size-filtering” conditions imposed at lines 4, 10, 13, 17, and 19 (refer 
to the line numbers marked with an asterisk in Figure 4). According to Sivan (1996), all 
the nodes of the quadtree, without any size-filtering criterion, are loaded into the 
dynamic linear list L. This leads to unnecessary increase in processing time, because 
nodes of size 1 and 2 will never be split. Hence by eliminating such nodes, we can: (a) 
reduce the number of nodes to be processed, and (b) avoid the expensive step of finding 
the edge-neighbors for a node (recollect that for checking if a node is to split, we first 
need to fetch all it's edge neighbors). The balanced quadtree construction time using 
both the algorithms is compared in Table 1. In Table 1, BQT1 is the algorithm proposed 
by Sivan (1996) and BQT2 is the proposed algorithm with the size-filtering steps. For 
illustration purpose, the algorithms were compared on: (a) raw CBV-MR image of a 
normal brain (refer to Figure 7(a)) and (b) preprocessed image of normal brain (refer to 
Figure 7(b)). The execution/construction time is reported in seconds. 
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Procedure BalancedQuadtree (Quadtree QT(I)) 
 

  1. Input: A quadtree QT(I) . 
2. Output: A balanced version of QT(I) . 
 
3. begin  

  4.∗  Insert all the leaf nodes of QT(I) whose size is greater than two and less 
                      than the size of root node into a linear list, L. 
  5.  while  L is not empty do begin 
  6.                        Remove a node, µ, from L. 
  7.            Find the edge-neighbors of µ and load them into a linear list, NL.  
  8.            if the size of any of the neighbor's of µ is less than  
                             one-half the size of µ then  
  9.              Make µ as non-leaf node with four children,  

which are the sons of µ.  
 10.*   if size of µ is greater than 4 then 
11. Insert the four new leaves into L. 
12.   end if 
 13.∗   Retain only those neighbors in NL whose size is greater 

than two and less than the size of root node.  
14.       while NL is not empty do begin 
15.         Remove a node, µ, from NL. 
16.        Find the edge-neighbors of µ. 
17.*            if the size of any of the neighbor’s of µ is less than 

     one-half the size of µ then 
18.              Make µ as non-leaf node with four children, which  

                       are the sons of µ. 
19.*              if size of µ is greater than 4 then 
20.               Insert the four new leaves into L. 
21.              end if   
 22.         end if  
 23.   end while 
 24.         end if 
25.  end while 
26. return QT(I) . 
 

 
 

Figure 4. Procedure BalancedQuadtree which converts a linear quadtree into a balanced 
quadtree, BQT(I).  
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The results clearly demonstrate the following facts: (a) the proposed balanced quadtree 
algorithm works faster than Sivan’s algorithm (1996), and (b) a meaningful 
preprocessing step prior to discretization can help in reducing the number of triangular 
elements in the final mesh. 

 

Table 1: Comparison of the constructing balanced quadtree using Sivan’s algorithm 
(BQT1) and BalancedQuadtree algorithm (BQT2). The execution times were obtained by 
running both the algorithms, under similar conditions, implemented in Java™ 2 on an 
Intel® PII desktop operating on SuSe® Linux 7.0 (kernel 2.2.16).  
 

Construction Time 
(secs.) 

Input Image Size 
(pixels) 

Number of 
Colors BQT1 BQT2 

Brain  
(refer to Figure 7(b)) 270x315 2 15.771 10.025 

Brain MRI  
(refer to Figure 7(a)) 267x307 160 421.667 140.002 

 
 
2.3 Triangulation 
 
In the triangulation phase all we need to do is to triangulate the leaf nodes of BQT(I). 
There is more than one approach to accomplish this task. Nevertheless, here we 
describe the Delaunay triangulation technique, refer to the work of Sivan (1996) for an 
alternative approach. 
 
In Section 1.1, we listed several practical Delaunay triangulation algorithms, which take 
a set of vertices as input and return a set of triangles. Hence, our foremost task in this 
phase would be to construct a set of vertices from the balanced quadtree, BQT(I). This is 
accomplished by, building a unique sorted vertex list, SV(L), comprising of the four 
corners of all the leaf nodes in BQT(I). Recall that one or more nodes share a corner, 
hence the need to construct a "unique" sorted vertex list. Once we have SV(L), we can 
construct Delaunay triangulation of such a list with the aide of any one of the algorithms 
listed in Section 1.1. For convenience, the Delaunay triangulation procedure is called as 
DelaunayTriangulation. This procedure takes a sorted list of vertices, SV(L), as input and 
returns a set of triangles, DT(SV(L)). It is noteworthy as this juncture to mention that the 
Delaunay triangulation of SV(L) will not be unique because we will encounter the special 
case discussed earlier, refer to Section 1.1. Since the four corners of a node in BQT(I) 
will always lie on the circumscribing circle of that node, this case is handled by arbitrarily 
completing the triangulation (refer to Figure 3 (c)). Figure 5 illustrates the complete 
pseudocode for generating quadtree-based triangular mesh using imageMesher 
algorithm. 
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2.4 Post-processing 
 
In this phase, we clean up the mesh by discarding any unwanted triangles, which falls 
outside our domain of interest. The process of cleaning the mesh is trivial, because once 
we build the BQT(I) we know the value/color associated with each leaf node in the 
BQT(I). And as each triangle in the final mesh falls entirely within a leaf node of the 
BQT(I), we can use this inherent coloring scheme to retain only those triangles we desire 
and discard the rest from the final mesh.  
 
2.5 Theoretical bounds 
 
The main result of this section proves that, given a image I, we can compute a Delaunay 
triangulation, DT(SV(L)), of the unique four corners of the leaf nodes of BQT(I), such that 
the all the triangles in the triangulation will be bounded by an aspect ratio of at most 2.5 
and with a minimum internal angle bounded to 26.56o. This is the most basic result of 
imageMesher algorithm. For further discussion, we define: the aspect ratio A(a, b, c) for 
a ∆abc as: the length of the hypotenuse (longest side) divided by the length of its altitude 
from the hypotenuse (shortest side), and A(T) is the maximum value of the A(a, b, c) 
over all the triangles in a triangulation {T}. 
 
 
 

Procedure imageMesher (Image I) 
 
  1. Input: Raster Image, I. 

2. Intermediate Output: Quadtree, QT(I). 

  3. Intermediate Output: Balanced Quadtree, BQT(I). 

  4.  Intermediate Output: Sorted unique vertices of leaf nodes of BQT(I), SV(L). 

5. Output: Delaunay triangulation, DT(SV(L)). 

6. begin 

  7.  QT(I) = MGV(I). 

  8.  BQT(I) = BalancedQuadtree (QT(I)). 

  9.  Load sorted unique vertices of the leaf nodes of BQT(I) into SV(L). 

  10.  DT(SV(L)) = DelaunayTriangulation (SV(L)). 

  11. return DT(SV(L)) 

 
 
 

Figure 5. Procedure imageMesher which generates the guaranteed quality mesh for an 
input raster image. 
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Proposition 1.  The Delaunay triangulation method gives triangulation DT(SV(L)) for 
which; A(DT(SV(L)) is at most 2.5 and the minimum value of θ  is bounded by 26.565o. 
 
The balanced quadtree, BQT(I), from imageMesher will comprise of sixteen templates 
nodes/blocks. As an internal quadrant can have any combination of the four neighboring 
quadrants, thus corresponding to 24 = 16 possible configurations. Figure 6.1 shows all 
the possibilities. These sixteen configurations can be further reduced to only six 
templates after eliminating similar type of configurations, based on symmetry (refer to 
Figure 6.2). When we triangulate these six nodes, on close inspection, we can notice 
that the final triangular mesh of the imageMesher algorithm will be a combination of only 
four prototype triangular elements (refer to Figures 6.3 and 6.4). Hence, it is sufficient to 
analyze these four triangles for our proof. For sake of convenience, we assume that the 
leaf node in BQT(I) has a side of length 2L.  
 
• Case (a): The triangle, shown in Figure 6.4(a), is a right isosceles with side lengths: 

2√2L, 2L, and 2L; and internal angles: 90o, 45o, and 45o. Hence, the aspect ratio will 
be 2 (length of the shortest altitude is √2L). 

• Case (b): The triangle, shown in Figure 6.4(b), is an isosceles triangle with side 
lengths: √5L, √5L, and 2L; and internal angles: 63.435o, 63.435o, and 53.13o. Hence, 
the aspect ratio will be 1.25 (length of the shortest altitude is 4L/√5).     

• Case (c): The triangle, shown in Figure 6.4(c), is a right angle triangle with side 
lengths: √5L, 2L, and L; and internal angles: 63.435o, 26.565o, and 90o. Hence, the 
aspect ratio will be 2.5 (length of the shortest altitude is 2L/√5). 

• Case (d):  The triangle, shown in Figure 6.4(d), is an isosceles triangle with side 
lengths: √5L, √5L, and √2L; and internal angles: 71.56o, 71.56o, and 36.88o. Hence, 
the aspect ratio will be 5/3 (length of the shortest altitude is 3L/√5). 

• From the above discussion, it is follows that the minimum bounding angle, θ, is 
26.565o and the bounding aspect ratio, A(DT(SV(L))), is at most 2.5 .  

 
 
The imageMesher∗ algorithm has been implemented to handle three most-commonly 
used image formats (.bmp, .gif, and .jpeg) using JDK 1.2.2 (JAVATM). It has a user-
friendly interface, which enables the user to use various options (e.g. selecting the 
background, choosing different Delaunay triangulation algorithms, displaying the nodes 
of the (balanced) quadtree and mesh, printing the mesh, etc.). The application also 
writes the computed mesh into an ASCII file, which is compatible with Triangle 
(Shewchuk, 2001). Albeit, it is theoretically possible to mesh any image, certain 
programming limitations (especially, problems relating to image memory management in 
JAVATM) restrict the current beta version from being a robust mesh generator for images.  
 
3. Applications 
 
In this section, we describe two examples: one from bio-medical and other from water- 
resources engineering, which illustrates the application of imageMesher for performing 
numerical simulations. 
                                                 
∗ The JAVATM application along with documentation is available for download on world-wide-web at: 
http://www.glue.umd.edu/~reddyg/imageMesher/ 
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Figure 6.1.The sixteen possible quadnode configurations in a balanced quadtree 

decomposition. 
 
 

 
Figure 6.2.The six template quadnode configurations obtained after removing 

symmetrical cases from the above sixteen possible patterns. 
 
 

 
Figure 6.3.Possible Delaunay triangulations of a quadnode in a balanced quadtree 

decomposition. 
 

 

 
Figure 6.4.Four prototype triangles deduced from the set of Delaunay triangulation of 

nodes in a balanced quadtree.  
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The first example deals with numerical simulation of a simple mathematical model for 
describing the proliferation and infiltration of glioma – anaplastic astrocytoma – based in 
part on quantitative image analysis of histological sections of human brain, using a finite 
element method (FEM) formulation. We use the equations and model parameters 
estimated by (Tarcqui et al., 1995) in our numerical simulation for evaluating the tumor 
growth dynamics of a patient suffering from anaplastic astrocytoma who received two 
treatments of chemotherapy and neutron irradiation during the terminal year. The first 
chemotherapy treatment was 5 cycles of 6 drugs (UW protocol) and the second 
treatment comprised of cis-platinum dosage. The time course of the treatment along with  
the spatial effects of tumor growth due to the geometry of the brain and its natural 
barriers are also incorporated into the modeling. The investigators suggested a two cell 
population hypothesis for modeling glioma growth:  the first type, C1(x, t), being sensitive 
to both the first course of chemotherapy and the second course: the second type, C2(x, 
t), is assumed to be resistant to the first course of chemotherapy, but possibly sensitive 
to the second course. The spatio-temporal evolution of the two cell populations: C1(x, t) 
and C2(x, t) are evaluated by the solutions of the following governing partial differential 
equations (GPDEs): 
 

  










−+∇=
∂
∂

−−+∇=
∂
∂

22222
22

1211111
21

)(

)()(

CtKCrCD
t

C

CtKCtKCrCD
t

C

        (3.1) 

where 
 

  
otherwise                                       
1,3,5,7,9i      ttt  if  k

tK ii1,

0
)( 1,11

1

=≤≤
= +      (3.2.1) 

 

  
otherwise                       

ttt        if  k
ttt  if  k

tK 2,3

2,1

0
2
64

)( 4,22

2,22

2 +≤≤
+≤≤+

=       (3.2.2) 

 
  D = diffusion coefficient  
  r1 and r2 = growth rates of the two types of cancer cells. 
  C1 and C2 = concentrations to two types of cancer cells. 
 
As an approximate initial condition, the investigators assumed that at the time of starting 
of the series of chemotherapies, the diffusion process has already broken any previously 
established uniform distribution of the cells. Hence, the cells are normally distributed with 
a maximum cell density at the center, xo. That is: 
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where the parameters a1 and a2 are the maximum initial density of the two types of cells 
and b measures the spread of the tumor cells centered at xo. As associated boundary 
conditions, Neumann condition (zero flux condition) is applied at the boundaries of the 
brain and at ventricles. That is: 
 

]0),(.. =∇≡ txCnCB i   21 ,i =         (3.4) 
 
Figures 7(a) and 7(b) show the MRI image of brain and the processed cross-section of 
brain extracted from the MRI image, respectively. Figures 7(c) and 7(d) show the 
balanced quadtree block-decomposition and the triangular mesh computed using 
imageMesher, respectively. Figures 8(i), 8(ii), and 8(iii) show the spatio-temporal growth 
of: type I, type II and total cancerous cell concentration (expressed in number of cells per 
sq. cm), respectively, after: day 1, day 113, day 230, and day 300 during the treatment in 
the terminal year. It should be mentioned here that all the model parameters in this 
simulation are constant over the entire domain, i.e., they are not spatially varying.  The 
next example illustrates the modeling of equations that have spatially heterogeneous 
parameters. 
 
The second example models two-dimensional steady-state subsurface flow with 
accretion for a spatially heterogeneous aquifer with a non-horizontal bottom. The GPDE 
describing such a system, after applying Dupuit's approximation (Bear, 1972), is given 
by: 
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where  
K = K(x, y)  = spatially heterogeneous profile soil permeability 

),( yxηη =  = non-horizontal aquifer bottom. 
h = h(x, y)   = phreatic surface. 
N = accretion. 

 
The boundary of the study area is assumed to act as no-flow condition (Neumann 
condition) while water-bodies within the study area act as constant water table elevation 
boundaries (Dirichlet boundary condition). 
 
The model equation (3.5) is applied to simulate the sub-surface water movement in a 
small agricultural watershed located in Dorchester County, on the Maryland eastern 
shore, within the costal plain physiographic region. The watershed has a relatively flat 
topography with sandy and loamy soils. The data required for this analysis was imported 
from a raster-based GIS environment. Figure 9(a) shows the outline and streams of the 
study area. The profile soil permeability, obtained from NRCS SSURGO digital 
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coverage, underlying the watershed is shown in Figure 9(b). The bedrock elevation 
developed for this watershed is shown in Figure 9(c). For simplicity, K andη  are 
assumed to be constant within the element while forming the elemental equations in a 
Galerkin’s weighted-residual finite element formulation. This assumption simplifies 
equation (3.5) into: 
 
 

                   
    

(a)      (b) 
 
 

   
    

(c)      (d) 
 

Figure 7. Illustrates the various steps usually involved in domain discretization of 
images: (a) shows the CBV-MR map of normal brain (Data Source: The Whole Brain 

Atlas, Harvard Medical School), (b) shows the preprocessed black-white image of brain, 
(c) shows the corners of the nodes from the balanced quadtree decomposition of the 

black-white brain image, and (d) shows the triangular mesh generated using 
imageMesher algorithm. 
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Figure 8(i). The image of the spatio-temporal evolution of type I cancerous cells, after: 

(a) day 1 (initial condition), (b) day 113, (c) day 230, and (d) day 300. 
 

 
Figure 8(ii). The image of the spatio-temporal spreading of type II cancerous cells, after: 

(a) day 1 (initial condition), (b) day 113, (c) day 230, and (d) day 300. 
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Figure 8(iii). The image of the spatio-temporal spreading of the tumor inside the brain, 

after: (a) day 1 (initial condition), (b) day 113, (c) day 230, and (d) day 300. 
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where the parameters with superscript e are assumed to constant within an element and 
h is nodal value to be estimated. Thus, to use equation (3.6) in a FEM formulation over 
the study area, we need to discretize the domain in such a manner that the value of K 
andη  within each triangular patch remains constant. This was accomplished by taking 
the intersection of three images shown in Figures 9(a), 9(b), and 9(c).  The result of 
intersection is shown in Figure 9(d). 
 
The nodes of the balanced quadtree decomposition and triangular mesh generated 
using imageMesher are illustrated in Figures 10(a) and 10(b), respectively. Water table 
elevation obtained from the numerical simulation is shown in Figure 11. The elevation is 
expressed in meters.  Table 2 summarizes the various properties of meshes used in the 
above two application examples. 
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   (a)      (b) 
 
 

    
 
   (c)      (d) 
 

Figure 9. Images used input in the analysis of steady-state subsurface water table 
movement a watershed located in Dorchester County, Maryland. (a) shows the 

watershed boundary along with the streams flowing through it, (b) shows the classified 
bedrock elevation within the watershed, (c) shows the spatial variation of profile soil 

permeability within the watershed, and (d) shows the thematic map resulting from the 
intersection of streams, bedrock elevation and soil permeability.  

 

   0       Km      1 

   0       Km      1 
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   (a)      (b) 

Figure 10. Shows (a) the nodes of balanced quadtree decomposition, and (b) the 
domain discretization of the spatially heterogeneous image/map shown in of the image 

shown in Figure 10(d).  
 
 

 
Figure 11. Steady-state water table elevation obtained from the finite element numerical 
simulation of Dupuit's equation for the study watershed in Dorchester County, Maryland. 

(a) shows the top view, and (b) shows the perspective view of water table elevation in 
meters. 

   0       Km      1 
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Table 2: Summary of the meshes used in the above two application examples. The table 
shows the various characteristics of images, the number of nodes and elements 
obtained by using the imageMesher algorithm, and the total processing time in seconds.  
 

No. of Nodes No. of Elements 
Input 
Image 

Size 
(pixels) 

Number of 
Colors Unprocessed Processed Unprocessed Processed 

Total 
Processing 

Time. 
(secs) 

Brain  
(refer to 

Figure 7(b)) 
270x315 2 7972 4910 15900 8046 17.56 

Intersection 
Map  

(refer to 
Figure 9(d)) 

288x446 14 12766 11511 25426 22288 23.22 

 

4. Conclusion 
 
In this paper, after presenting a brief review of some elementary definitions related to 
quadtree-based mesh generation for PSLGs, we described a new method suitable for 
generating theoretically guaranteed quality mesh for spatially heterogeneous data 
represented in images. We proved that the triangular elements in the output mesh have: 
(a) a bounded aspect ratio of at most 2.5, and (b) interior angles bounded between 
26.565o and 90o. We also described a modified algorithm for constructing a balanced 
quadtree and illustrated with suitable evidence that the proposed algorithm works faster 
than the algorithm of Sivan (1996). Finally, we discussed applications of meshes derived 
from images to illustrate the main features and utility of this approach. 
 
Additional work would be needed to determine an appropriate preprocessing 
methodology that can fit directly into the proposed algorithm, instead of using an external 
tool. Secondly, as the proposed algorithm makes use of the complete balanced-quadtree 
structure for mesh generation, the resulting output mesh will usually contain a large 
number of triangular elements. For instance, the mesh used in the numerical simulation 
of the second example comprised of elements in the order of 104. For a two-dimensional 
analysis, this is considered very high. Hence, it would be worthwhile to investigate the 
mesh generation of pruned-balanced-quadtree based on some threshold criterion. Our 
approach can be extended for implementation on parallel processors based on the 
algorithms proposed by Bern et al. (1993) for constructing linear and balanced quadtrees 
on parallel processors Lastly, this work can be considered as a precursor for (re)-
construction of three-dimensional geometry and mesh from a stack of registered 2-D 
images. 
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