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ABSTRACT
Unprecedented growth is expected globally in commercial air traffic
over the next ten years. To accommodate this increase in volume, a
new concept of operations has been implemented in the context
of the Next Generation Air Transportation System (NextGen) in
the USA and the Single European Sky ATM Research (SESAR) in
Europe. However, both of the systems approach airspace capac-
ity and efficiency deterministically, failing to account for external
operational circumstances which can directly affect the aircraft’s
actual flight profile. A major factor in increased airspace efficiency
and capacity is accurate prediction of Estimated Time of Arrival
(ETA) for commercial flights, which can be a challenging task due
to a non-deterministic nature of environmental factors, and air
traffic. Inaccurate prediction of ETA can cause potential safety
risks and loss of resources for Air Navigation Service Providers
(ANSP), airlines and passengers. In this paper, we present a novel
ETA Prediction System for commercial flights. The system learns
from historical trajectories and uses their pertinent 3D grid points
to collect key features such as weather parameters, air traffic, and
airport data along the potential flight path. The features are fed
into various regression models and a Recurrent Neural Network
(RNN) and the best performing models with the most accurate ETA
predictions are compared with the ETAs currently operational by
the European ANSP, EUROCONTROL. Evaluations on an extensive
set of real trajectory, weather, and airport data in Europe verify
that our prediction system generates more accurate ETAs with a
far smaller standard deviation than those of EUROCONTROL. This
translates to smaller prediction windows of flight arrival times,
thereby enabling airlines to make more cost-effective ground re-
source allocation and ANSPs to make more efficient flight schedules.

CCS CONCEPTS
• Mathematics of computing → Multivariate statistics; • In-
formation systems → Data analytics; • Applied computing
→ Aerospace;
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Figure 1: Air traffic in Spanish airspace on July 12, 2016.
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1 INTRODUCTION
Accurate prediction of Estimated Time of Arrival (ETA) for com-
mercial flights is a key component of collaborative decision making
(CDM), a process that attempts to keep the costs under control along
with improvement in four key Air Traffic Management (ATM) ar-
eas; safety, capacity, efficiency and environmental impact. However,
just a seemingly insignificant event such as a delay in obtaining a
wheel chair can result in delays as slots are missed and reassigned
which can be costly for airlines resulting in increased fuel-burn,
emissions and expanded flight hours. This can also cause passenger
dissatisfaction and loss of market share due to a hampered cor-
porate image. The impact can grow exponentially due to ripple
effect caused by delays in subsequent flights, missed connections,
and even disruptions. Hence, due to the nature of unknowns, and
complexity of airspace system, it is a challenging task to make an
accurate ETA prediction. To illustrate the airspace complexity and
volume of air traffic in a single day in Spain, we present Figure 1.

Traditional methods approach the ETA prediction problem deter-
ministically, taking into account aircraft performance models, along
with either parametric or physics-based trajectory models. They
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usually begin by estimating the flight trajectory, which includes
the lateral flight path together with altitude and speed profiles, and
then proceed to calculating the time required to fulfill the predicted
trajectory. These models by themselves fail to account for external
operational circumstances such as weather phenomena, airspace
sector densities, and airport congestion, which can directly affect
the aircraft’s actual flight profile. Note that decreasing the average
delay per flight by one minute could save millions of dollars in
annual crew costs and fuel savings for a mid-sized airline. Hence,
unlike traditional methods, we propose a machine learning based
systematic approach to address the ETA prediction problem. We
make a considerable effort in feature engineering to use a richer
set of features including general information about flights as well
as weather, air traffic, and airport data for more accurate modeling
and prediction. Our prediction system is built upon the concepts
presented in the Aircraft Trajectory Prediction System [5] in which
airspace is considered as a set of data cubes around grid points as
part of the 3D reference grid network.

The paper contains three main contributions:
• We propose an ETA Prediction System for commercial flights.
Unlike other systems that collect and use features only for
the arrival airport, we use a richer set of features along the
potential route, such as weather parameters and air traffic
data in addition to those that are particular to the arrival
airport. Our feature construction process generates an ex-
tensive set of multidimensional time series data which goes
through Time Series Clustering with Dynamic Time Warp-
ing (DTW) to generate a single set of representative features
at each time instance.
• We present algorithms for two major features that highly
contribute to the accurate ETA prediction: airspace sector
congestion rate, and airport congestion rate.
• We perform a comparative analysis using a number of re-
gression models and an RNN and present their performances.
Using the best performing model, we compare our results
with those generated by the EUROCONTROL. Our experi-
ments on real trajectory, weather, air traffic and airport data
verify that our system outperforms EUROCONTROL’s ETA
prediction by offering not only a higher accuracy but also a
far smaller standard deviation, resulting in smaller prediction
windows of flight arrival times.

The proposed system can be used by the ANSPs and airlines
for more accurate scheduling and resource management resulting
in improvement in the four ATM key performance areas; safety,
capacity, efficiency, and environmental impact. The rest of the paper
is organized as follows. Section 2 reviews related work. Section 3
describes the data used in this study followed by Section 4 where
we present a proper set of features selected for ETA prediction
via feature engineering. Section 5 states the problem and reviews
two top-ranking boosting methods, while Section 6 presents our
experimental evaluation. Section 7 draws concluding remarks.

2 RELATEDWORK
There has been much work and an abundant literature on predict-
ing estimated rate of arrival for humans [23] and ETA for various
transportation vehicles on land (road and rail) [9, 25] and water [29],

in addition to air. Traditional methods to ETA prediction for air
transportation, particularly in the case of commercial flights use a
deterministic approach by heavily relying on aircraft performance
models along with either parametric or physics-based trajectory
models. They usually begin by computing the flight trajectory,
which includes the lateral flight path together with altitude and
speed profiles, and then proceed to calculate the time required to
fulfill the predicted trajectory [7, 21, 22, 24, 42]. However, the time
of arrival at a fixed point on the ground is dependent not only on
the airspeed the aircraft will fly, but also on the winds, tempera-
tures, air traffic along the route and congestion at the arrival airport.
Therefore, if the atmospheric, airspace and airport traffic data is
uncertain, the reference trajectory may not have been laid out cor-
rectly with respect to the real world situation, yielding inaccurate
prediction of estimated time-of-arrival for the specified airport.
Probabilistic methods usually develop stochastic linear models of
aircraft motion to estimate future aircraft positions. They model
aircraft trajectories as Discrete-Time Stochastic Hybrid Linear Sys-
tems in which aircraft path decisions form hybrid modes which
then inform mode transitions between turning and straight flight
modes [17, 31, 43].

Unlike traditional methods, we propose amachine learning based
systematic approach in which general information about the flight
as well as weather and air traffic data are all taken into consideration.
Our objective is to learn from historical data, possibly stored in an
aviation data warehouse [3], discover patterns and generate a set
of features to build a model for accurate ETA prediction. There are
only a few papers following the machine learning approach to the
ETA prediction problem for air transportation in the literature [15,
20, 40].

In their study, Kern et al. [20] aim to enhance ETA predictions
generated by the Federal AviationAdministration (FAA)’s Enhanced
Traffic Management System (ETMS). They select a set of baseline
features and gradually increase complexity by adding new ones to
check if they interfere with each other. The features are selected in
4 phases; 1) flight data, 2) flight and weather data, 3) flight and air
traffic data, and 4) flight, weather, and air traffic data. Next, they
apply Random Forest (RF) to generate the model. According to their
results, their model predicts ETA 78.8% more accurately than the
FAA’s ETMS. Although their model’s performance is applaudable,
they use weather and air traffic data only for arrival airports dur-
ing their feature collection, missing all the data along the routes
between departure and arrival airports.

In his paper, Takacs [40] presents a solution to the General Elec-
tric’s Flight Quest contest to make flights more efficient by improv-
ing the accuracy of arrival estimates. The contestant presents his
prediction approach to runway and gate arrival times of en route
U.S. domestic flights based on flight history, weather, air traffic
control, and other data available at a given time. His approach fol-
lows 6 consecutive stages of ridge regression and gradient boosting
machines, trained on a total of 56 features. The model structure is a
result of a heuristic, hand-run optimization process. The workflow
iteratively defines features and tries to incorporate the modeling
to decrease the RMSE as much as possible. However, due to time
constraints imposed by the contest, the author decided to keep the
model simple by using only 56 features.
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Table 1: A set of major air routes in Spain.

DepartureAirport ArrivalAirport

Barcelona–El Prat
Airport (LEBL)

A Coruña Airport (LECO)
Málaga Airport (LEMG)
Vigo–Peinador Airport (LEVX)
Seville Airport (LEZL)

Adolfo Suárez
Madrid-Barajas
Airport (LEMD)

Almeria Airport (LEAM)
A Coruña Airport (LECO)
Jerez Airport (LEJR)
Menorca Airport (LEMH)
Palma de Mallorca Airport (LEPA)
Vigo–Peinador Airport (LEVX)

Glina et al. [15] use Quantile Regression Forests (QRF), which
is an extension of RF as part of ensemble of Classification and
Regression Tress (CART), to generate point predictions and perti-
nent conditional probability distributions for the ETA of individual
flights. They validate their model on data from the Dallas/Fort
Worth International Airport, obtaining mean absolute errors (MAE)
of less than 60 seconds for their estimates of time-to-wheels-on
for flights with a distance to the airport less than or equal to 20
nautical miles. Unfortunately, their data pertains to a single airport
and it spans the period of only 5 days.

To summarize, our approach is distinguished from past efforts
with the following respects: 1) Our system predicts ETA for runway
arrival times. 2) Our system predicts ETA before departure, when
the flight trajectory is still unknown. In fact, our prediction system
doesn’t make use of costly flight plans, offering amore cost-effective
solution. Hence, our approach addresses the ETA prediction prob-
lem strategically over a time horizon of several hours. 3) For our
model, we collect and use a richer set of features not only for the
arrival airport but also for the airspace along the potential route.
4) We validate our model using an extensive set of real trajectory,
weather, and airport data over the period of 11 months.

3 DATA DESCRIPTION
This section introduces the datasets used for ETA prediction.

3.1 Trajectory Data
Trajectory data plays a large role in our study. Trajectories have
been the subject of much work in the spatial domain with an em-
phasis on cars along roads [37]. The focus has been on their gen-
eration (e.g., [38]), queries (e.g., [28, 30, 33, 35, 36]), and matching
(e.g., [18, 27, 34]). This data is collected continuously and is quite
voluminous. Instead, our focus here is on the flight domain.

Due to the fact that there exists no system that continuously
records and stores exact positions of an aircraft’s original trajec-
tory [4], only a discrete set of sample data are recorded and stored
which presumably represent a close approximation of the original
trajectory. We call this a raw trajectory. The raw trajectory data is
provided by Spanish ANSP, ENAIRE, using radar surveillance feed
with a 5 seconds update rate. The raw data is wrangled as part of
the Data-driven AiRcraft Trajectory prediction research (DART)
project under the SESAR Joint Undertaking Work Programme [39].

Figure 2: A set of trajectories for flights departing from
Barcelona and Madrid.

The data contains all commercial domestic flights for Spain, a total
of 119,563 raw trajectories and 80,784,192 raw trajectory points
for the period of January through November 2016. The fields of
the raw trajectory data are as follows: Flight No, Departure Airport,
Arrival Airport, Date, Time, Aircraft Speed in X, Y, Z directions, and
position information (Latitude, Longitude, Altitude). Note that, as a
preprocessing step, we downsample raw trajectory data from the
original resolution of 5 seconds to 60 seconds and align them to our
3D reference grid [1]. This is to build a set of features for each trajec-
tory point, i.e. weather observations along the aligned trajectories.
Table 1 lists a set of major flight routes departing from two major
cities in Spain and Figure 2 provides their visual representation on
a map.

3.2 Meteorology Data
The meteorology data is obtained from the National Oceanic and
Atmospheric Administration’s (NOAA) Global Forecasting System
(GFS) [26]. The original data has 28-km spatial and 6-hour temporal
resolution and it contains over 40 weather parameters including
Atmospheric, Cloud and Ground attributes for each grid point as
part of its 3D weather model. Hence, for this study’s geographic
volume of interest for the time period of January through November
2016, over 80TB of weather data is collected.

3.3 Airport Data
The airport traffic data is provided by EUROCONTROL as part of
the Data-driven AiRcraft Trajectory prediction research (DART)
project under the SESAR Joint Undertaking Work Programme [39].
The data contains airport traffic data for Spain, a total of 1,252,571
sets of records, where each record is composed of Date, Flight No,
Departure Airport, Arrival Airport, Aircraft type, Actual Departure
Time, Actual Arrival Time, Scheduled Departure Time and Scheduled
Arrival Time.

3.4 Airspace Data
The airspace sector data is computed using raw trajectory data along
with airspace sector volumes. The data contains aircraft counts
within 15-minute bins for each sector in Spain for a period of 11
months. The records include Sector Name, Date, Time of Sector Entry
and Time of Sector Exit with counts of aircraft.
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Table 2: The description of features.

Feature Type Feature Description

Flight
Airline Name of airline
Flight no Flight number
Aircraft type Type of aircraft

Spatial

Latitude Latitude of an occurrence
Longitude Longitude of an occurrence
Altitude Altitude of an occurrence
Sector Boundaries of a 3D airspace volume

Temporal
Date Date of an occurrence
Time Time of an occurrence
Time bin 15-minute time bin, an occurrence falls into

Meteorological

Atmospheric temperature Atmospheric temperature recording along the flight route
Atmospheric wind speed Atmospheric wind speed recording along the flight route
Atmospheric wind direction Atmospheric wind direction recording along the flight route
Atmospheric humidity Atmospheric humidity recording along the flight route
Atmospheric pressure Atmospheric pressure recording along the flight route
Ground temperature Ground temperature recording at the arrival airport
Ground wind speed Ground wind speed recording at the arrival airport
Ground wind direction Ground wind direction recording at the arrival airport
Ground humidity Ground humidity recording at the arrival airport
Ground pressure Ground pressure recording at the arrival airport
Ground wind gust Ground wind gust recording at the arrival airport

Airport

Arrival airport Airport the flight arrives at
Departure airport Airport the flight departs from
Airport arrival count Number of arrivals at an airport
Airport departure count Number of departures from an airport
Airport congestion rate Current vs. historical arrival+departure counts

Airspace Sector aircraft count Number of aircraft in a sector along the flight route
Sector congestion rate Current vs. historical aircraft count in a sector

Combinational

Flight-spatial Traversed locations of particular flights
Flight-spatial-temporal-airspace Traversed locations of particular flights at particular time instances
Meteorological-temporal Observed weather parameters at particular time instances
Airport-temporal Arrival and departure counts of aircraft at a particular airport
Spatial-temporal-airspace Traversed locations by an aircraft at particular time instances
Spatial-temporal-meteorological Observed weather parameters at particular positions and time instances

4 FEATURE ENGINEERING
In this section, we select and construct a proper set of features
for ETA prediction via feature engineering. Feature engineering
refers to the process of using domain knowledge of data to create
features that best represent the underlying problem of the predictive
models, resulting in improved model accuracy on unseen data. We
adopt high-dimensional features to build models so they possess
the ability to predict ETA more accurately. Features extracted from
each domain are listed in Table 2.

4.1 Basic Features
Basic features are extracted from each individual domain. We ex-
ploit Airline, Flight No and Aircraft Type as the flight features. The
first three letters of Flight No identify the Airline. Intuitively, each
of these basic flight features or combination of them exhibit a dis-
tinct pattern, potentially yielding a different ETA. For instance, as
Aircraft Type, Bombardier Canadair Regional Jet (CRJ) has different

performance parameters than that of Boeing 737-800’s (B738), likely
to generate a different ETA.

We use Latitude, Longitude, Altitude, and Sector as the spatial
features. Aircraft trajectories are nothing more than a set of joint
3D coordinates, where each coordinate is associated with a time
stamp. Trajectories are usually of different length, formed by a
different set of 3D coordinates. Hence, different spatial features
may cause various patterns and biases in ETA prediction.

We adopt Date, Time, and Time Bin as the temporal features.
Note that the temporal features listed in Table 2 are kept at a high
level for the sake of saving space. Time bins are used to generate
histograms. Note that, these features can refer to a flight departure
or arrival or sector crossing as well as observation of a weather
parameter. Essentially, ETA is an accumulated set of time intervals
along the trajectory. Hence, a trajectory of 60 segments, where each
segment is one-minute long, translates to an ETA of departure time
plus 60 minutes.
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Figure 3: Historically traversed 3D grid points between de-
parture and arrival airports.

Meteorological data is one of the major factors impacting the
spatial-temporal patterns of trajectories. Among over 40 weather
parameters, we exploit 5 atmospheric features for airspace Tem-
perature, Wind Speed, Wind Direction, Humidity, and Pressure, and
6 ground features for airports Temperature, Wind Speed, Wind Di-
rection, Humidity, Pressure, and Wind Gust. Convective weather
shaping up along the aircraft’s planned route may cause a trajec-
tory deviation yielding a different ETA.

The most recent work that aimed at addressing ETA prediction
with a machine learning approach utilized particular features such
as weather observations and traffic data for the arrival airport only,
disregarding features along the potential trajectory [20]. This is
partly due to fact that the exact trajectory is unknown before de-
parture. However, excluding these key features along the potential
trajectory greatly degrades the accuracy. Now, a critical question
arises: How can we obtain a set of features along the potential tra-
jectory when the trajectory is still unknown? Our approach to this
problem is as follows: As a preprocessing step, we align raw histori-
cal trajectories to the 3D reference grid [5]. The process generates a
time series of aligned historical trajectories. Figure 3 illustrates a set
of 3D grid points historically traversed by a sample flight between a
departure and arrival airport. Using spatially and temporally closest
set of data points from the weather model, we perform interpolation
and extract the pertinent parameters for each aligned trajectory
point. Once weather observations have been extracted for each
grid point at a particular time instance, we omit spatial informa-
tion. Next, we perform Time Series Clustering with Dynamic Time
Warping (DTW) [6, 19] on weather observations of variable length.
The process aggregates the weather observations and generates
a single set of representative features for each time instance. The
result is a set of features in the form of time series. For instance,
we use 300 meteorological features for a flight that is 60-minutes
long. This is due to fact that each trajectory point is recorded once
a minute and at each trajectory point 5 meteorological features are
adopted along the potential route. The same applies to the sector
congestion rates. For the same flight of 60 minutes, we use 4 time
bins, resulting in 4 sector density features along the flight route.

Airport features consist of Arrival Airport, Departure Airport,
Airport Arrival Count and Arrival Departure Count, in addition to
Airport Congestion Rate, which is computed using the actual and
scheduled arrival and departure counts. Each of these features are

likely to have an impact on flight’s ETA, as the higher the airport
congestion rate, the higher the likelihood of delay on arrival time.

We exploit Sector Aircraft Count and Sector Congestion Rate as
airspace features. Similar to the impact by the airport congestion
rate, the higher the airspace congestion rate along the planned
route, the higher the likelihood of trajectory diversion causing a
delay on arrival time.

4.2 Combinational Features
We combine various features from two or more domains to build
combinational features. Combining flight and spatial features pro-
duces Flight-spatial combinational feature. Intrinsically, each air-
line’s flight exhibits a distinct trajectory pattern, yielding a different
ETA. Figure 4a. shows Ryan Air (RYR) versus Vueling Airline’s
(VLG) flights between the LEBL and LEZL airports. Red trajectories
representing the RYR flight dominates the northern part, while
white trajectories representing the VLG flight dominates the south-
ern part of the routes.

Combining meteorological and temporal features produces
Meteorological-temporal combinational feature. Since weather ob-
servations vary over time and ETA is likely to be impacted by the
weather patterns, it is intuitive to combine these features. Figure 4b.
shows distribution of normalized temperature over the period of
January through November 2016 for the flight VLG22XV between
the LEBL and LEZL airports. Due to fact that average flight time for
the flight VLG22XV is 75 minutes and that each trajectory point
is recorded once per minute, each time instance on Figure 4b. has
75 temperature recordings. As shown in the figure, normalized
temperature increases during the summer months.

We combine airport and temporal features to generate theAirport-
temporal combinational feature. This enables us to gain insight on
the distribution of aircraft counts on various airports at various
time bins during the day, potentially impacting the ETA prediction.
Figure 4c. captures the distribution of normalized arrival and depar-
ture counts within 15-minute time bins for the LEZL airport. The
airport appears to have more traffic at time bins around 8:00.

To examine combination of various features and derive insights
on trends, find anomalies and perform strategic planning, a novel
interactive visualization tool, NormSTAD [2] can be used.

4.3 Airport Congestion Rate
Given the actual (historical) arrivals and departures along with
scheduled arrivals and departures for a particular airport, we want
to compute the airport congestion rate for the 15-minute time bin,
the flight of interest is scheduled to arrive. First, we create a set
of 15-minute time bins throughout the day. Next, we compute the
average counts for the actual arrival and departures for each of
these 15-minute time bins. Given the scheduled arrival time of the
flight of interest, we determine which time bin it falls into. For
that particular time bin, we compute the airport congestion rate as
presented in Algorithm 1. Figure 4d. illustrates congestion rates in
each 15-minute bins at the LEZL airport for the flight VLG22XV,
indicating a potential delay in late March due to a high congestion
rate at the LEZL airport.
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Figure 4: Distribution of various features.

Algorithm 1: Airport Congestion Rate
Result: Airport congestion rate
Input :Counts of scheduled arrivals ctSA, counts of

scheduled departures ctSD, average count of
actual arrivals avдCtAA, and average count of
actual departures avдCtAD of a flight with a flight
number f no and timestamp ts for a particular
airport

Output :Congestion rate cr of a particular airport, given the
time stamp ts and a flight number f no of an
arriving flight f l

1 TB ← [tb1, tb2, ..., tbk ]

2 3dp ← lat , lon,alt

3 f l ← f no, 3dp, ts

4 foreach tb ∈ TB do
5 if f l .ts ⊂ tb then
6 return acr [tb] ← (ctSA[tb] +

ctSD[tb])/(avдCtAA[tb] + avдCtAD[tb])
7 end
8 end

4.4 Sector Congestion Rate
Given the actual (historical) flights’ sector crossings, along with
scheduled flights’ sector crossings for a particular sector, we want

to compute the sector congestion rate for each sector, for each 15-
minute time bin, the flight of interest is scheduled to cross. Due to
fact that airspace sectors are nothing more than a set of extruded
polygons, we use a Point-In-Polygon algorithm [1] to compute the
counts of aircraft in each sector. To achieve this, we first create a
set of 15-minute time bins throughout the day. Next, we compute
the average counts for the actual flights’ sector crossings for each
of these 15-minute time bins. Given the scheduled crossing time
of the flight of interest, we determine which time bin it falls into,
and which sector it likely crosses. Due to fact that the flight’s
trajectory is unknown at the time of ETA prediction, we consider
all sectors the flight of interest is likely to cross based on actual
sector crossings. Next, for that particular time bin, we compute the
airport acceptance rate as presented in Algorithm 2.

5 PROBLEM STATEMENT AND MODEL
REVIEWS

Given a set of historical flights with their attributes such as flight
number, trajectory, departure and arrival airport, actual departure
and arrival date and time, airline name, aircraft type, and associated
weather and air traffic parameters, we aim at learning a model
that predicts the current flight’s ETA before it departs. Note that
ETA can refer to both runway and gate arrival times. Our system
predicts runway arrival times i.e. times between aircraft wheels-off
and wheels-on, as we exclude airport surface data when we build
our model. To address this problem, we build a number of models,
and rank them based upon their performance.
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Algorithm 2: Sector Congestion Rate
Result: Sector congestion rate
Input :Counts of scheduled flights’ sector crossings ctSF ,

average counts of actual flights’ sector crossings
avдCtAF , for each time bin tb for each sector

Output :Congestion rate of a particular sector scr , given
the time stamp ts and a flight number f no of a
crossing flight f l

1 TB ← [tb1, tb2, ..., tbk ]

2 3dp ← lat , lon,alt

3 f l ← f no, 3dp, ts

4 foreach tb ∈ TB do
5 if f l .ts ⊂ tb then
6 return scr [tb] ← (ctSF [tb]/avдCtAF [tb])

7 end
8 end

5.1 AdaBoost
Adaptive Boosting is a meta-estimator to fit a sequence of weak
learners on iteratively modified versions of the data. All the predic-
tions are then combined through a weighted sum to produce the
final prediction. The data modifications at each iteration consist
of applying weights to each of the training samples. The first step
simply trains a weak learner on the original data. For each succes-
sive iteration, the sample weights are individually modified and the
learning algorithm is reapplied to the reweighted data. At a given
step, those training examples that were incorrectly predicted by
the boosted model induced at the previous step have their weights
increased, whereas the weights are decreased for those that were
predicted correctly. As iterations proceed, examples that are diffi-
cult to predict receive ever-increasing influence. Each subsequent
weak learner is thereby forced to concentrate on the examples that
are missed by the previous ones in the sequence [16].

Formally, we assign an initial weight wi = 1 i = 1, ...,N1 to
each training pattern. We repeat the following procedure while the
average loss L̄ is less than 0.5.
(1) The probability that training sample i is in the training set is
pi = wi/

∑
wi , where the summation is over all members of the

training set. Select N1 samples with replacement to form the train-
ing set. This may be implemented by marking a line of length

∑
wi

and subsection of length wi . A uniform number picked from the
range [0,

∑
wi ] and landing in section i corresponds to picking

pattern i .
(2) Build a regression machine t from the training set. Each machine
makes a hypothesis: hi : x → y.
(3) Pass every member of the training set through this machine to
obtain a prediction y(p)i (xi ) i = 1, ...,N1.

(4) Compute a loss for each training sample Li = L
[
|y
(p)
i (xi ) − yi |

]
.

The loss L may be of any functional form as long as L ∈ [0, 1]. If
we let D = sup |y

(p)
i (xi ) − yi | i = 1, ...,N1 then we have three

candidate loss functions:

Li =
|y
(p)
i (xi ) − yi |

D
(linear )

Li =
|y
(p)
i (xi ) − yi |

2

D2 (squarelaw)

Li = 1 − exp

[
−|y
(p)
i (xi ) − yi |

D

]
(exponential)

(5) Calculate an average loss: L̄ =
∑N1
i=1 Lipi

(6) Form β =
L̄

1 − L̄
. β is a measure of confidence in the prediction.

(7) Update the weights:wi → wiβ
[1−Li ]. The smaller the loss, the

more weight is reduced making the probability smaller that this
pattern will be selected as a member of the training set for the next
machine in ensemble.
(8) For a particular input xi , each of theT machines makes a predic-
tion. Obtain the cumulative prediction hf using the T predictors:

hf = inf
{
y ∈ Y :

∑
t :ht ≤y

log(1/βt ) ≥
1
2

∑
t

log(1/βt )
}

This is the weighted median. Equivalently, each machine ht has
a prediction y(t )i on the ith pattern and associated βt . For pattern
i the predictions are relabeled such that for pattern i we have:
y
(1)
i < y

(2)
i <, ..., < y

(T )
i Next, we sum the log(1/βt ) until we reach

the smallest t so that the inequality is satisfied. The prediction from
that machine t we take as the ensemble prediction. If the βt were
all equal, this would be the median.

Intuitively, the effect of varying the weight wi to give more
emphasis to difficult examples means that each subsequent ma-
chine has a disproportionately harder set of examples to train on.
Thus, the average loss tends to increase as we iterate through the
algorithm and ultimately the bound on L is not satisfied and the
algorithm terminates [10, 12]

5.2 Gradient Boosting
Gradient Boosting [13, 14] produces a prediction model in the form
of an ensemble of weak prediction models. It builds additive regres-
sion models by sequentially fitting a simple parameterized function
to current pseudo residuals by least squares at each iteration. The
pseudo residuals are the gradient of the loss functional being mini-
mized, with respect to the model values at each training data point,
evaluated at the current step.

Formally, in the function estimation problem one has a system
consisting of a random output variable y and a set of random input
variables x = {x1, ...,xn }. Given a training sample {yi ,xi }N1 of
known (y,x) values, the goal is to find a function F ∗(x) that maps
x to y, such that over the joint distribution of all (y,x) values,
the expected value of some specified loss function L(y, F (x)) is
minimized:

F ∗(x) = argmin
F (x )

Ey,xL(y, F (x))

Boosting approximates F ∗(x) by an additive expansion:

F (x) =
M∑

m=0
βmh(x ;am )
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Table 3: A list of prediction models used in this study.

Method Alдorithm

Linear
Linear Regression (LR)
Lasso Regression (LASSO)
Elastic Net Regression (EN)

Non-linear
Classification and Regression Trees
Support Vector Regression (SVR)
k-Nearest Neighbors (KNN)

Ensemble

Adaptive Boosting (AdaBoost)
Gradient Boosting (GBM)
Random Forest Regression (RF)
Extra Trees Regression (ET)

Recurrent Neural Network Long Short-Term Memory (LSTM)

where the functions h(x ;a) which are base learners are usually cho-
sen to be simple functions of x with parameters a = {a1,a2, ...ak }.
The expansion coefficients βm

M
0 and the parameters am

M
0 are

jointly fit to the training data in a forward stage-wise manner.
One starts with an initial guess F0(x), and then form = 1, 2, ...,M :

(βm ,am ) = argmin
β,a

N∑
i=1

L(yi , Fm−1(xi ) + βh(xi ;a))

and

Fm (x) = Fm−1(x) + βmh(x ;am )
Gradient boosting approximately solves (βm ,am ) for arbitrary

loss functions L(y, F (x)) with a two step procedure. First, the func-
tion h(x ;a) is fit by least-squares:

am = argmin
a,ρ

N∑
i=1
[ỹim − ρh(xi ;a)]2

to the current pseudo residuals:

ỹim = −

[
∂L(yi , F (xi ))

∂F (xi )

]
F (x )=Fm−1(x )

Then, given h(x ;am ), the optimal value of the coefficient βm is
determined:

βm = argmin
β

N∑
i=1

L(yi , Fm−1(xi ) + βh(xi ;am ))

This strategy replaces a potentially difficult function optimization
problem by one based on a least-squares, followed by a single
parameter optimization based on a general loss criterion L.

6 EXPERIMENTAL STUDY
This section presents the evaluations of our ETA prediction system.

6.1 Setup
We evaluate the performance of our prediction system on 10 major
flight routes in Spain, presented in Table 1. We chronologically
order each dataset for each route, normalize and standardize, and
use the first 80% for modeling and the remaining 20% for validation.

Table 3 lists the prediction models used in this study. We use 10-
fold cross-validation and evaluate the algorithms using Root Mean
Squared Error (RMSE) metric. We create a baseline of performance
on this problem and spot-check a number of algorithms to address
the regression problem. The first round of algorithms we use are
linear and non-linear regression methods, in addition to historical
average (HA), which simply averages all historical flight times for
the same routes for the same time period. The algorithms all use
default tuning parameters. The second round of algorithms we use
are ensemble methods comprised of two boosting (AB and GBM),
and two bagging (RF and ET) methods. These algorithms also use
default tuning parameters. The final algorithm we use is the Long
Short-Term Memory (LSTM), which is a type of RNN. Given the
flight times for the previous 10 most recent subsequent days, we
compute the time for the next day’s flight, provided that all flights
share the same defining features such as flight number, departure
and arrival airports, aircraft type, etc. In order to perform LSTM
on our dataset, we first transform our multivariate time series data
into a supervised learning problem. Next, we define the LSTM with
50 neurons in the first hidden layer and 1 neuron in the output
layer for predicting the flight time. The input shape is one time
step with over 300 features (the number of features depends on the
average flight time). The model is fit for 50 training epochs with a
batch size of 72.

Our experiments are conducted on a computer with Intel Core
i7-6820HQ CPU @ 2.70GHz and 16GB memory, running on Linux
Ubuntu 16.04.1 64-bit Operating System. All the algorithms in our
system are implemented in Python 3.6.4.

6.2 Results
Table 4 shows the RMSE value for each algorithm. The best score
for each route is highlighted. In a quick glance, it seems clear that
HA and linear models (LR, LASSO, EN) perform poorly on all routes.
KNN and SVR seem to achieve the best scores among the linear
and non-linear methods. In fact, KNN generates 8, SVR generates
2 best scores out of 10 routes among the linear and non-linear
methods. The default value for the number of neighbors in KNN
is set to 7. We obtain slightly better results when we use a grid
search to try different numbers of neighbors. Unlike the previous
work [15, 20] which emphasize the accuracy of bagging methods
(RF and its extensions), our results indicate that boosting methods
(AB and GBM) dominate the bagging methods (RF and ET) on all
routes. LSTM yields relatively unstable scores, generating only one
best score on all 10 routes. This may not be a surprise as LSTM is
better suited for sequence prediction than autoregression.

Overall, the boosting methods dominate the entire list, gener-
ating the best scores among all including the linear, non-linear,
ensemble and RNN methods. In fact, the scores obtained by boost-
ing methods can be further improved with tuning. The default
number of boosting stages to perform (n estimators) is originally
set to 100. We define a parameter grid n estimators values from 50
to 400 in increments of 50. Each setting is evaluated using 10-fold
cross-validation. By parameter tuning, we reach even better scores.

We complete our comparative study among the models listed in
Table 3 and select the best score for each route. Next, we compare
our final results with the ETA values, EUROCONTROL uses [39].
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Table 4: The RMSE values of all algorithms.

Model
LEBL
LECO

LEBL
LEMG

LEBL
LEVX

LEBL
LEZL

LEMD
LEAM

LEMD
LECO

LEMD
LE JR

LEMD
LEMH

LEMD
LEPA

LEMD
LEVX

HA 5.590140 5.498889 5.555261 4.911651 3.265500 4.000898 3.311410 3.953404 3.787092 4.666325
LR 6.565834 5.583422 6.669648 5.240185 4.848514 4.612558 4.167661 4.433904 4.943242 5.183345
LASSO 5.423176 5.328147 4.566031 4.620595 2.979159 3.939358 3.061945 3.618408 3.830357 4.676572
EN 5.129900 5.328147 4.510600 4.598869 2.979159 3.972221 3.078638 3.618059 3.759207 4.562907
KNN 4.315834 4.041417 4.080471 3.768015 3.768015 3.472992 2.837109 3.109983 3.633360 3.409278
CART 6.208306 5.228796 5.098875 4.717167 4.527573 4.439111 3.729169 3.790538 4.691645 4.175965
SVR 4.850719 5.036133 4.276852 4.320527 2.914718 3.575904 3.001464 3.199346 3.536542 4.151692
AB 3.991038 3.790171 4.244822 3.620588 2.840969 3.128822 2.602778 2.987388 3.347820 3.092941
GBM 3.993338 3.430164 4.068700 3.630516 3.045774 3.276929 2.589360 2.908439 3.344821 3.174045
RF 4.308547 3.841439 4.103479 3.706125 3.016808 3.345249 2.740151 2.910654 3.5721842 3.437595
ET 4.171390 3.538316 4.266809 3.731383 3.081153 3.396700 2.630542 3.028200 3.6377407 3.436975
LSTM 7.586650 5.674340 3.708545 4.673223 2.932544 3.714577 2.604398 3.988213 3.789673 4.311236

Figure 5 illustrates RMSE values in minutes for each route between
our prediction versus EUROCONTROL’s prediction. Note that Fig-
ure 5 presents both results at two different scales. Figure 5a. is a
closer look at the box plots, where the median values are visible.
However, the full extent of the boxplots are missing in Figure 5a.
due to outliers. Hence, we provide Figure 5b., where the full extent
of the boxplots including the outliers are visible. From the results,
we make the following observations: i) Our prediction yields better
median scores on eight routes, while the EUROCONTROL’s ETA
shows better median scores on two routes (LEBL-LEVX and LEBL-
LEZL). ii) The standard deviation values in EUROCONTROL’s ETAs
are much larger, resulting in larger windows of predictability at
arrival times. This may have a significant adverse impact on air-
lines’ ground resource management as well as connecting flights’
scheduling. iii) Boxplots representing EUROCONTROL’s ETAs in
Figure 5b. show extreme outliers. In summary, our prediction sys-
tem offers more accurate ETA prediction with far smaller standard
deviation than those of EUROCONTROL.

To evaluate the effectiveness of our features, we rank them based
on their relative importance. The top 10 features are presented in
Table 5. Evidently, the arrival airport is of critical importance on
accurate ETA prediction. Aside from that, meteorological features
in the form of a time series along the potential trajectory make
a significant impact during regression. This insight validates our
approach that meteorological and airspace sector features along
the potential trajectories should be taken into account to achieve
accurate ETA prediction.

7 CONCLUSION
We have presented a novel ETA prediction system for commercial
flights. Our experiments verify that our system can predict any
commercial flight’s ETA in Spain within 4 minutes of RMSE on
average regardless of the flight length. Our system outperforms
EUROCONTROL’s ETA prediction by offering not only a higher
accuracy but also a far smaller standard deviation, resulting in
increased predictability of flight arrival times. This enables air-
lines to better coordinate the action of ground handling personnel
and equipment, thereby reducing the waste of time and energy.

Likewise, air traffic flow management, airport runway and gate
assignment, and ground support equipment usage optimization are
all processes that can benefit from a more accurate ETA prediction
for commercial flights.

Some future work could involve adding a spatial browsing ca-
pability [8, 11, 32] for the trajectories as well as incorporating our
methods in distributed spatial environment [41].

Table 5: Top 10 features ranked by their relative importance.

Rank Feature Score

1 Arrival airport 1.0
2 Atmospheric pressure 0.67854
3 Atmospheric wind speed 0.66231
4 Atmospheric wind direction 0.65224
5 Atmospheric humidity 0.63331
6 Atmospheric temperature 0.61314
7 Airport congestion rate 0.53212
8 Sector congestion rate 0.31153
9 Flight no 0.29192
10 Aircraft type 0.13221
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