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Abstract. Indexing issues that arise in the support of similarity searching are
presented. This includes a discussion of the curse of dimensionality, as well as
multidimensional indexing, distance-based indexing, dimension reduction, and
embedding methods.

1 Introduction

The representation of multidimensional points and objects, and the development of ap-
propriate indexing methods that enable them to be retrieved efficiently is a well-studied
subject (e.g., [1,2]). Most of these methods were designed for use in application do-
mains where the data usually has a spatial component which has a relatively low dimen-
sion. Examples of such application domains include geographic information systems
(GIS), spatial databases, solid modeling, computer vision, computational geometry, and
robotics. However, there are many application domains where the data is of considerably
higher dimensionality, and is not necessarily spatial. This is especially true in multimedia
databases where the data is a set of objects and the high dimensionality is a direct result
of trying to describe the objects via a collection of features (also known as a feature vec-
tor). In the case of images, examples of features include color, color moments, textures,
shape descriptions, etc. expressed using scalar values. The goal in these applications is
often expressed more generally as one of the following:

1. Find objects whose feature values fall within a given range or where the distance
from some query object falls into a certain range (range queries).

2. Find objects whose features have values similar to those of a given query object or
set of query objects (nearest neighbor queries).

These queries are collectively referred to as similarity searching, and the issues
involved in supporting them is the subject of this paper, which is organized as follows.
Section 2 mentions the use of Voronoi diagrams, while Section 3 describes the curse
of dimensionality. Sections 4 and 5 discusses multidimensional indexing and distance-
based indexing, respectively, while Section 6 briefly touches on dimension reduction
and embedding methods. Concluding remarks are drawn in Section 7.

� This work was supported in part by the National Science Foundation under grants EIA-99-
00268, IIS-00-86162, and EIA-00-91474, and Microsoft Research.

K. Aizawa, Y. Nakamura, and S. Satoh (Eds.): PCM 2004, LNCS 3332, pp. 463–470, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



464 H. Samet

2 Voronoi Diagrams

An apparently straightforward solution to finding the nearest neighbor is to compute a
Voronoi diagram (e.g., [3]) for the data points (i.e., a partition of the space into regions
where all points in the region are closer to the region’s associated data point than to any
other data point), and then locate theVoronoi region corresponding to the query point. The
problem with this solution is that the combinatorial complexity of the Voronoi diagram
in high dimensions is prohibitive — that is, it grows exponentially with its dimension k
so that for N points, the time to build and the space requirements can grow as rapidly
as Θ(Nk/2) [3]. This renders its applicability moot.

3 Curse of Dimensionality

The above is typical of the problems that we must face when dealing with high-dimen-
sional data. Generally speaking, multidimensional queries become increasingly more
difficult as the dimensionality increases. The problem is characterized as the curse of
dimensionality. This term was coined by Bellman [4] to indicate that the number of
samples needed to estimate an arbitrary function with a given level of accuracy grows
exponentially with the number of variables (i.e., dimensions) that comprise it. For sim-
ilarity searching (i.e., finding nearest neighbors), this means that the number of objects
(i.e., points) in the data set that need to be examined in deriving the estimate grows
exponentially with the underlying dimension.

The curse of dimensionality has a direct bearing on similarity searching in high
dimensions as it raises the issue of whether or not nearest neighbor searching is even
meaningful in such a domain. In particular, letting d denote a distance function which
need not necessarily be a metric, Beyer et al. [5] point out that nearest neighbor searching
is not meaningful when the ratio of the variance of the distance between two random
points p and q, drawn from the data and query distributions, and the expected distance
between them converges to zero as the dimension k goes to infinity — that is,

lim
k→∞

Variance[d(p,q)]
Expected[d(p,q)]

= 0.

In other words, the distance to the nearest neighbor and the distance to the farthest
neighbor tend to converge as the dimension increases. Formally, Beyer et al. demonstrate
that when the data and query distributions satisfy this ratio, the probability that the farthest
neighbor distance is smaller than 1+ ε of the nearest neighbor distance is 1 in the limit
as the dimension k goes to infinity and ε is a positive value. For example, they show
that this ratio holds whenever the coordinate values of the data and the query point are
independent and identically distributed as is the case when they are both drawn from a
uniform distribution.

Assuming that d is a distance metric and hence that the triangle inequality holds, an
alternative way of looking at the curse of dimensionality is to observe that when dealing
with high-dimensional data, the probability density function (analogous to a histogram)
of the distances of the various elements is more concentrated and has a larger mean
value. This means that similarity searching algorithms will have to perform more work.
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Fig. 1. A probability density function (analogous to a histogram) of the distances d(p,x) with the
shaded area corresponding to |d(q,p)− d(p,x)| ≤ ε. (a) indicates a density function where the
distance values have a small variation, while (b) indicates a more uniform distribution of distance
values thereby resulting in a more effective use of the triangle inequality to prune objects from
consideration as satisfying the range search query.

In the worst case, we have the situation where d(x,x) = 0 and d(x,y) = 1 for all y �= x,
which means that a similarity query must compare the query object with every object
of the set. One way to see why more concentrated probability densities lead to more
complex similarity searching is to observe that this means that the triangle inequality
cannot be used so often to eliminate objects from consideration. In particular, the triangle
inequality implies that every element x such that |d(q,p)−d(p,x)| > ε cannot be at a
distance of ε or less from q (i.e., from d(q,p) ≤d(p,x)+d(q,x)). Thus if we examine
the probability density function of d(p,x) (i.e., on the horizontal axis), we find that when
ε is small while the probability density function is large at d(p,q), then the probability
of eliminating an element from consideration via the use of the triangle inequality is
the remaining area under the curve, which is quite small (see Figure 1a in contrast to
Figure 1b where the density function of the distances is more uniform).

These observations mean that nearest neighbor searching may be quite inefficient
as it is difficult to differentiate between the nearest neighbor and the other elements.
Moreover, seemingly appropriate indexing methods, such as k-d trees [6] and R-trees [7]
which are designed to make it easier to avoid examining irrelevant elements, may not
be of use in this case. In fact, the experiments of Beyer et al. [5] show that the curse of
dimensionality becomes noticeable for dimensions as low as 10 to 15 for the uniform
distribution. The only saving grace is that real world high-dimensional data (say of
dimension k) is not likely to be uniformly distributed as their volume is much smaller
than O(ck) for some small constant c > 2. Thus we can go on with our discussion despite
the apparent pall of the curse of dimensionality which tends to cast a shadow on any
arguments or analyses that are based on uniformly-distributed data or queries.

4 Multidimensional Indexing

Assuming that the curse of dimensionality does not come into play, query responses
are facilitated by sorting the objects on the basis of some of their feature values and
building appropriate indexes. The high-dimensional feature space is indexed using some
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multidimensional data structure (termed multidimensional indexing) with appropriate
modifications to fit the high-dimensional problem environment. Similarity search which
finds objects similar to a target object can be performed with a range search or a nearest
neighbor search in the multidimensional data structure. However, unlike applications in
spatial databases where the distance function between two objects is usually Euclidean,
this is not necessarily the case in the high-dimensional feature space where the distance
function may even vary from query to query on the same feature (e.g., [8]).

Searching in high-dimensional spaces is time-consuming. Performing range queries
in high dimensions is considerably easier, from the standpoint of computational complex-
ity, than performing similarity queries as range queries do not involve the computation
of distance. In particular, searches through an indexed space usually involve relatively
simple comparison tests. However, if we have to examine all of the index nodes, then the
process is again time-consuming. In contrast, computing similarity in terms of nearest
neighbor search makes use of distance and the process of computing the distance can be
computationally complex. For example, computing the Euclidean distance between two
points in a high-dimensional space, say d, requires d multiplication operations and d−1
addition operations, as well as a square root operation (which can be omitted). Note also
that computing similarity requires the definition of what it means for two objects to be
similar, which is not always so obvious.

5 Distance-Based Indexing

Often, the only information that we have available is a distance function that indicates the
degree of similarity (or dis-similarity) between all pairs of the N given objects. Usually
the distance function d is required to obey the triangle inequality, be non-negative, and
be symmetric, in which case it is known as a metric and also referred to as a distance
metric. Sometimes, the degree of similarity is expressed by use of a similarity matrix
which contains interobject distance values, for all possible pairs of the N objects

Given a distance function, we usually index the data (i.e., objects) with respect to
their distance from a few selected objects. We use the term distance-based indexing to
describe such methods (e.g., [9]). A number of such methods have been proposed over
the past few decades, some of the earliest being due to Burkhard and Keller [10]. These
methods generally assume that we are given a finite set S of N objects and a distance
metric d indicating the distance values between them (collectively termed a finite metric
space) Typical of distance-based indexing structures are metric trees [11,12], which are
binary trees that result in recursively partitioning a data set into two subsets at each
node. Uhlmann [12] identified two basic partitioning schemes, ball partitioning and
generalized hyperplane partitioning.

In ball partitioning, the data set is partitioned based on distances from one distin-
guished object, sometimes called a vantage point [13], into the subset that is inside and
the subset that is outside a ball around the object (e.g., see Figure 2a). In generalized
hyperplane partitioning, two distinguished objects p1 and p2 are chosen and the data
set is partitioned based on which of the two distinguished objects is the closest — that
is, all the objects in subset A are closer to p1 than to p2, while the objects in subset
B are closer to p2 (e.g., see Figure 2b). The asymmetry of ball partitioning (which is
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Fig. 2. Possible top-level partitionings of a set of objects (depicted as two-dimensional points) in
a metric tree using (a) ball partitioning and (b) generalized hyperplane partitioning.

evident from Figure 2a) is a potential drawback of this method as the outer shell tends
to be very narrow for metric spaces typically used in similarity search (e.g., see [14]). In
contrast, generalized hyperplane partitioning is more symmetric, in that both partitions
form a “ball” around an object (see Figure 2b). The vp-tree [13] is an example of a
ball partitioning tree while the gh-tree [12] is an example of a generalized hyperplane
partitioning tree.

An alternative way of distinguishing between some of the different distance-based
indexing methods is on the basis of whether they are pivot-based or clustering-based
(e.g., [15]). Pivot-based methods choose a subset of the objects in the data set to serve
as distinguished objects, termed pivot objects (or more generally pivots), and classify
the remaining objects in terms of their distances from the pivot objects. Pivot-based
similarity searching algorithms make use of the known distances from the objects to
different pivot objects to reduce the number of distance computations involving the
query object that will be needed to respond to the query. The pivot objects, assuming
without loss of generality that there are k of them, can often be viewed as coordinates
in a k-dimensional space and the result of the distance computation for object x is
equivalent to a mapping of x to a point (x0,x1, . . . ,xk−1) where coordinate value xi

is the distance d(x,pi) of x from pivot pi. The result is similar to embedding methods
which are discussed further below. Ball partitioning methods are examples of pivot-
based methods. In addition, methods that make use of distance matrices which contain
precomputed distances between some or all of the objects in the data set (e.g., [16]) are
also examples of pivot-based methods. Note that distance matrix methods differ from
ball partitioning methods in that they do not form a hierarchical partitioning of the data
set.

Clustering-based methods partition the underlying data set into spatial-like zones
called clusters that are based on proximity to a distinguished object known as the cluster
center. In particular, once a set of cluster centers has been chosen, the objects that are
associated with each cluster center c are those that are closer to c than to any other cluster
center. Although the cluster centers play a similar role as the pivot objects, the principal
difference is that an object o is associated with a particular pivot p on the basis of the
distance from o to p and not because p is the closest pivot to o, which would be the case
if p was a cluster center. Generalized-hyperplane partitioning methods are examples
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of clustering-based methods. The sa-tree [17,18], inspired by the Voronoi diagram, is
another example of a clustering-based method. It records a portion of the Delaunay
graph of the data set, which is a graph whose vertices are the Voronoi cells, with edges
between adjacent cells. Although many of the clustering-based methods are hierarchical,
this need not necessarily be the case.

It is interesting to observe that both pivot-based and clustering-based methods
achieve a partitioning of the underlying data set into spatial-like zones. However, the
difference is that the boundaries of the zones are more well-defined in the case of pivot-
based methods as they can be expressed explicitly using a small number of objects and
a known distance value. In contrast, in the case of clustering-based methods, the bound-
aries of the zones are usually expressed implicitly in terms of the cluster centers, instead
of explicitly, which may require quite a bit of computation to determine. In fact, very
often, the boundaries cannot be expressed explicitly as, for example, in the case of an
arbitrary metric space (in contrast to a Euclidean space) where we do not have a direct
representation of the ‘generalized hyperplane’ that separates the two partitions.

The advantage of distance-based indexing methods is that distance computations are
used to build the index, but once the index has been built, similarity queries can often be
performed with a significantly lower number of distance computations than a sequential
scan of the entire dataset. Of course, in situations where we may want to apply several
different distance metrics, then the drawback of the distance-based indexing techniques
is that they require that the index be rebuilt for each different distance metric, which
may be nontrivial. This is not the case for the multidimensional indexing methods which
have the advantage of supporting arbitrary distance metrics (however, this comparison
is not entirely fair, since the assumption, when using distance-based indexing, is that
often we do not have any feature values as for example in DNA sequences).

6 Dimension Reduction and Embedding Methods

There are many problems with indexing high-dimensional data. In particular, it can be
shown that, assuming uniformly-distributed high-dimensional data, most of the data lies
at or near the boundary of the data space [19] (e.g., for 20 dimensions, 98.85% of data
lies in the outermost 10% of the hypercube of the data space). Therefore, only rarely is
the data volume so high that every dimension is split even once when using an index
such as a k-d tree. Thus a typical query region often overlaps all of the leaf node regions
of the index which means that the cost of performing queries using the index is often
higher than a sequential scan of the entire data (e.g., [5,20]). In fact, this is another
manifestation of the curse of dimensionality.

Nevertheless, the “inherent dimensionality” of a data set is often much lower than
the dimensionality of the underlying space. For example, the values of some of the
features may be correlated in some way. Thus there has been a considerable amount of
interest in techniques to reduce the dimensionality of the data using methods such as
Singular Value Decomposition (SVD) [21], Karhunen-Loève Transform (KLT) [22], and
Principal Component Analysis (PCA) [22]. Another motivation for the development of
many dimension-reduction techniques has been a desire to make use of disk-based spatial
indexes which are based on object hierarchies such as members of the R-tree family [7,
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23,24]. The performance of these methods decreases with an increase in dimensionality
due to the decrease in the fanout of a node of a given capacity since usually the amount
of storage needed for the bounding boxes is directly proportional to the dimensionality
of the data thereby resulting in longer search paths.

In situations where no features are defined for the objects but only a distance function,
there exists an alternative to using distance-based indexes. In particular, methods have
been devised for deriving “features” purely based on the inter-object distances [25,26,
27,28]. Thus, given N objects, the goal is to choose a value of k and find a set of
N corresponding points in a k-dimensional space so that the distance between the N
corresponding points is as close as possible to that given by the distance function for the
N objects. In particular, if the methods are contractive (i.e., the distance in the embedding
space is always less than the distance in the original space) [29], then we can now index
the points using multidimensional data structures while guaranteeing 100% recall (i.e.,
that we will not miss any objects). These methods are known as embedding methods
and can also be applied to objects represented by feature vectors as alternatives to the
traditional dimension-reduction methods. Not all embedding methods are contractive
for all distance metrics.

7 Concluding Remarks

Providing indexing support for similarity searching is an important area where much
work remains to be done. Some of the more promising research directions lie in de-
veloping techniques to identify the important features in the applications so that the
dimension of the problem domain can be reduced thereby enabling us to properly utilize
the vast array of existing indexing and nearest neighbor techniques.
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