
Octree approximation and compression methods�

Hanan Samet
Computer Science Department
Center for Automation Research

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
hjs@cs.umd.edu

www.cs.umd.edu/˜hjs

Andrzej Kochut
Computer Science Department

University of Maryland
College Park, Maryland 20742
kochut@cs.umd.edu

www.cs.umd.edu/˜kochut

Abstract

Techniques are presented to progressively approximate
and compress in a lossless manner two-colored (i.e. bi-
nary) 3D objects (as well as objects of arbitrary dimen-
sionality). The objects are represented by a region octree
implemented using a pointerless representation based on
locational codes. Approximation is achieved through the
use of a forest. This method labels the internal nodes of
the octree as GB or GW, depending on the number of chil-
dren being of type GB or GW. In addition, all BLACK nodes
are labeled GB, while all WHITE nodes are labeled GW. A
number of different image approximation methods are dis-
cussed that make use of a forest. The advantage of these
methods is that they are progressive which means that as
more of the object is transmitted, the better is the approx-
imation. This makes these methods attractive for use on
the worldwide web. Progressive transmission has the draw-
back that there is an overhead in requiring extra storage.
A progressive forest-based approximation and transmission
method is presented where the total amount of data that is
transmitted is not larger than MIN(B,W), where B and W
are the number of BLACK and WHITE blocks, respectively,
in the region octree of the set of objects.

1 Introduction

The transmission of graphical objects over the Internet
is gaining importance. Clearly, it is desirable to trans-
mit the minimum possible amount of data that is needed

�This work was supported in part by the National Science Foundation
under Grants EIA-99-00268, IIS-00-86162, and EIA-00-91474.

to rebuild the original object. However, it is also impor-
tant to present the data as soon as possible. Thus the ideal
transmission method should not only achieve compression,
but should also be progressive. This means that we want
to have a rough idea of the shape and form of the object
before it has been transmitted in its entirety. In this pa-
per we propose such a method for a collection of three--
dimensional objects that is represented by a region octree
(e.g., [5, 9]). Our method is a direct extension of a tech-
nique that we developed for a collection of two-dimensional
objects represented by a region quadtree [13, 14] imple-
mented using a pointerless representation based on loca-
tional codes (e.g., [3]). This technique is both progressive
and can achieve compression. Although the extension that
we describe is straightforward, the proof that it can achieve
compression is different in that it can be extended to arbi-
trary dimensions whereas the previous approach could not.

Some other work in the area includes that of Sloan and
Tanimoto [16] who treat the problem of transmitting a two-
dimensional image by successively approximating it by use
of pyramid-based approaches [18]. They are able to deal
with gray scale images; however, their method does not
feature any compression. Knowlton [7] addresses a simi-
lar problem by making use of a bintree [15, 17]. Here much
of the compression is obtained by using special coding tech-
niques to encode primitive 2 � 3 blocks. The method that
we describe does not make of any such techniques.

In the case of three-dimensional objects, most of the re-
search on compression and transmission has concentrated
on data represented by polygonal meshes. For example,
Deering [2] presents a method for triangle compression
which makes use of a generalized triangle mesh, delta com-
pression, and modified Huffman compression. However,
the issue of progressiveness is not addressed. Moreover,

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

the compression may be lossy. Li et al. [8] address the
problem of progressiveness by using a layer approach to
build a hierarchical structure on the basis of the polygo-
nal mesh. In this case, the first approximation is built by
collapsing vertices in the original mesh. Subsequent ap-
proximations are achieved by adding previously removed
vertices. Taubin [19] gives an interesting overview of mesh
compression methods.

A different approach is used in the broadly-researched
wavelet-based image compression domain. This has led to
the JPEG 2000 compression standard [11]. The JPEG com-
pression may lead to lossy images, which is not the case
in our approach. The JPEG standard is intended to cover
a broad variety of applications in image and signal com-
pression. Naveen and Woods [10] and Glenn et al. [4] are
examples of wavelet-based methods for compression of 3D
objects.

The rest of this paper is organized as follows. Although
our method can be extended to arbitrary dimensions, we fo-
cus on the three-dimensional case as the proof that it ex-
hibits compression is easily extended to higher dimensions.
Section 2 reviews the region octree as well as the pointer-
less representation that we use. It also reviews a number
of existing octree approximation methods, and presents the
family of forest-based approximation methods that we use.
Section 3 analyzes the compression that is achievable when
employing our forest-based approximation. Section 4 gives
the results of experiments, while Section 5 contains con-
cluding remarks and directions for future research.

2 Octree representation

Given a 2n � 2n � 2n array of voxels, a region octree
is constructed by repeatedly subdividing the array into oc-
tants, suboctants, : : : until obtaining blocks which consist
of a single value. This process is usually represented by
a tree of out degree 8 in which the root node corresponds
to the entire array, while the 8 children of the root node
correspond to the octants UNW, UNE, USW, USE, DNW,
DNE, DSW and DSE. The leaf nodes correspond to those
blocks of the array for which no further subdivision is nec-
essary. The nodes at level k (if any) represent blocks of size
2k � 2k � 2k, and are often referred to as nodes of size 2k.
Thus a node at level 0 corresponds to a single voxel in the
voxel array, while the single node at level n corresponds to
the root of the region octree. For example, Figure 1 shows
two orthogonal projections of the region octree block de-
composition of a sample object, while Figure 2 is its tree
representation.

We assume that the set of objects to be transmitted is
two-colored with BLACK (WHITE) denoting voxels that
are (not) occupied by the objects. The blocks in the region
octree are labeled BLACK (WHITE) corresponding to the

(a)

(b)

Figure 1: Two orthogonal projections of the re-
gion octree decomposition of a sample object.

color of their constituent . Blocks corresponding to nonleaf
nodes in the tree are labeled GRAY. In addition, each non-
leaf node is labeled as GB if at least four of its children are
BLACK or GB, and as GW otherwise.

In order to efficiently transmit the region octree we need
a representation that is more compact than a tree consisting
of WHITE, BLACK an GRAY nodes. Instead, we represent
the region octree using a pointerless representation which
consists of its leaf nodes. Each leaf node q is uniquely
identified by the path leading from the root of the octree
to q, termed its locational code. In particular, we associate
a directional code with each direction in the octree. The
directions UNW, UNE, USW, USE, DNW, DNE, DSW,
DSE are represented by directional codes 1, 2, 3, 4, 5, 6,
7, 8, respectively, Thus the path from root node to any leaf
may be represented as a sequence of directional codes.
The directional codes are accessed using the function
CHILDTYPE. Letting the sequence < xi > represent
directional codes on the path from the root node xn to node
xm, where xi = FATHER(xi�1), the locational code for
node xm is given by zn where zi is defined as:

2

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

19181615 2220

6

28 29 30 31 32

24

27 33

23 2521

982 4 7

43 4442 45 46 47 48 49

3

1

5

1710 11 12 13 14

26 34 35 36 37 38 39 40 41

Figure 2: The tree representation of the region
octree block decomposition corresponding to the
sample object in Figure 1. The internal nodes
are depicted as white squares, while the WHITE
and BLACK leaf nodes are depicted as white and
black circles, respectively. The nodes are refer-
enced in the discussion by their numeric label.

zi =

�
0 i = m
9 � zi�1 +CHILDTYPE(xi) m < i � n

For example, < 3; 3; 2 > is the sequence of direc-
tional codes corresponding to node 35 in Figure 2.
CODE(35) = 3 � 90+3 � 91+2 � 92 = 192 is its locational
code.

Given the locational codes of the leaf blocks, there is
no need for the locational codes of the nonleaf blocks. As
pointed out above, the objects that we are approximating
are restricted to being two-colored. Thus it is sufficient to
transmit the locational codes of the leaf blocks of just one
color since the locational codes of the remaining leaf blocks
are known to be of the other color and thus it is easy to
reconstruct the region octree from the locational codes of
the leaf blocks of one color. Such an algorithm is presented
in [13] to reconstruct the region quadtree from the locational
codes of the BLACK leaf blocks. It can be extended easily
to reconstruct the region octree.

2.1 Hierarchical approximation techniques

Since any internal node in the region octree may be used
to represent its subtree, the region octree data structure may
serve as the basis for an approximation method. Ranade,
Rosenfeld, and Samet [12] define the inner and outer ap-
proximation of a 2D image. We extend this concept to a set
of 3D objects represented by a region octree. The idea is to
truncate the region octree at the specified level. More pre-
cisely, lets define the inner approximation IB(k) of order k
as the set of black nodes at levels � k. We denote the sub-
set operation� on two region octrees in such a way so that

A � B means that the volume spanned by region octree A
is included in the volume spanned by region octree B. It
is easy to see that for any collection of objects in the voxel
array V and the inner approximations of its corresponding
region octree, IB (n) � IB (n � 1) � : : : � IB(0) = V ,
where n is the number of levels in region octree correspond-
ing to V . Similarly, we can define the outer approximation
OB(k) of order k as the set of black and gray nodes at levels
� k. In this case, for any collection of objects in the voxel
array V and the outer approximations of its corresponding
region octree, V = OB(0) � OB(1) � : : : � OB(n).
Clearly, both of the above approximation techniques are
very crude. An approximation obtained in this way does
not give a general overview of the connectivity of the object
quickly enough. Truncating the region octree at an arbi-
trarily chosen level does not take into consideration inter-
nal structure of particular subtrees that are being truncated.
Moreover, if we use one of the above techniques to trans-
mit data would require that we also incur an overhead cost
equal to the number of internal nodes in the corresponding
region octree.

2.2 Forest-based approximation techniques

As discussed in Section 2.1, simple approximationmeth-
ods such as the inner and outer approximation not yield sat-
isfying results. To overcome the shortcomings of these tech-
niques, we extend the approach developed by Samet [13] for
approximating two-dimensional images to the three-dimen-
sional case. This approach makes use of the concept of a
forest which was first introduced by Jones and Iyengar [6].
To make the discussion more precise, let us review the con-
cepts used in that method. Each internal node of the region
octree is labeled GB if at least four of its children is black or
of type GB. Otherwise we label it GW. Moreover, we will
call a node a maximal black cube if it is a black leaf node
or an internal node of type GB. A white maximal cube is
a white leaf node or an internal node of type GW. We de-
fine a black forest as a minimal set of maximal cubes that
are not contained in other maximal black cubes, and that
span the black volume corresponding to the object. Simi-
larly, the white forest is a minimal set of white cubes that
are not contained in other maximal white cubes and span
the white volume of the object. For example in the region
octree whose tree representation is given in Figure 2, inter-
nal nodes 1, 10, 4 and 20 are of type GB. These nodes, as
well as all black leaf nodes, are maximal cubes. Nonleaf
nodes 2 and 27 are of type GW. The black forest associated
with the region octree consists only of node 1. Nodes 2, 5,
6, 19, 36, 37, 41, 21, 23, and 24 comprise the white forest
of the example region octree.

Now, let us define the notion of the approximation of a
region octree using black forests. First, observe that not

3

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

only the root of the region octree, but any internal node
may be approximated by its black forest. Formally, let us
define FB(R) to be the region octree obtained by coloring
black all root nodes of suboctrees comprising the black for-
est of the region octree rooted at R. Define FB(R; l) — a
forest approximation of the region octree rooted at node R
of order l — to be those nodes from FB(R) which are at
level � l. For example, in Figure 2, FB(2; 3) = fg, while
FB(2; 2) = FB(2; 1) = FB(2; 0) = FB(2) = f10, 11,
14g. It is easy to verify that FB(R; n) � FB(R; n � 1) �
: : : � FB(R; 0) = FB(R). The above concepts form the
basis of the black forest approximation method, denoted by
FBB, and defined as follows. First, approximate the re-
gion octree by coloring black all root nodes of suboctrees
from FB(root,0). Subsequent levels of approximation are
achieved by replacing nonleaf nodes in the approximation
by their black forests. Formally, we have:

FBB(i) =

8
>>>><
>>>>:

FB(root) i = n

f j j j 2FBB(i+ 1) and not GRAY(j) g
[fFB(k)j j 2 FBB(i+ 1) and GRAY(j)

and FA THER(k) = jg
0 � i < n

For example, in Figure 2, FBB(4) = f1g;FBB(3) =
f10, 11, 14, 3, 4, 7, 8, 9g is achieved by replacing non-
terminal node 1 by black forests of its children. FBB(2) is
obtained by replacing node 10 by f43, 44, 45, 28, 29, 32,
33g, and node 4 by f18, 20, 22, 25g. The resulting approx-
imation is FBB(2) = f 43, 44, 45, 28, 29, 32, 33, 11 ,14,
3, 18, 20, 22, 25, 7, 8, 9g. FBB(1) is obtained by replacing
node 20 with its children yielding FBB(1) = f43, 44, 45,
28, 29, 32, 33, 11, 14, 3, 18, 34, 35, 38, 39, 40, 22, 25, 7, 8,
9g. FBB(0) = FBB(1) = V , because all nodes in FBB(1)
are leaf nodes. Clearly, V = FBB(0) � FBB(1) � : : : �
FBB(n).

Similar ideas may be used to define a white forest ap-
proximation method. First, let us define FW(R), to be the
region octree obtained by coloring white all root nodes of
suboctrees comprising the white forest of the region oc-
tree rooted at R. To follow the concept of approxima-
tion more closely, we introduce FW(R; l) in a similar fash-
ion to FB(R; l). In particular, FW(R; l) is the set of all
nodes from FW(R) which are at level � l. For example,
in Figure 2, FW(10; 2) = fg, FW(10; 1) = f26, 27,
30, 31g, FW (10; 0) = FW (10; 1) = FW (10). Clearly,
FW(R; n) � FW(R; n � 1) � : : : � FW(R; 0) =
FW(R). The above concepts form the basis of the white
forest approximation method, denoted by FWW, and de-
fined in an analogous manner to that of FBB as follows.

FWW(i) =

8>>>><
>>>>:

FW(root) i = n

f j j j 2FWW(i+ 1) and not GRAY(j) g
[fFW(k)j j 2 FWW(i+ 1) and GRAY(j)

and FA THER(k) = jg
0 � i < n

For example, in Figure 2, FWW(4) = f2, 19, 36, 37, 41,
21, 23, 24, 5, 6g. FWW(3) is obtained by replacing nonleaf
node 2 by its black forest f26, 27, 30, 31, 12, 13, 15, 16, 17g
yieldingFWW(3) = f26, 27, 30, 31, 12, 13, 15, 16, 17, 19,
36, 37, 41, 21, 23, 24, 5, 6g. The white forest approxima-
tion of order 2 is obtained by replacing the only remaining
nonleaf node 27 by nodes f42, 46, 47, 48, 49g. After this
step, no nonleaf nodes remain in the approximation set and
thus FWW(2) = FWW(1) = FWW(0) = f26, 30, 31,
12, 13, 15, 16, 17, 19, 36, 37, 41, 21, 23, 24, 42, 46, 47,
48, 49, 5, 6g. It can be easily seen that V = FWW(0) �
FWW(1) � : : : � FWW(n), where V is the complement
of V .

Note that the FWW approximation is the dual of the
FBB approximation. In particular, instead of approximat-
ing the black part of the volume, it approximates the white
part of the volume. Observe also that FWW underestimates
the black volume of the object. This is caused by the fact
that FWW overestimates the white volume. Thus FBB and
FWW are complementary methods. This observation leads
to our final approximationmethodwhich alternates between
FBB and FWW. We use FBW to denoted this method. In
particular, without loss of generality, the first approxima-
tion is given by FBB(n). The second level of approximation
is obtained by replacing nonleaf nodes in FBB(n) by their
white forests. The third level of approximation is obtained
by replacing nonleaf nodes by their black forests. More pre-
cisely, we have:

FBW(i) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

empty i = n+ 1

FBB(n) i = n

FBW(i + 1)
[fFW(j)j j 2 FBW(i+ 1)

and j =2 FBW(i + 2)g
(n� i) mod 2 = 1 and i < n

FBW(i + 1)
[fFB(j)j j 2 FBW(i+ 1)

and j =2 FBW(i + 2)g
(n� i) mod 2 = 0 and i < n

As an example, let us examine the formation of FBW
on the example region octree in Figure 2. FBW(4) is
given by the black forest approximation of the root. Thus
FBW(4) = f1g. The next level of approximation is
obtained by adding the white forest of node 1 yielding
FBW(3) = f1, 2, 19, 36, 37, 41, 21, 23, 24, 5, 6g. Next,
we use the black forest approach to obtain FBW(2) = f1,
2, 19, 36, 37, 41, 21, 23, 24, 5, 6, 10, 11, 14g. FBW(1)
is obtained by adding the white forests of nonleaf nodes

4

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

from FBW(2) to yield FBW(1) = f1, 2, 19, 36, 37, 41,
21, 23, 24, 5, 6, 10, 11, 14, 18, 20, 22, 26, 27, 30, 31, 36,
37, 41g. Finally, adding the black forest of node 27 yields
FBW(0) = f1, 2, 19, 36, 37, 41, 21, 23, 24, 5, 6, 10, 11,
14, 18, 20, 22, 26, 27, 30, 31, 36, 37, 41, 43, 44, 45g. The
approximation process is illustrated on Figure 3 for the ob-
ject whose orthogonal projection is given in Figure 1a.

(b)

(d)(c)

(e)

(a)

Figure 3: Example illustrating the application of
the FBW approximation to the example object
from Figure 1. The objects in (a)–(e) show the
progressive aspect of the approximations with
(a) corresponding to FBW(4) and (e) correspond-
ing to FBW(0). Observe how the FBW approxi-
mation alternates between over-estimation and
under-estimation of the black volume.

The FBW approximation alternates between the FBB
and FWW approximation methods. The first approxima-
tion is achieved using FBB. However, we could also con-
sider starting the approximation sequence with FWW. In
fact, in the context of discussing the compression properties
of the forest-based approximation methods in Section 3, it
is shown that the FWB approximation turns out to be prefer-
able for region octrees whose root node is of type GB. The
FWB approximation technique is defined as follows:

FWB(i) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

empty i = n+ 1

FWW(n) i = n

FWB(i + 1)
[fFB(j)j j 2 FWB(i+ 1)

and j =2 FWB(i + 2)g
(n� i) mod 2 = 1 and i < n

FWB(i + 1)
[fFW(j)j j 2 FWB(i+ 1)

and j =2 FWB(i + 2)g
(n� i) mod 2 = 0 and i < n

As an example, let us examine the formation of FWB
on the example region octree in Figure 2. The first ap-
proximation is the white forest of the root node and thus
FWB(4) = f2, 19, 36, 37, 41, 21, 23, 24, 5, 6g. The next
level of approximation is obtained by adding the black for-
est of node 2 yielding FWB(3) = f2, 19, 36, 37, 41, 21,
23, 24, 5, 6, 10, 11, 14g. Next, we use the white forest ap-
proach to obtain FWB(2) = f2, 19, 36, 37, 41, 21, 23, 24,
5, 6, 10, 11, 14, 26, 27, 30, 31g by adding the white forest
of nonleaf node 10. Finally, FWB(1) is obtained by adding
the black forest of node 27 to yield FWB(1) = f2, 19, 36,
37, 41, 21, 23, 24, 5, 6, 10, 11, 14, 26, 27, 30, 31, 43, 44,
45g. Because FWB(1) does not contain any nonleaf nodes,
FWB(0) = FWB(1).

It is easy to reconstruct the original image from the FBW
approximation. The algorithm need not know the colors or
types (i.e., GB or GW) of the blocks that are being trans-
mitted. All that is needed is to make sure that blocks P
and Q are added to the tree in such an order so that if P is
an ancestor of Q, then P is added before Q. If there is no
ancestral/descendant relation between two nodes, then they
can be added in an arbitrary order. Of course, we know that
the first nodes are BLACK (WHITE) in the case of an FBW
and FWB (FBW’ and FWB’) approximation.

3 Compression

As pointed out above, a two-colored region octree is
defined by enumerating the locational codes of all of its
WHITE nodes, or equivalently by enumerating the loca-
tional codes of all of its BLACK nodes. Depending on the
set of objects, in order to reduce the amount of space that is
needed, we use the color with the smaller cardinality. Given
a region octree having B and W black and white nodes,
respectively, and encoding it using approximation method
M with F(M) nodes, then we say that M achieves com-
pression whenever F(M) < MIN(B;W). We define the
compression ratio of methodM as the number of nodes in
the approximation sequence divided by cardinality of the
minimal color, i.e., C(M) = F(M)=MIN(B;W). In this
section we show that variants of FBW can be constructed so
that F(M) � MIN(B;W) (whereM is one of the variants

5

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

of FBW chosen depending on the type of the root node of
the region octree).

We first prove four theorems setting upper bounds on the
number of nodes in FBW and its variants. Our proofs are
different, and more general, than the ones used to prove the
existence of compression for the use of these methods in
the two-dimensional case in [13]. In particular, we cannot
assume that all the brothers of a GB (GW’) node are of type
GW (GB’). Thus we resort to a method that groups brother
nodes of the same type (i.e., GB, GW, GB’, or GW’).

Theorem 3.1 The maximum number of nodes in an FBW
approximation is less than or equal to one plus the number
of WHITE nodes in the region octree (i.e., F(FBW)�W+1).

Proof: The proof is by induction on the tree structure as
well as on the approximation sequence. We consider two
cases. The first is when the root of the region octree is of
type GB, and the second is when the root is of type GW.
In the following discussion we extend the definitions of GB
and GW to include leaf BLACK nodes and leaf WHITE
nodes, respectively.
Case a: The root is of type GB. Thus FBW(n)=frootg. Let
us define FBWN(i)= fjjj 2FBW(i) and j =2FBW(i + 1)
g for 0 � i � n and FBWN(n + 1) is empty. Observe,
that FBWN(i) denotes the set of new nodes added to the
approximation by step i. Let w(z) denote the number of
WHITE terminal nodes in the region octree rooted at node
z. Let F(z) denote the number of nodes in the FBW ap-
proximation of the region octree rooted at z assuming that
the root is of type GB and not including the root. So, to
prove our theorem we need to show that F(z)�W. Sup-
pose that FBWN(n� 1) hasm elements. For each element
xi 2FBWN(n�1) that is not a terminal node, FBWN(n�2)
contains all descendants of xi of type GB that have no an-
cestor of type GB in the subtree rooted at xi. Now, let
us partition the descendants of xi into yi groups, where
each group contains those nodes which are brothers in the
region octree. Observe that for each z 2FBWN(n � 2),
FATHER(z) = GW. The reason is that z has no ancestor of
type GB in the subtree rooted at xi, and xi is itself of type
GW. Therefore, z has at least 5 brothers of type GW and
at most 2 brothers of type GB. Therefore, the number of
nodes of type GW subsumed by FBW(n) and FBW(n� 1)
is at least 5 � yi. It is more if the brothers of z of type GW
correspond to nonleaf nodes. Now, assuming that the claim
holds for trees of size n� 2— that is, F(z)�w(z), we have:

F(root)� 1 +m+
Pm

i=1 3 � yi +
P

z2FBWN(n�2) F (z)

� 1 +
Pm

i=1 1 +
Pm

i=1 (3 � yi) +
P

z2FBWN(n�2) w(z)

� 1 +
Pm

i=1 (3 � yi + 1) +
P

z2FBWN(n�2) w(z).

However, use of 3 � yi +1 GB nodes in FBW(n� 2) results
in subsuming at least 5 � yi GW nodes. The fact that (3 �
yi + 1) < 5 � yi means that F(root) requires fewer nodes
than the number of WHITE leaf nodes as

P
z2FBWN(n�2)

w(z) accounts for all the WHITE leaf nodes in the subtrees
rooted in the 3 �yi+1 GB nodes in FBW(n�2). Therefore,
F(root)�w(root)+1.
Case b: The root is of type GW. Let y denote the number
of groups of GB nodes contributed to FBW(n) by the root
node. Here we assume the same definition of a group of
nodes as in the case a. Observe that there are at most 3 � y
nodes of type GB in FBWN(n). The reason is that each
group has a father of type GW. Similarly, the number of
nodes of type GW in all groups is at least 5 � y, and this is
the lower bound on the number of nodes of type GW that
are subsumed by FBW(n). Now, assuming that the claim
holds for trees of size n� 1— that is, F(z)�w(z), we have:

F(root)� 3 � y +
P

z2FBWN(n�1) F (z)

However, use of 3 � y GB nodes in FBW(n) results in sub-
suming at least 5 � y GW nodes. The fact that 3 � y � 5 � y
means that F(root) requires fewer nodes than the number of
WHITE leaf nodes as

P
z2FBWN(n�1) w(z) accounts for

all the WHITE leaf nodes in the subtrees rooted in the 3 � y
GB nodes in FBW(n). Therefore, F(root)�w(root). We
can get an even tighter bound by noting that y � 1 and
for y = 1, we have F(root) = 3 = W � 2. Therefore,
F(root) � w(root) � 2.

Theorem 3.2 The maximum number of nodes in an FWB
approximation is less than or equal to the number of WHITE
nodes in the region octree (i.e., F(FWB)�W).

Proof: The proof uses the proof of the Theorem 3.1.
Again, we consider two cases. The first is when the root
of the region octree is of type GB, and the second is when
the root is of type GW.
Case a: The root is of type GB. FWB(n) ignores the root
and collects all descendants of the root that are of type GW
and that do not have an ancestor of type GW. However, as
we saw in the proof of case a of Theorem 3.1, these are
precisely the nodes that comprise FBW(n � 1). In other
words, froot g+FWB(n)=FBW(n � 1). Similarly, froot
g+FWB(i)=FBW(i � 1) for 1 � i < n. Since the size
of approximation FBW is bounded by W+1 and FWB does
not include the root node, the size of FWB is bounded from
above by W.
Case b: The root is of the type GW. FWB(n) includes
the root. FWB(n � 1) consists of the root and all of its
descendants of type GB that do not have an ancestor of
type GB. However, as we saw in the proof of case b of
Theorem 3.1, these are precisely the nodes that comprise
FBW(n). Thus, FWB(n� 1)=frootg+FBW(n). Similarly,

6

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

FWB(i�1)=frootg+FBW(i) for 1 � i � n. Since approx-
imation FBW is bounded by W�2, and FWB also includes
the root node, the size of FWB is bounded from above by
W�1.

Theorems 3.1 and 3.2 let us conclude that the size of the
approximation is always bounded from above by the num-
ber of WHITE nodes in the region octree. To obtain an
analogous result in terms of the BLACK nodes in the region
octree, we need to redefine our approximation sequence. To
do so, we relabel octree with GB’ and GW’ as follows. A
nonleaf node is said to be of the type GW’ if at least four
of its children are of type GW’ or WHITE; otherwise, the
node is said to be of type GB’. We now redefine FB, FW,
FBB and FWW in terms of GB’ and GW’ to yield FB’,
FW’, FBB’ and FWW’, respectively. At this point, we can
define FWB’:

FWB0(i) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

empty i = n+ 1

FWW’(n) i = n

FWB0(i + 1)
[fFB0(j)j j 2 FWB0(i+ 1)

and j =2 FWB0(i + 2)g
(n� i) mod 2 = 1 and i < n

FWB0(i + 1)
[fFW0(j)j j 2 FWB0(i+ 1)

and j =2 FWB0(i + 2)g
(n� i) mod 2 = 0 and i < n

We define FBW’ in a similar manner as follows:

FBW0(i) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

empty i = n+ 1

FBB’(n) i = n

FBW0(i + 1)
[fFW0(j)j j 2 FBW0(i+ 1)

and j =2 FBW0(i + 2)g
(n� i) mod 2 = 1 and i < n

FBW0(i + 1)
[fFB0(j)j j 2 FBW0(i+ 1)

and j =2 FBW0(i + 2)g
(n� i) mod 2 = 0 and i < n

As we can see, approximations FWB’ and FBW’ are
formed in a manner analogous to the way in which approx-
imations FWB and FBW were formed. The only difference
is the interchanging of the roles of WHITE and BLACK
nodes. We obtain the following analogs of Theorems 3.1
and 3.2:

Theorem 3.3 The maximum number of nodes in the FWB’
approximation is equal to B+1 when the root node is of type
GW’ and B�2 when the root node is of type GB’.

Proof: Replace the role of WHITE nodes with BLACK
nodes in the proof of Theorem 3.2.

Theorem 3.4 The maximum number of nodes in the FBW’
approximation is equal to B.

Proof: Replace the role of WHITE nodes by BLACK
nodes in the proof of Theorem 3.1.

Approximation GB(GB’) GW(GW’)
FBW W+1 W�2
FWB W W
FBW’ B B
FWB’ B�2 B+1

Table 1: Summary of the upper bounds on the
number of nodes in discussed approximations.

The results of Theorems 3.1–3.4 are summarized in Ta-
ble 1. Observe that we may pick the optimal variant of
the FBW approximation technique based on the type of the
root of the region octree and the number of BLACK and
WHITE nodes. For example, if we are given a region octree
which has more BLACK nodes than WHITE nodes, and its
root is of type GB, then we should choose the FWB ap-
proximation. On the other hand, if the number of WHITE
nodes is greater than the number of BLACK nodes, and
if the root of the region octree is of type GB’, then we
should choose the FWB’approximation. Thus, as a result
we proved that our method consisting of the discussed vari-
ants of FBW requires at most MIN(W,B) nodes for repre-
senting the complete region octree. However, in practice
the compression achieved by the method is usually much
better. The MIN(B,W) bound is attained for a checkerboard
image. Other images that exhibit more coherence result in
more compression.

For example, let us analyze the compression that can be
obtained for the example region octree in Figure 4a. The
number ofWHITE nodes is 14 while the number of BLACK
nodes is 15. The FBW approximation consists of a total
of 3 nodes and is formed as follows: FBW(4)= f2; 10g
and FBW(3) = f2; 10; 28g. All remaining approximations
are equal to FBW(3) because there are no nonleaf nodes in
FBW(3). The compression ratio for this region octree is
equal to 3=14. In contrast, Figure 4b shows a region octree
for which the number of nodes in the approximation is ex-
actly equal to the value of MIN(W,B). In fact, the number
of WHITE nodes is equal to 1, and the FWB approxima-
tion (which is the best choice in case of a region octree with
a small number of WHITE nodes and a root of type GB)
contains node 1. Thus in this case the bound is met.

4 Empirical results

In order to evaluate the different methods, we applied
them to the region octree corresponding to the bunny in

7

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

17

22 24

13

20 21 25

11 161512

4

19

14

18

26

23

29 31 3228 30 33

10

2 93 8765

27

1

1

4 5 6 7 83 92

(a)

(b)

Figure 4: Two octrees showing compression
properties. Approximation of the tree (a) gives
compression of 3/14, while tree (b) does not get
compressed during the approximation.

Figure 5. The maximum depth of the region octree is 7,
and thus the resolution is 128 � 128 � 128 voxels. The
corresponding region octree consists of 46093 BLACK and
48114 WHITE nodes. In order to compare our approxi-
mation technique with the OB approximation, we applied
FBW and OB to the octree representing the bunny. The
results obtained by the experiments are presented in Table
2. Table 2a shows the number of blocks needed by the
OB approximation for each approximation level. For ex-
ample, in order to transmit OB(4) of the bunny, we need
to send 299 blocks. Table 2b shows corresponding re-
sults for the FBW approximation. The FBW approximation
needs 29007 blocks to rebuild the original bunny. Since
MIN(B,W)= 46093, use of FBW results in a compression
ratio of 0.62.

Figure 5: Bunny used in empirical studies.

Figure 6 compares the quality resulting from the use of
OB and FBW after transmitting approximately the same
number of blocks. Once the first 29007 blocks have been
transmitted FBW yields a lossless view of the bunny and

Approx. Blocks Cumulative Leaf blocks at level i
OB(i) sent blocks sent BLACK WHITE TOTAL
OB(7) 1 1 1 0 1
OB(6) 8 9 8 0 8
OB(5) 47 56 47 17 64
OB(4) 243 299 245 134 379
OB(3) 1222 1521 1250 648 1898
OB(2) 4896 6417 5257 2864 8121
OB(1) 17478 23895 19431 11818 31249
OB(0) 35656 59551 46093 48114 94207

(a)

Approx. Blocks Cumulative Leaf blocks at iteration i
OB(i) sent blocks sent BLACK WHITE TOTAL
FBW(6) 1498 1498 1498 6259 7757
FBW(5) 13654 15152 27492 19913 47405
FBW(4) 5774 20926 33266 37743 71009
FBW(3) 6373 27299 44057 44116 88173
FBW(2) 1230 28529 45287 47583 92870
FBW(1) 445 28974 46060 48028 94088
FBW(0) 33 29007 46093 48114 94207

(b)

Table 2: Experimental results of applying approx-
imation technique (a) OB and (b) FBW to the
bunny object.

is represented by Figure 5. On the other hand, the ob-
ject produced by use of OB with approximately the same
number of blocks (i.e., OB(1) with a cumulative number
of 23,895 blocks that have been transmitted) shown in Fig-
ure 6 is blocky. In fact, the OB method needs to transmit
35656 more blocks to obtain the original view of the bunny.
Figure 7 shows the progress of the FBW technique. The ap-
proximation FBW(6) (Figure 7a) requires transmission of
only 1498 blocks, but it already gives a good indication of
the shape of the bunny’s ears. FBW(5) (Figure 7b) which
requires transmission of 15152 blocks yields quite a good
approximation of the object. Approximations FBW(4) (Fig-
ure 7c) and FBW(3) (Figure 7d) require 5774 and 6373 ad-
ditional blocks, respectively.

The quality of the approximations can also be evaluated
by use of the following entropy function [1]:

H = �
P

i2fBLACK;WHITEg f(i) � log2 f(i)

where f(i) denotes the observed frequency of blocks with
color i The entropy function is useful for indicating the
extent of the uniformity of the image (i.e., 1 corresponds
to uniformity while 0 corresponds to an image that is all
black or all white). Table 4 contains the values of the en-
tropy function values for the FBW approximation sequence
of the bunny. Note that the entropy of the bunny is 0.828
(i.e., FBW(0)) and that the function oscillates around it in
an analogous manner to the way in which FBW over and
under approximate the object.

8

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

Approximation BLACK WHITE Entropy
voxels voxels

FBW(6) 908341 1188811 0.987
FBW(5) 490759 1606393 0.785
FBW(4) 575388 1521764 0.848
FBW(3) 545229 1551923 0.827
FBW(2) 548531 1548621 0.829
FBW(1) 547911 1549241 0.826
FBW(0) 547944 1549208 0.828

Table 3: Values of the entropy function for the
FBW(i) approximation sequence.

Figure 6: Approximation obtained after transmit-
ting the first 23,895 blocks in the approximation
of the bunny in Figure 5 which corresponds to
OB(1).

One of the interesting properties of our approxima-
tion/compression method is that in two dimensions it has
been observed [13] that it is biased in favor of objects with
shapes such as “panhandles” rather than “staircases”. In this
case, the handle is apparent at the initial stage of the ap-
proximation which is not the case when either the inner or
outer BLACK (IB or OB, respectively) approximation are
used. These approximations only reveal the handle as we
get deeper and deeper in the tree. The same phenomenon
was observed in our three-dimensional example bunny ob-
ject where we see the ears right away. In general, the less
round or spherical is the object, the greater is our method’s
potential for yielding compression.

5 Concluding Remarks

We have presented techniques for the progressive ap-
proximation and compression of sets of three-dimensional
binary objects represented by a pointerless region octree.
Our approach was an adaptation of a method previously
presented by Samet [13]. However, the proof that it ex-

hibits compression is different and is more general so that it
is applicable to objects of arbitrary dimensionality.

Directions for future work include the adaptation of these
methods to objects of more than just two colors (i.e., differ-
ent gray levels). This is quite difficult as the method makes
strong use of the fact that the part of the object that is not
in the foreground is in the background. Nevertheless, this is
an important topic for research.

References

[1] P. J. Burt and E. H Adelson. The Laplacian pyramid
as a compact image code. IEEE Transactions on Com-
munications, 31(4):532–540, April 1983.

[2] M. F. Deering. Geometry compression. In Proceed-
ings of the SIGGRAPH’95 Conference, pages 13–20,
Los Angeles, August 1995.

[3] I. Gargantini. An effective way to represent quadtrees.
Communications of the ACM, 25(12):905–910, De-
cember 1982.

[4] W. E. Glenn, J. Marcinka, and R. Dhein. Simple scal-
able video compression using 3-D subband coding. In
Proceedings of the SMPTE Advanced Television and
Electronic Imaging Conference, pages 140–143, San
Francisco, February 1995.

[5] G. M. Hunter. Efficient computation and data struc-
tures for graphics. PhD thesis, Department of Elec-
trical Engineering and Computer Science, Princeton
University, Princeton, NJ, 1978.

[6] L. Jones and S. S. Iyengar. Space and time efficient
virtual quadtrees. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 6(2):244–247, March
1984.

[7] K. Knowlton. Progressive transmission of grey-scale
and binary pictures by simple efficient, and loss-
less encoding schemes. Proceedings of the IEEE,
68(7):885–896, July 1980.

[8] J. Li, J. Li, and C. C. J. Kuo. Progressive compression
of 3d graphic models. In Proceedings of the IEEE In-
ternational Conference onMultimedia Computing and
Systems’97, pages 135–142, Ottawa, Canada, June
1997.

[9] D. Meagher. Geometric modeling using octree en-
coding. Computer Graphics and Image Processing,
19(2):129–147, June 1982.

[10] T. Naveen and J. W.Woods. Subband finite state scalar
quantization. IEEE Transactions on Image Process-
ing, 5(1):150–155, January 1996.

9

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

(a) (b)

(c) (d)

Figure 7: Approximations of the bunny in Figure 5: The result of applying (a) FBW(6), (b) FBW(5), (c)
FBW(4), and (d) FBW(3).

[11] M. Rabbani and R. Joshi. An overview of the JPEG
2000 still image compression standard. Signal Pro-
cessing: Image Communication, 17(1): 3–48, January
2002.

[12] S. Ranade, A. Rosenfeld, and H. Samet. Shape ap-
proximation using quadtrees. Pattern Recognition,
15(1):31–40, 1982.

[13] H. Samet. Data structures for quadtree approxima-
tion and compression. Communications of the ACM,
28(9):973–993, September 1985.

[14] H. Samet. Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[15] H. Samet and M. Tamminen. Efficient component la-
beling of images of arbitrary dimension represented

by linear bintrees. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 10(4):579–586, July
1988.

[16] K. R. Sloan Jr. and S. L. Tanimoto. Progressive refine-
ment of raster images. IEEE Transactions on Comput-
ers, 28(11):871–874, November 1979.

[17] M. Tamminen. Comment on quad- and octtrees. Com-
munications of the ACM, 27(3):248–249,March 1984.

[18] S. L. Tanimoto and T. Pavlidis. A hierarchical data
structure for picture processing. Computer Graphics
and Image Processing, 4(2):104–119, June 1975.

[19] G. Taubin. 3d geometry compression and progressive
transmission. In Proceedings of the EUROGRAPH-
ICS’99 Conference, P. Brunet and R. Scopigno, eds.,
pages 81–96, Milan, Italy, September 1999.

10

Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT�02)
0-7695-1521-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

