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ABSTRACT
Moving object databases arise in numerous applications such as
traffic monitoring, crowd tracking, and games. They all require
keeping track of objects that move and thus the database of objects
must be constantly updated. The cover fieldtree (more commonly
known as the loose quadtree and the loose octree, depending on
the dimension of the underlying space) is designed to overcome the
drawback of spatial data structures that associate objects with their
minimum enclosing quadtree (octree) cells which is that the size of
these cells depends more on the position of the objects and less on
their size. In fact, the size of these cells may be as large as the entire
space from which the objects are drawn. The loose quadtree (oc-
tree) overcomes this drawback by expanding the size of the space
that is spanned by each quadtree (octree) cell c of width w by a cell
expansion factor p (p > 0) so that the expanded cell is of width
(1 + p) ·w and an object is associated with its minimum enclosing
expanded quadtree (octree) cell. It is shown that for an object o
with minimum bounding hypercube box b of radius r (i.e., half the
length of a side of the hypercube), the maximum possible width w
of the minimum enclosing expanded quadtree cell c is just a func-
tion of r and p, and is independent of the position of o. Normalizing
w via division by 2r enables calculating the range of possible ex-
panded quadtree cell sizes as a function of p. For p ≥ 0.5 the range
consists of just two values and usually just one value for p ≥ 1.

∗This work was supported in part by the National Science Founda-
tion under grants CCF-05-15241, IIS-0713501, IIS-10-18475, IIS-
12-19023, Microsoft Research, Google, NVIDIA, the E.T.S. Wal-
ton Visitor Award of the Science Foundation of Ireland, and the
National Center for Geocomputation at the National University of
Ireland at Maynooth.
†Work done while the author was at the University of Maryland.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

This makes updating very simple and fast as for p ≥ 0.5, there
are at most two possible new cells associated with the moved ob-
ject and thus the update can be done in O(1) time. Experiments
with random data showed that the update time to support motion
in such an environment is minimized when p is infinitesimally less
than 1, with as much as a one order of magnitude increase in the
number of updates that can be handled vis-a-vis the p = 0 case in a
given unit of time. Similar results for updates were obtained for an
N-body simulation where improved query performance and scal-
ability were also observed. Finally, in order amplify the paper, a
video titled “Crates and Barrels” was produced which is an N-body
simulation of 14,000 objects. The video as well as a JAVA applet
that illustrates the behavior of the loose quadtree are both available
from http://www.cs.umd.edu/~hjs/loosequad/.
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Keywords
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1. INTRODUCTION
One of the motivations for the development of geographic infor-

mation systems (GIS) is to keep track of objects (e.g., QUILT [38,
41], and the SAND Browser [11, 36]) for both location-based and
feature-based queries [4]. Similar needs arise in game applications
(e.g., [9,16]), where the difference is that the objects are not usually
static. Instead, they are constantly moving and thus the database of
objects must be constantly updated. An attractive method of repre-
senting spatial objects to support the tracking process uses an object
hierarchy where minimum bounding hypercube boxes (e.g., an R-
tree [15,37]) are used to speed up the process of detecting if objects
are present or overlap other objects. One of the drawbacks of such
a representation is that the hierarchies of different sets of objects

http://www.cs.umd.edu/~hjs/loosequad/
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are not in registration thereby making set operations between the
two sets such as unions and intersections more complex.

A solution is to use a hierarchy of congruent cells while still
not decomposing the objects. In this case, the hierarchy is based
on a regular decomposition of the underlying space such as a re-
gion quadtree (e.g., [37]) and then associates each object with its
minimum enclosing quadtree cell. Methods that employ this tech-
nique include the MX-CIF quadtree [1, 24, 45], multilayer grid
file [44], R-file [19], filter tree [40] (used for spatial join algo-
rithms [18,20,21]), and SQ-histogram [3] (used for selectivity esti-
mation in processing spatial queries) where the primary difference
lies in the nature of the access structure that is used. For exam-
ple, Figure 1a is the cell decomposition induced by the MX-CIF
quadtree for a collection of rectangle objects, while Figure 1b is its
tree representation. Notice that more than one object is associated
with some of the nodes in the tree which means that the objects
have the same minimum enclosing quadtree cell (e.g., the root and
its NE child, where the children are referred to as NW, NE, SW,
and SE denoting the Northwest, Northeast, Southwest, and South-
east quadrants, respectively, of corresponding cells).
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Figure 1: (a) Cell decomposition induced by the MX-
CIF quadtree for a collection of rectangle objects and
(b) its tree representation (from [37]).

The drawback of these methods is that the size of these minimum
enclosing quadtree cells depends on the position of the centroids of
the objects and is independent of the size of the objects, subject to
a minimum which is the size of the object. In fact, it may be as
large as the entire space from which the objects are drawn. This
has bad ramifications for applications where the objects move in-
cluding games, traffic monitoring, and streaming. In particular, if
the objects are moved even slightly, then they usually need to be
reinserted in the structure.

The cover fieldtree [12,13] and the more commonly known loose
quadtree (octree) [47] are designed to overcome this independence
of the size of the minimum enclosing quadtree cell and the size of
the object (see also the expanded MX-CIF quadtree [2], multiple
shifted quadtree methods [7, 26, 27], and the partition fieldtree [12,
13]). This is done by expanding the size of the space that is spanned
by each quadtree cell c of widthw by a cell expansion factor p (p >
0) so that the expanded cell is of width (1 + p) ·w and an object is
associated with its minimum enclosing expanded quadtree (octree)
cell. The notion of an expanded quadtree cell can also be seen in the
quadtree medial axis transform [34, 35]. For example, letting p =
1, Figure 2 is the loose quadtree corresponding to the collection of
objects in Figure 1(a) and its MX-CIF quadtree in Figure 1(b). In
this example, there are only two differences between the loose and
MX-CIF quadtrees:

1. Rectangle object E is associated with the SW child of the
root of the loose quadtree instead of with the root of the MX-
CIF quadtree.

2. Rectangle object B is associated with the NW child of the
NE child of the root of the loose quadtree instead of with the
NE child of the root of the MX-CIF quadtree.

To further understand the loose quadtree and its behavior, see
the publicly available web site at http://www.cs.umd.edu/
~hjs/loosequad/. The web site also contains a video titled
“Crates and Barrels” that shows an N-body simulation containing
14,000 objects. The video illustrates the improvement in in perfor-
mance when using a loose quadtree over an MX-CIF quadtree.
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Figure 2: (a) Cell decomposition induced by the loose
quadtree for a collection of rectangle objects identical
to those in Figure 1, and (b) its tree representation
(from [37]).

Ulrich [47] has shown that given a loose quadtree cell c of width
w and cell expansion factor p, the radius r of the minimum bound-
ing hypercube box b of the smallest object o that could possibly be
associated with c must be greater than pw/4.

Our contribution is the realization that the real utility of the loose
quadtree is best evaluated in terms of the inverse of the above re-
lation as we are interested in minimizing the maximum possible
width w of c given an object o with minimum bounding hypercube
box b of radius r (i.e., half the length of a side of the hypercube)
denoted by MBHR(o,b,r). This is because reducing w is the real
motivation and goal for the development of the loose quadtree as
an alternative to the MX-CIF quadtree for which w can be as large
as the width of the underlying space. We achieve our goal in Sec-
tion 3 by examining the range of the relative widths of c and b as
this provides a way of taking into account the constraints imposed
by the fact that the range of values of w is limited to powers of 2.
In particular, the novelty of our work lies in our showing this range
to be just a function of p, and hence independent of the position of
o. Moreover, we prove that for p ≥ 0.5, the relative widths of c and
b take on at most two values, and usually just one value for p ≥ 1.
This makes updating the index very simple when objects are mov-
ing as there are at most two possible new cells associated with a
moved object, instead of log2 of the width of the space in which
the objects are embedded (which can be as large as 16 assuming a
216×216 embedding space as used by us). In other words, we have
shown how to update in O(1) time for p ≥ 0.5 which is of great
importance as there is no longer a need to perform a search for the
appropriate quadtree cell.

The rest of this paper is organized as follows. Section 2 discusses
related work in the context of the moving object databases litera-
ture. Section 3 shows how to achieve position independence for the
width of the minimum enclosing quadtree cell c by examining the
range of the relative widths of c and the minimum bounding hy-
percube box b of object o, denoted by MBH(o,b), and also how to
take into account the constraints imposed by the fact that the range
of values of the width of c is limited to powers of 2. Section 4
presents a cell insertion algorithm for the loose quadtree. Section 5
discusses the ramifications of the results of Section 3. Section 6
contains an experimental evaluation of the loose quadtree with re-
spect to the extent that it needs to be updated on account of object
motion for different values of p and object size distribution, Sec-
tion 7 shows the results of using the Loose Quadtree in an N-body
simulation which is typical of the type of functionality needed in
modern video games and hence is conducted in a main memory

http://www.cs.umd.edu/~hjs/loosequad/
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environment unlike the experiments in Section 6 which used sec-
ondary storage. Concluding remarks are drawn in Section 8.

2. RELATED WORK
As pointed out in [43], updates to spatial indices, such as those

that occur due to motions of the objects, require a coarse tree-
level locking instead of object-level as entire sub-trees may have to
locked to facilitate deletion of an object from its prior position and
reinsertion into its newer position. Several approaches [22, 29, 33,
46,49] have been proposed which we broadly classify based on the
strategy that they use to minimize the updates to the spatial index.
If the movement of the data is predictive, or in other words, the fu-
ture position of the object is known for a short future time period,
then the structure can be optimized to answer queries for a short
period without having to rebuild the structure. This is the strategy
adopted by the TPR-tree [33], its variant the TPR∗-tree [46].

[22, 49] resort to space-filling curves and B-trees in lieu of a
more traditional spatial index, such as an R∗-tree [6] in order to
take advantage of the B-tree’s ability to handle high rates of up-
dates. Similarly, [25, 31] transform the position of a moving object
using a Hough transformation into a dual space, such that updates
are only required when the velocity of the object changes result-
ing in overall fewer updates. A method for indexing trajectories of
moving objects is given in [32], while a method to index objects
moving on a road network that takes advantage of the restricted
motions of these objects along the road network within prescribed
speed limits is given in [29]. To make spatial indices more update
efficient, [42, 43] propose a general method to take advantage of
the many cores in modern computer architectures even as queries
are applied to the spatial data structure.

Our work is unique in the sense that we deal with objects that
have extents (i.e., geometries), while most of the work in this area
deals with point objects. While the geometry of the moving objects
may not be important in vehicular or people tracking applications,
it is not so for games and physics-based applications. Note that
we cannot assume that the position of the object and its trajectory
can be reasonably estimated. A typical game scenario consists of
several dynamic objects which move in response to other dynamic
or static objects in the scene, making long term prediction of their
movement quite difficult. Moreover, rendering the scene requires
that the spatial data structures be queried tens of times per second
in order to ascertain which objects are visible in the scene, how they
are interacting, and even how light interacts with them in order to
produce the desired interactivity that users expect from games. A
B-tree could be used to speed up updates in lieu of a spatial in-
dex such as an R∗-tree or a quadtree. In this paper we use two
experimental setups: one involving a loose quadtree indexed by a
B-tree where the blocks of the quadtree are represented by their lo-
cation codes, and another using a pointer-based quadtree structure.
Finally, in contrast to methods that increase the throughput of a spa-
tial index by harnessing the work of multiple threads updating the
spatial index (e.g., [42,43]), our method avoids as many updates to
the spatial index as possible. Our method and multi-threaded up-
date intensive methods are not mutually exclusive in the sense that
one does not preclude the application of the other.

3. CALCULATION OF THE MAXIMUM
LOOSE QUADTREE CELL WIDTH

A key principle to observe is that in the loose quadtree, the small-
est expanded quadtree cell c of width w that contains the object o
has the property that the centroid of o (actually of MBHR(o,b,r))
is contained in the non-expanded portion of c. Thus insertion pro-
ceeds by finding the smallest quadtree cell c that contains the cen-
troid of b, and whose expanded cell also contains o. The traditional
way of finding c is to recursively search the quadtree starting at
the root and descend to the appropriate child based on the value of

the centroid. In fact, it turns out that there is even an easier way
of determining c, which involves little search (i.e., few descents in
the quadtree). In particular, we show below that the width w of c
must lie within a relatively small range of values, thereby greatly
restricting the number of possible cells that must be tested for the
inclusion of o.

Recall that one of the key drawbacks of data structures such
as the MX-CIF quadtree that associate an object o with the min-
imum sized quadtree cell c of width w that encloses object o’s
MBHR(o,b,r) is that w is a function of the position of o, and to
a lesser extent, a function of r in the sense that only its minimum is
a function of r. In contrast, in the loose quadtree, as we show in the
rest of this section, the dependence of w on the position of o is re-
duced significantly. In particular, we demonstrate thatw lies within
a range of values that only depend on the radius r of o’s MBH(o,b)
and the value of the cell expansion factor p. In fact, normalizing
w via division by 2r leads to Theorem 3.1, given below, which
enables the calculation of a range of expanded quadtree cell sizes
whose lower and upper bounds only depend on p. As we will see,
restricting of the cell sizes to be powers of 2 (i.e., 1, 2, 4, . . . 2n)
makes these bounds quite tight, with the range taking on at most
two values for p ≈ 1, which turns out to be the primary p value of
interest. Thus the size of the containing quadtree cell is almost the
size of the object or the size of the next larger quadtree cell.

THEOREM 3.1. The ratio w/2r of the widths of the expanded
minimum enclosing quadtree cell c and MBH(o,b) obeys

1

1 + p
≤ w

2r
<

2

p
.

PROOF. We first derive a lower bound on the range of the ratios.
From the definition of the cell expansion factor p, we know that
given an object o with MBHR(o,b,r) the smallest quadtree cell c of
width w with which o can be associated so that o’s centroid lies in
the non-expanded portion of c arises when the centroids of b and c
coincide, and moreover the cell c′ resulting from the expansion of
c (i.e., having width (1 + p)w) is just large enough to contain b of
width 2r (see Figure 3(a)). This leads to the following inequality:

(1 + p)w ≥ 2r (1)

and can be rewritten as
w

2r
≥ 1

1 + p
. (2)

We can use similar reasoning to obtain an upper bound on the
range of the ratios, and in the process use a similar construction to
that of Ulrich [47] except that for a given cell expansion factor p,
Ulrich assumed the existence of a quadtree cell c of width w and
was seeking the radius r of the minimum bounding hypercube box
b of the smallest object o that could possibly be associated with
the expanded cell c, while we are assuming that for a given cell
expansion factor p, we are given an object o with minimum bound-
ing hypercube box b of radius r and are seeking the width w of
the largest cell c with whose expanded cell b would be associated.
We make use of our observation that the centroid of the object o
with MBHR(o,b,r) is always required to be contained in the non-
expanded portion of the associated quadtree cell.

An alternative way of casting our goal is that we want to find
the width of the smallest object o that can have a minimum enclos-
ing expanded quadtree cell c of width w. Doing this enables us to
calculate an upper bound on the range of w/2r. Given our require-
ment that the centroid of the object is always in the non-expanded
portion of the minimum enclosing expanded quadtree cell c, we
find that one of c’s corners is coincident with the centroid of o, and
that the radius r of b is not too large so that b is too large for the
expanded region of c (i.e., an attainable upper bound on r of pw/2
as shown in Figure 3(b)), and just large enough so that b does not
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Figure 3: Assuming cell expansion factor p and an examples showing the (a) smallest ratio of the width w of the
quadtree cell c associated with b and the width of b which is attained when the centroids of o and c coincide, and
the (b) lower and (c) upper bounds on the largest ratio attained when the centroid of o coincides with one of the
corners of c. Note that (c) is drawn at a different scale than (b).

fit in the expanded region of one of the subcells of c of width w/2
(i.e., an unattainable lower lower bound on r of pw/4 as shown in
Figure 3(c)). Equivalently, for this particular configuration, we say
that pw/4 = 2k−1 = r − δ′ < r ≤ 2k = pw/2 for some value
of k and δ′ > 0. Simplifying the notation by letting δ′ = δw/4,
we have pw/4 = 2k−1 = r − δw/4 < r ≤ 2k = pw/2 for some
δ > 0. Since the width w of c is the same for all values of r in this
range, we point out that c’s width relative to that of b is maximized
when r takes on the value:

r = pw/4 + δw/4, δ > 0. (3)

which can be rewritten as:

w/2r =
w

pw
2

+ δw
2

, δ > 0, (4)

w/2r =
2

p+ δ
<

2

p
, (5)

w/2r <
2

p
. (6)

Combining relations 2 and 6 yields the range:

1

1 + p
≤ w

2r
<

2

p
. (7)

We interpret Theorem 3.1 as follows. Without loss of generality,
we assume that the quadtree cell corresponding to the root of the
loose quadtree has length 2g , where g is an integer. This enables
us to avoid dealing with negative values of k, which is somewhat
counter intuitive, as would be the case were we to continue with
the unit hypercube assumption. In this case, all cells c in the loose
quadtree have width w = 2k, such that k ≤ g is an integer. Now,
for any given value x, let us define a function M(x) which deter-
mines a k such that 2k−1 < x ≤ 2k, and returns the value 2k. In
other words,

M(x) = 2k, s.t. 2k−1 < x ≤ 2k. (8)

Moreover, we also have that

1 ≤ M(x)

x
< 2. (9)

The rationale behind the function M(x) is that it quantizes x to the
next higher power of 2 unless it is already a power of 2. To explain
the utility of M(x) from a geometric point of view, consider an
input object R with a minimum bounding hypercube box of radius
r. We have that M(r) is the radius of the smallest quadtree cell
(i.e., half the width) that can potentially contain R. We now derive
the minimum and maximum possible ratios of w/2r in terms of
M(.). Let us assume that 2r is a power of 2 which means that
the minimum bounding box is a quadtree cell (i.e., M(r) = r).
The number of levels of the loose quadtree spanned by the range
[1/(p+1), 2/p) is upper-bounded by the number of integers of the
form 2k, where k is an integer, and 2k/2r is contained in the range
[1/(p + 1), 2/p). That is, we have just shown that the number of
levels spanned by the range in relation 7 cannot exceed V , which
is given by Lemma 3.1 below.

LEMMA 3.1. The number of levels in the loose quadtree at
which the expanded minimum quadtree cell of the object could pos-
sibly lie is upper bounded by V , where

V = log2(M(2/p))− log2(M(1/(p+ 1))). (10)

Now, let us make some observations on the possible ranges of
relative cell widths on the basis of relations 7 and 10. First, for the
degenerate case of the MX-CIF quadtree, in which case no expan-
sion takes place (i.e., p = 0), we have an unbounded upper bound
on the range of values and a lower bound of 1. As p increases to-
wards 1, the range of values decreases. For example, for p = 1/4,
we have a range of relative cell widths [4/5, 8). This means that the
relative cell widths of the set of possible quadtree cells containing a
given input rectangle R with a minimum bounding hypercube box
of radius r lie between [M(4/5) = 1,M(8) = 8) = {1, 2, 4}. In
other words, the quadtree cells containing R in the loose quadtree
can be of radiusM(r), 2M(r), and 4M(r) (i.e., half the width). In
fact, these radii hold for all values of p such that 1/4 ≤ p < 1/2.

For p = 1/2, there are just two possible relative cell widths
corresponding to [M(2/3) = 1,M(4) = 4) = {1, 2}. In
other words, the associated quadtree cells of R can be either the
quadtree cell of radius M(r) or of radius 2M(r). These radii
hold for all values of p such that 1/2 ≤ p < 1. For p = 1,
there are also just two possible relative cell widths corresponding
to [M(1/2) = 1/2,M(2) = 2) = {1/2, 1}. In other words,
the associated quadtree cells of R can be either the quadtree cell
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of radius M(r), or can be of radius half of M(r). These radii
hold for all values of p such that 1 ≤ p < 2. As p increases
beyond 1, the number of possible ratios of relative cell widths os-
cillates between one and two. In particular, for bpc = 2k − 1,
where k ≥ 1 is an integer, the ratio w/2r takes on two values
[M(1/2k) = 2−k,M(2/(2k − 1)) = 22−k), while for all other
values of p (i.e., 2k ≤ p < 2k+1 − 1, where k ≥ 1 is an integer),
w/2r takes on just one value M(1/2k) = 2−k.

4. INSERTION IN A LOOSE QUADTREE
In this section we show how Theorem 3.1 and Lemma 3.1 can

be used to derive a simple O(1) time object insertion algorithm
for the loose quadtree. We first give an example of the algorithm
using p = 1/4. From Theorem 3.1, we have that the quadtree
cells containing a given input rectangle object o with a minimum
bounding hypercube box of radius r can be associated with one
of three possible cells of radius M(r), 2M(r), and 4M(r). The
insertion algorithm proceeds as follows. We first find a cell b of
radius M(r), such that it contains the centroid of o. This can be
done in O(1) time by noting that M(r) = 2dlog2 re. At this point,
we have that either b, the parent of b (say b′) of radius 2M(r), or
the parent of b′ (say b”) of radius 4M(r) contains o and we insert
o in the smallest one whose expanded region contains o.

The actual insertion algorithm is given by procedure Loose-
QuadtreeInsert below. It uses Lemma 3.1 to determine the
number of quadtree cells and their corresponding sizes that are to
be checked in the loop in lines 8–22 to determine the minimum-
sized quadtree cell that is to contain the object to be inserted. The
algorithm does not assume that the loose quadtree is represented
as a tree structure with out degree 4 (8 for a loose octree in three
dimensions). Instead, it assumes the use of a pointerless quadtree
representation (e.g., [14, 37]) that just keeps track of the leaf nodes
(i.e., cells) of the loose quadtree which are represented using, for
example, a number, termed a locational code (referred to as the
Morton Representation [28] in Section 6), that uniquely identifies
each leaf node. This number can be formed by concatenating the
size of the cell, say i for a cell of width 2i, with a number j result-
ing from interleaving the binary representations of the coordinate
values of a predefined corner such as the lower-left corner assum-
ing that the origin of the underlying space is at the lower-left corner
(e.g., (a, b) in two dimensions) so that i is at the right of j. The col-
lection of these numbers can be represented using any access struc-
ture including binary search trees, balanced binary search trees, B-
trees, etc. although our implementation in the experimental setup
in Section 6 uses a B-tree. Thus the role of LooseQuadtree-
Insert is simply to create records for the loose quadtree which
consist of the locational code and a reference to the object so that
we can differentiate between objects that are associated with the
same leaf node (i.e., cell) of the loose quadtree. In this case, the
cell is replicated in the access structure.

1 pointer loose_quadtree_block procedure Loose-
QuadtreeInsert(p,o)

2 /* Given a loose quadtree with expansion factor p, create and
return a loose quadtree record for object o which contains
the object and its locational code. Object o is represented by
a record of type object having the fields XCent, YCent,
and MbbRadius corresponding to the x and y coordi-
nate values of o’s centroid, and the radius of o’s minimum
bounding hypercube box. The function M(r) returns the
integer 2k such that 2k−1 < r ≤ 2k. The locational code
is obtained by applying bit interleaving to the binary repre-
sentations of x low and ylow , the x and y coordinate values
of the lower-left corner of the loose quadtree cell b of width
w which contains o and concatenating it to the depth of b

(i.e., log2(w)) and its value is a pointer to object o. If sev-
eral objects are associated with the same cell of the loose
quadtree, then the cell is replicated. These replicated loose
quadtree cells are differentiated by virtue of the objects that
are associated with them. The actual loose quadtree record
for the cell including its locational code is constructed by
procedure FormBlock (not given here). Note the use of
“÷” to denote integer division, “/” to denote real division,
and ↑ to denote exponentiation. */

3 value real p
4 value object o
5 real r
6 integer i, w, xlow , ylow

7 r ←MbbRadius(o)
8 for i← log2(M(1/(p+ 1))) step 1
9 until log2(M(2/p))− 1 do

10 /* Calculate width of smallest possible cell b containing o
*/

11 w ← (2 ↑ (i+ 1)) ∗M(r)
12 /* Determine b’s lower-left corner (xlow , ylow ) */
13 xlow ← (XCent(o)÷ w) ∗ w
14 ylow ← (YCent(o)÷ w) ∗ w
15 /* Determine if b’s expanded region contains o */
16 if xlow − p ∗ w/2 ≤ XCent(o)− r and
17 XCent(o) + r ≤ xlow + (1 + p/2) ∗ w and
18 ylow − p ∗ w/2 ≤ YCent(o)− r and
19 YCent(o) + r ≤ ylow + (1 + p/2) ∗ w
20 then exit_for_loop
21 endif
22 enddo
23 return(FormBlock(xlow , ylow , w, o))

5. DISCUSSION
The calculations of the possible containing quadtree cell widths

for p = 1/4, p = 1/2, and p = 1 lead to the observation that as p
takes larger values (even for p as small as 1/4), the loose quadtree
treats the input objects as if they are points and it is their centroid
that determines their associated quadtree cell, while their size and
the value of the cell expansion factor determine the size of their
associated quadtree cell. Actually, the above statement must be
tempered a bit. In particular, although it implies that the position
of object o is not a factor in the determination of the width w of the
expanded quadtree cell c with which o’s MBH(o,b) is associated,
this is not quite true as the existence of a range of values for the
ratio w/2r of the widths of c and b is a direct result of the variation
in the position of o along with that of the value of p. However, as
we showed above, for values of p ≥ 1/2, the values of the ratio of
the widths of c and b take on at most two values which differ by one
where, in the case of p ≥ 1, the only reason for the two possible
ratio values is the fact that at times p takes on a value which is one
less than a power of 2.

At this point, it is appropriate to ask what value p should one
use. The answer must bear in mind that as p gets large, the radii
(i.e., half the width) of the associated expanded quadtree cells get
larger and thus they overlap adjacent quadtree cells of half the ra-
dius for p = 1 and of equal radius for p = 2, and even greater radii
as p increases further. On the other hand, as p approaches 0, the
radii of the quadtree cells associated with object o are increasingly
dependent on the position of the centroid of object o and can get
disproportionately large independent of the radius of o’s minimum
bounding hypercube box. The cardinality of the set of possible val-
ues of these radii is minimized at 1 when p ≥ 2 with the exception
of p = 2k − 1 for integer values of k in which case the cardinal-
ity of the set is 2 corresponding to radius values 2i and 2i+1 for
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some integer i. Clearly, there is no point in letting p get larger
than 2 in which case the radius of the associated quadtree cell is
pre-determined and depends solely on the value of the radius of o’s
minimum bounding hypercube box.

Thus we remain with the range 1/2 ≤ p < 2 for which the cardi-
nality of the set of possible values of the radii of the quadtree cells
is 2 corresponding to radius values 2i and 2i+1 for some integer
i. Our rationale for choosing p in this range is that the expanded
quadtree cells are not so large as is the case for p = 2 and hence
the extent of the overlap with adjacent quadtree cells is reduced,
while the burden of having two possible radii for the quadtree cells
is not great. Of course, procedure LooseQuadtreeInsert in
Section 4 is not as simple for p = 1 as it is for p = 2, in which
case there is no need for the loop in lines 8–22. Nevertheless, for
p = 1, the loop in lines 8–22 need only be executed twice, which
is still quite simple. Ulrich [47] lets p = 1, while results of our
experiments described in Section 6 make a case for choosing p to
be infinitesimally smaller than 1. It is important to observe that all
of the results that we have described hold for loose quadtrees of ar-
bitrary dimension (e.g., three dimensions such as the loose octree)
as they are all formulated in terms of the radii of the quadtree cells.

Algorithms that make use of the loose quadtree are simplified
by our observation that the centroid of object o (actually of o’s
MBHR(o,b,r) is always contained in the non-expanded portion of
the quadtree cell c with which o is associated. However, there are
scenarios where users may wish to violate this property. For ex-
ample, for certain values of r and p, r may be sufficiently small
so that both the centroid of o lies in the expanded portion of c and
o still fits in the expanded cell c. This situation is desirable when
users want to move o as much as possible without having to asso-
ciate it with another quadtree cell just because o’s centroid is no
longer in the non-expanded region of c. Interestingly, this modi-
fication does not change the ranges of relative cell widths as the
example in Figure 3(c) still corresponds to the largest value of the
ratio. The difference is that now the motion of the object so that
the centroid of o is also in the expanded portion of c does not result
in the association of o with another cell as long as o lies entirely in
the expanded portion of c. Of course, this complicates subsequent
searches (as well as delete operations), as now instead of just look-
ing for a cell whose non-expanded portion contains the centroid of
o, we must examine all possible cells whose expanded cells can
contain o. Notice that in essence, we have transformed the search
problem from one involving points (i.e., centroids of the objects)
to one involving regions (i.e., the minimum bounding hypercube
boxes of the objects).

6. EXPERIMENTAL EVALUATION
Experiments were run on a Linux (2.6.18) quad 1.86 GHz Xeon

server with four gigabyte of RAM. The algorithms were imple-
mented using GNU C++. The experiments studied the behavior
of loose quadtrees in an environment where the objects are in mo-
tion. Our experimental setup consisted of a large collection of rect-
angle objects. For most, but not all, of our experiments, we used
random rectangle data obtained by generating their centroid and
extents at random, which is equivalent to the method used by Ul-
rich [47]. Each object (i.e, rectangle) in the collection is associ-
ated with its minimum enclosing quadtree cell (actually minimum
enclosing expanded quadtree cell), which is represented by its bit-
interleaved Morton representation [28]. The Morton representation
is indexed using a B-tree index, which is referred to as a linear
quadtree [14, 37].

In our setup, we use a non-spatial index (e.g., array, B-tree, Hash)
to index the input objects by their identifier and a spatial index (i.e.,
loose quadtree in our case represented as a linear quadtree) to in-
dex the current positions of the objects. As an object’s position
changes, we first update its current position using the non-spatial

index. This operation is fairly quick as updating the position of
the object requires no modification to the non-spatial index itself.
Next, we must update the spatial index which poses a real com-
putational bottleneck as even small changes in the position of the
object result in an update to the index. We remedy this problem to
a limited extent by representing an object by the quadtree cell with
which it is associated (not necessarily containing it as the loose
quadtree permits objects to be associated with smaller cells). This
means that the index does not store the exact geometry of the ob-
ject. However, given that we know that the ratio of the sizes of the
object’s minimum enclosing expanded quadtree cell and of the ob-
ject is bounded by a small value which is a function of p, we are in
some sense implicitly recording the geometry of the object in the
index. Moreover, the Morton representation that is stored in the B-
tree contains a reference to the actual object, which is stored in an
array and also indexed by the non-spatial index in order to facilitate
quick updates, when necessary.

In this respect, the loose quadtree is distinguished from all other
spatial indices, such as an R-tree, that explicitly store the positions
of objects (i.e., rectangles). This means that when the position of
an object changes, in the case of an R-tree and related spatial in-
dices, we would have to always update the indices as they depend
on the minimum bounding hypercube boxes of the objects which
have changed, while in the case of the loose quadtrees, we only
need to update the index if if the object is associated with a dif-
ferent quadtree cell. This property of the loose quadtree makes it
attractive for serving as a spatial index for moving object applica-
tions. In contrast, as we pointed out, updates in spatial indices such
as the R-tree, as well as other related spatiotemporal indices, will
often require a complete rebuild step when the position of the ob-
ject changes, which is quite complicated. Nevertheless, for the sake
of completeness, we provide a comparison of comparison of loose
quadtree with a suitable implementation of a R-tree in Section 7.

We ran a number of experiments to test the sensitivity of the
loose quadtree to the motion of the objects that it stores. We
used a collection of one million randomly generated rectangles in a
two-dimensional space, which were stored in a B-tree based loose
quadtree index. Our implementation of the B-tree is single threaded
with a node size of 8 kb that can store up to 64 objects per node.
Furthermore, we cache 10% of the nodes in an in-memory cache.
The non-spatial index is an in-memory array indexed by the ob-
ject identifier. For this set of experiments we chose a disk-based
data structure such as a B-tree to index the objects instead of an in-
memory spatial data structure. The B-tree is better than the pointer-
based quadtree in the sense that it provides access to each quadtree
cell (node) in the tree using its locational code in constant time (i.e.,
time proportional to the height of the B-tree, which we view as a
constant) whereas in the pointer-based quadtree our access time is
proportional to the base 2 logarithm of the width (i.e., maximum
depth) of the underlying embedding space.

We let the expansion factor p vary between 0 and 5. Recall that
for the case p = 0, the loose quadtree corresponds to an MX-
CIF quadtree. We first built an index for all the objects in a loose
quadtree for a given p. Next, we translated the objects in order to
mimic a moving object application. If the translations resulted in
an object being associated with a different quadtree cell, then we
updated the index, which involves deleting an entry from the B-
tree index and adding a new entry corresponding to the minimum
expanded quadtree cell containing the object after the translation.
We tabulated the number of objects for which the index needed to
be updated. We controlled the motion of the objects using a value
s, denoting the maximum translation of the object across a single
dimension. For example, suppose that s is 5%, then all of the rect-
angles are translated across each of the dimensions by a value that
is at most 5% of its side length across each of the dimensions.

In order to provide a better understanding of the effect of motion
on the loose quadtree index, we distinguish between two types of
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motion, namely uniform and fixed translations. In the case of a
uniform translation, the motion is controlled by a random variable,
which is bounded by s. In other words, all the objects are subjected
to different translations, where the translation across any dimension
is less than s. In the case of a fixed translation, all of the objects are
translated by a fixed value (i.e., s) across each of the dimensions,
which basically represents the worst case scenario (in terms of the
maximum amount of motion) of any moving object application.
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Figure 4: Reinsertion rates for two-dimensional rectan-
gle input for varying values of p and s with δ = 10, for
a) uniform and b) fixed translations.

Finally, we also varied the sizes of the input rectangle objects by
using the value δ, which denotes the ratio of the largest side length
of a rectangle object in the data set to the smallest side length of
a rectangle object in the data set. It should be clear that a large
value of δ means a large range of rectangle object sizes, while a
small value of δ means that the rectangle objects are more or less
of the same size. All of the experiments whose results we present
varied one or more of these variables to showcase the utility of
loose quadtrees for moving object applications. Note that this is a
far more extensive experimental evaluation than the one conducted
by Ulrich [47] who only studied the loose quadtree’s behavior for
culling operations and only compared the p = 0 and p = 1 cases.

Our first experiment considered the case of one million two-
dimensional rectangle objects for values of p ranging between 0
and 5, and values of s ranging between 0.40% and 100%. The value
of δ was kept constant at 10. Figure 4 shows the percentage of ob-
jects that required reinsertion as a function of p, while the different
curves in the plot show the behavior of the loose quadtree index
for different values of s. As expected, the percentage of objects
that require reinsertion increases as s increases. From the figure,
we observe that this percentage increases with p with a precipitous
drop at p = 0.999 where the results are comparable to p = 0. Fig-
ure 5 provides a more vivid illustration of the comparability of the
results for p = 0.999 with those for p = 0 by showing the result of
normalizing the reinsertion rates for the different values of p and s
vis-a-vis those for p = 0.999. Here we see that the reinsertion rate
for p = 0.999 is superior to the other values of p for all reasonable
values of s (i.e., less than s <50%). It is interesting to note that for
all values of s, for small values of p, this percentage increases with
p with a local maximum at around p = 0.5, at which time it has
a precipitous drop at p = 0.999 where the results are comparable
to p = 0, and then increases sharply for p = 1, and continues to
increase, but at a lesser rate, as p continues to increase (i.e., p >1).
This phenomenon is explained in greater detail below.

The percentage of objects requiring reinsertion is relatively low
at p = 0 since the range of the values of the side lengths of the
minimum enclosing quadtree cells is large as is also the value of
the maximum side length. This means that objects often have a
large area in which to move without requiring reinsertion. As p in-
creases, we observe that the range of values of the side lengths of
the minimum enclosing expanded quadtree cells become increas-
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Figure 5: Reinsertions for two-dimensional rectangle
input for varying values of p and s with δ = 10, normal-
ized with the reinsertion rate for p = 0.999 for a) uniform
and b) fixed translations.
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Figure 6: Illustration of the variation of the relative sizes
of the minimum enclosing expanded quadtree cells and
of the minimum bounding hypercube boxes of the ob-
jects with respect to different ranges of values of p:
(first row) 0.25≤p<0.5, (second row) 0.5≤p<1, and
(third row) 1≤p<2.

ingly smaller, which means that the area in which the objects can
move without requiring reinsertion gets smaller. Figure 6 illustrates
this observation using an example object with minimum bounding
hypercube box of radius r. In particular, we can see that for values
of p in the range [0.25, 0.5), the side length of the minimum enclos-
ing expanded quadtree cell is either 2, 4, or 8 times the radius of the
minimum bounding hypercube box of the object (first row of Fig-
ure 6) ; while for values of p in the ranges [0.5, 1), the side length
of the minimum enclosing expanded quadtree cell is either 2 or 4
times the radius of the minimum bounding hypercube box of the
object (second row of Figure 6); and for values of p in the ranges
[1, 2) the side length of the minimum enclosing expanded quadtree
cell is either 1 or 2 times the radius of the minimum bounding
hypercube box of the object (third row of Figure 6). Notice that
the percentage of objects requiring reinsertion starts to decrease at
p = 0.5 with a minimum at p = 0.999. This is because at p = 0.5
there are only two choices for the size of the minimum enclosing
expanded quadtree cell, having eliminated the cell with side length
8 times the radius of the minimum bounding hypercube box of the
object. Moreover, the number of objects associated with the elim-
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inated cell are relatively small. On the other hand, at p = 1, there
are again only two choices for the minimum enclosing expanded
quadtree cell, but now a large such cell is replaced by one with a
quarter of its area thereby greatly limiting the ability of the objects
to move without requiring reinsertion. The pattern of increasing
percentages requiring reinsertion continues unabated for p > 1 as
we have increasingly smaller replacement cells with saw-tooth like
behavior in the neighborhood of p = 2k.
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Figure 7: Update rates for two-dimensional rectangle
objects for varying values of p and s with δ = 10, for a)
uniform and b) fixed translations.

For some data structures, the update process can be sped up by
batching the updates using bulk loading methods (e.g., [5, 48, 10,
17]). For example, Dittrich et al. [10] assume that updates can
come at fast rates so it may not be good to handle one update at
a time. Instead, they use “snapshots”, which are basically large
static data structures and an update pool, which is a fast data struc-
ture stored in the main memory. In this case, updates are collected
in the update pool, and once enough of them have been accumu-
lated, they are applied en mass to the snapshot structure to create a
new snapshot structure; hence a variant of bulk updates which are
cheaper than single updates. In our method, all insertions and dele-
tions are always performed in O(1) time, and thus there is no need
for pooling the updates.
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Figure 8: Update rates for two-dimensional rectangle
objects for varying values of p and s with δ = 10, nor-
malized with the reinsertion rate for p = 0 for a) uniform
and b) fixed translations.

The second set of experiments used the above environment and
measured the number of updates in millions/second that can be sup-
ported by the loose quadtree data structure since this correlates with
updating the spatial index with the new positions of the objects.
Recall that an update in a loose quadtree involves deleting an entry
from the B-tree index and inserting another entry. The key advan-
tage of the loose quadtree structure is that small motions of objects,
most likely, do not require any changes to the index, and if they
do, then they are less complex as p becomes increasingly larger
than 0 since the range of possible minimum enclosing expanded
quadtree cells is much smaller. Figure 7 shows the number of up-
dates in millions/second that a loose quadtree index can support
under both the uniform and fixed translation cases. We see that this

number decreases as s increases with performance generally peak-
ing at p = 0.999, although this is most noticeable for s <50%.
We also observe that the number of updates per second for a given
value of s does not vary greatly across different value of p with
the exception of relatively small values of s (0.40% and 1.0%), for
which performance peaks noticeably at p = 0.999, especially with
respect to p = 0. Figure 8 provides a more vivid illustration of
this improvement by showing the result of normalizing the number
of updates per second for the different values of p and s vis-a-vis
those for p = 0, where for a fixed translation s =0.40% we see a
one order of magnitude improvement. Again, these results are pri-
marily due to the dramatically reduced cost of insertion since the
new minimum enclosing expanded quadtree cell can be determined
in at most 2 look up operations for p = 0.999 versus a significantly
higher number for p = 0. This figure shows that the improved
throughput is observed for most values of p for s ≤50%.
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Figure 9: a) Reinsertion and b) update rates in mil-
lions/second for two-dimensional rectangle input for
varying values of δ and p keeping s=5% with uniform
translations.

The third set of experiments examined the effect of varying δ on
the performance of the loose quadtree data structure. Recall that
δ bounds the ratio of the length of the largest side of a rectangle
object in the input data set to the length of the smallest side of a
rectangle object in the input data set. In other words, if δ is small,
then all the objects in the input are of the same size. If δ is large,
then the objects are of different sizes. Figure 9 measures the rein-
sertion and update rates in millions/second for varying values of δ
and p, keeping s fixed at 5% with uniform translations. We can see
that both the reinsertion and update rates are relatively independent
of δ, which means that the loose quadtree data structure is suitable
for handling data sets containing objects of varying sizes.

Finally, we compared the efficacy of loose quadtrees on a real
world data set. We used a 2D rectangle data set generated from
taking a TIGER road data set of Los Angeles County, CA and then
fitting a bounding box around the line segments forming the edges
in the road network. This resulted in a data set containing 267K 2D
rectangles with a good mix of rectangles of different sizes. We sub-
jected the input rectangles to both uniform and fixed translations
as in prior experiments described in Figures 4 and 7. As before,
we report both the percentage of the objects that had to be rein-
serted due to the translation, and the time that it took to perform
the reinsertion (i.e., to update the data structure) which we report
in terms of the number of updates per second. Figure 10a and 10c
shows the percentage of updates (i.e., reinsertions) needed for uni-
form and fixed translations, and once again it is easy to see that,
for p = 0.999, very few updates to the data structure are needed.
Figure 10b and 10d shows the number of updates per second for
uniform and fixed translations, and again it is not surprising that,
for p = 0.999, the number of updates that can be done per second
sky rockets due to the savings in the reinsertion cost.
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Figure 10: Reinsertions and update rates for Los Angeles County data set for varying values of p and s for a–b)
uniform and c–d) fixed translations

7. N-BODY SIMULATION
We also ran a set of experiments designed to replicate common

conditions for object dimension, object placement, object move-
ment, and object frequency based on modern video games. The
data structure was tested using an N-body simulation [30] which
consists of insertion, deletion, update, range, and collision detec-
tion queries on the data structure that stores them. We record how
much time is needed to fixed number of frames, as well as operation
statistics for different numbers of objects and values of p. During
each frame, objects are allowed to move, to receive force from ex-
ternal sources to simulate player interaction, and to collide with
each other. Every object is processed in a physics engine and the
objects are stored using a loose quadtree (with values of the expan-
sion factor p ranging from 0 to 1.0). The physics engine works by
processing every object in the simulation every frame. If an object
is moving, then the engine performs a range query on the area oc-
cupied by the object’s bounding hypercube box to return a list of hit
objects. Each hit object is then entered into a physics equation and
the object’s velocities and positions (i.e., trajectories) are updated.
At any given time, about 50% of the objects are moving over our
entire 1 kilometer squared game universe.

These experiments were run on a Windows 7 enterprise quad
core 2.6GHz I7 workstation with eight gigabytes of 1600MHz
DDR3 RAM and an Nvidia GT650m discrete GPU. The simula-
tion and related code were compiled using Microsoft Visual Studio
2010’s integrated 32 bit compiler. The experiments compared the
MX-CIF quadtree (p = 0) with variants of the loose quadtree for
a few values of p. A pointer-based quadtree implementation was
used here in order to simplify the algorithms as the main focus was
on evaluating the efficacy of the loose quadtree data structure for
the moving object applications such as, but not limited to, video
games. In addition, the pointer-based environment enables all exe-
cution to occur in main memory which is the environment used in
video games.

The rest of this section is organized as follows. Section 7.1 pro-
vides more details on the update (i.e., insertion) costs in compari-
son to the total cost of the N-body simulation. Section 7.2 examines
the costs of the different queries involved in the N-body simulation
as well as the scalability of the loose quadtree. In order to pro-
vide an additional reference point on our performance measures,
Section 7.3 reports on a limited comparison with an R-tree data
structure in terms of insertion costs and times for a window query
as part of the N-body simulation. Extensive modifications were
needed to make the R-tree work in this setting due to its inherently
poor insertion behavior as outlined in the prologue of this section.

7.1 Insertion and N-Body Simulation Costs
The N-body simulation consists of two-dimensional objects that

interact with one another. Each object exerts a force on all the other
objects in the scene and consequently each object moves due to the
resulting force that is applied on it. In such a simulation, computing
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Figure 11: CPU execution time for insertions in the N-
body simulation using a normal scale (left) and a log
scale (right).

the force interaction between the objects is the single most time-
consuming operation. Periodically, a large radial force is exerted
on the system. These explosions are designed to simulate common
game play cases where movement of many objects occurs in only a
subset of the game universe. However, since all the objects move by
varying amounts, updating the spatial data structure used to index
the objects can be a significant bottleneck. We use this setup to test
the update performance of the MX-CIF quadtree and three variants
of the loose quadtree having p values of 0.5, 0.999 and 1.0.
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Figure 12: CPU execution time for insertions in the N-
body simulation using a normal scale (left) and a log
scale (right).

The total execution time is recorded which corresponds to the
number of seconds required to perform the simulation for a fixed
number of time steps. We record the total time in seconds spent
performing insertion operations into the loose quadtree during ex-
ecution of the N-body simulation. We also record the total number
of insertion operations needed (i.e., the number of objects that need
to be reinserted after a motion). Figure 11 shows amount of time
spent doing insertion using both a normal scale (left of Figure 11)
and a log scale (right of Figure 11), while Figure 12 shows the total
amount of time spent in the N-body simulation using both a normal
scale (left of Figure 12) and a log scale (right of Figure 12). Note
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the similar behavior for the four variants with p = 0.999 perform-
ing the best. In fact, there is a one half order of magnitude differ-
ence in the insertion and total N-body simulation execution times
between p = 0 and p = 0.999. It is interesting to note that the dif-
ference between the total execution times of the N-body simulation
with the use of p = 0.999 versus with the use of p = 0 is accounted
for by the savings in the insertion costs (approximately 7 seconds).
Figure 13 shows the relatively large reduction in the number of ob-
jects that need reinsertion when using p = 0.999 vis-a-vis p = 0.
It is also interesting to note that all of the log plots show a linear
relationship which means that all of the statistics that we collected
obey a power law of y = axb where a and b are constants with b
varying between 1.60 and 1.75. It is clear from this data that the
loose quadtree outperforms the MX-CIF quadtree (p = 0), and that
the value of p = 0.999 leads to better performance than p = 1.
In fact, we see almost two orders of magnitude less insertions for
p = 0.999 vis-a-vis p = 0. In the case of p = 1.0 and p = 0.999
we see reductions as high as 30% in both the total number of inser-
tions (Figure 13) and time spent in insertions (Figure 11), and as
high as 10% in the total execution time of the N-body simulation,
which is less as expected since we are looking at the total execu-
tion time which involves more operations than insertions, but is still
very good.
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Figure 13: Number of insertions in the N-body simula-
tion using a log scale.

7.2 Query Performance and Scalability
We now examine the performance of the loose quadtree for the

queries that form the key geometric operations in an N-body simu-
lation. Our motivation is to show that the good update performance
of the loose quadtree (i.e., minimization of reinsertions upon ob-
ject motion) does not come at the expense of query performance,
and that it scales. In order to do this, our first set of experiments
measured the time taken to perform a number of different queries
as well as recorded the number of blocks and objects in the loose
quadtree that are visited by each query. Our second set of experi-
ments examines the performance of the loose quadtree on simula-
tions with varying sizes of objects. In particular, we show that the
loose quadtrees can scale to handle really large simulations way be-
yond the limitations of the MX-CIF quadtree (i.e., a loose quadtree
with p = 0).

In order to test the query performance of the data structures, we
use a different environment than the one in Section 7.1. In partic-
ular, we recreate a game environment to simulate a complex 3D
scene. In this scenario, the objects do not exert force on one an-
other but move due to gravity. Hence, the bottleneck in this en-
vironment is not computing the inter-object forces but rather cap-
turing the interactions between the objects as they collide with one
another. Capturing these interactions between the objects requires
knowledge of which objects are in close proximity to which other
objects in the scene. All objects in the environment are updated
dynamically using a physics simulation solver. Furthermore, we
also render the scene which requires the application of geometrical

operations such as ray tracing, view frustum culling and window
queries on the spatial data structures.

We note that the time taken to compute each time step in the
simulation is roughly broken down as follows: About 70% of the
time is spent on updating the data structure, 20% of the time is spent
on performing geometric operations such as frustum culling, ray
tracing, window and nearest neighbor search, while the remaining
10% of the time is spent on rendering the scene. Note that rendering
is GPU assisted, so that the 10% time only corresponds to the time
needed to transfer the objects to the GPU, which makes it relatively
independent of the complexity of the scene. Moreover, the time
taken to render the scene is also common to all the data structures
that we examine in this section.

Below, we examine the time needed to execute a number of
queries as part of an N-body simulation with 14,000 dynamic ob-
jects. Figure 14a shows the average times in nanoseconds needed
to perform each of the queries, while Figure 14b shows the average
number of blocks and objects visited while processing the queries.
RAY corresponds to ray tracing which is used to find the objects
that intersect a single ray (i.e., line) in the scene. FRUS refers to
the frustum culling operation which identifies all the objects that
are inside the scene being rendered. Geometrically speaking, this
operation captures the intersection of a hyperplane with the objects
in the simulation. NN refers to a nearest neighbor search that given
an object o, find another object that is closest to o. In an N-body
simulation, NN is used for collision detection purposes. Finally,
WIN-L and WIN-S capture window (region) query operations that
obtain a list of objects overlapping with a window query, where
WIN-L is a large window search that covers most of the blocks in
the data structure, while WIN-S applies a smaller window that only
intersects a few blocks.

Figure 14a shows that p = 0.999 performs better than p = 0 for
all query cases. The figure also indicates the percentage improve-
ment resulting from use of p = 0.999 over the MX-CIF quadtree
(p = 0). In particular, the loose quadtree yields an improvement
of up to 43% over the MX-CIF quadtree for these common spa-
tial queries. Furthermore, p = 0.999 performs better than p = 1
for all cases, although the difference is often too small to be dis-
cernible in the figure. It is interesting to note from Figure 14b that
p = 0.999 and 1 both visited more blocks than p = 0. This is not
surprising as the MX-CIF quadtree is sensitive to the position and
size of the objects which results in its association of many objects
with the larger-sized blocks in the quadtree thereby ultimately us-
ing fewer blocks. On the other hand, the loose quadtree, whether
at p = 0.999 or p = 1, is not sensitive to the position of the ob-
jects so it distributes the objects more evenly using up more blocks.
However, as can be seen in Figure 14b, the MX-CIF quadtree ex-
amines way too many objects resulting in wasted work. On the
other hand, the loose quadtree for our values of p (i.e., 0.999 and
1). only examines blocks that have the potential to contain relevant
objects but it needs to look at more of them. Even though these
two forces negate each other, they still result in the loose quadtree
outperforming the MX-CIF quadtree for our values of p.

Notwithstanding the query performance of the loose quadtree, it
is important to note that the act of updating objects constitutes the
majority of the time of an N-body simulation, which is where the
loose quadtree really excels. Figure 15 shows the update cost in-
curred per frame due to the moving objects in the scene as well as
the time needed in milliseconds to render a frame using the loose
quadtree with p = 0.999 and MX-CIF quadtree for varying sizes
of the simulation. The performance of p = 1 is slightly worse than
p = 0.999 but better than the MX-CIF quadtree and is not shown in
the Figure. From the figure we see that the loose quadtree can ren-
der frames 2–5 times faster than the MX-CIF quadtree. In partic-
ular, even at 100,000 objects, the loose quadtree could still sustain
about 5 frames per second (210 milliseconds per frame) in contrast
to the MX-CIF quadtree which at this size could not even render
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Figure 14: (a) Query times, using a log scale, for operations using the loose quadtree for values of p = 0 (the
MX-CIF quadtree), p = 0.999, and p = 1 where p = 0.999 performs best as indicated with the percent improvement
over the MX-CIF quadtree. (b) The average number of blocks and objects visited by the query

one frame per second (to be precise it took 1.4 seconds per frame).
To put the size of the problem in a proper perspective, we note that
current commercial games available in the market as of 2012 typi-
cally do not involve more 15,000 thousand moving objects [8]. In
this sense, we have shown that using loose quadtree makes it possi-
ble to scale significantly these simulations vis-a-vis the state of the
art. Furthermore, from Figure 15 we see that the time spent needed
to update the underlying data structure using an MX-CIF quadtree
is at least 3 times more expensive when compared with the time
needed when using a loose quadtree with p ≈ 1.

1	
  

10	
  

100	
  

1000	
  

10000	
  

1	
  

10	
  

100	
  

1000	
  

10000	
  

1	
   5	
   10	
   20	
   40	
   100	
  

U
pd

at
e	
  
Ti
m
e	
  
(M

ill
i-­‐s
ec
on

ds
)	
  

M
ill
i-­‐S

ec
on

ds
	
  P
er
	
  F
ra
m
e	
  
(S
PF
)	
  

Number	
  of	
  Objects	
  in	
  Simula>on	
  in	
  thousands	
  

Time	
  (p=0.999)	
   Time	
  (p=0)	
  
SPF	
  (p=0.999)	
   SPF	
  (p=0)	
  

Figure 15: Figure shows the milliseconds to render a
frame and the time in milliseconds spent per frame to
update the data structure for varying sizes of the simu-
lations

7.3 R-tree
We have justified the use of the loose quadtree which permits

p to vary by comparing it with the MX-CIF quadtree which is a
loose quadtree with p = 0. In order to provide an additional ref-
erence point we also present a limited comparison with the R-tree
data structure, described in Section 1, which is an object hierarchy
that makes use of minimum bounding hypercube boxes somewhat
in the same spirit as the MX-CIF quadtree except that the hierar-
chies of different sets of objects are not in registration. We used
the Hilbert R-tree [23] in our comparison as it is easy to construct.
However, as expected, we found that updating the position of the
objects in the R-tree for each individual object was prohibitively
expensive, taking several orders of magnitude time more than the
loose quadtree to perform the reinsertions upon execution of an up-
date after a motion thereby making it practically unusable. There-
fore, in order to improve the R-tree’s performance, we batched up
all the objects that required reinsertion and then reinserted them as
a single batch rather than one at a time. This approach was found
to be faster than rebuilding the structure from scratch. For the sim-

ulation with 14,000 objects, the update time for the R-tree structure
was 106.99 milliseconds per frame of the simulation. In compari-
son, the update time for p = 0.999 was 22.11 milliseconds, while
for the MX-CIF quadtree (i.e., p = 0), it was 82.26 milliseconds.
So, our modified R-tree structure was still 25% worse than the MX-
CIF quadtree but significantly worse (i.e., 5 times worse) than the
loose quadtree with p = 0.999.

Next, we compared the query performance of the R-tree for the
two window queries, WIN-L and WIN-S. Using the R-tree, the av-
erage time to execute them was 167 nanoseconds for WIN-L and
142 nanoseconds for WIN-S. In contrast, the query times of WIN-
L and WIN-S were 128 and 113 nanoseconds, respectively, for the
MX-CIF quadtree and 98 and 73 nanoseconds, respectively, for
p = 0.999. These results show that the loose quadtree is supe-
rior even when compared against an appropriately modified R-tree
variant resulting in the loose quadtree being almost twice as fast.

8. CONCLUDING REMARKS
We have shown how to determine for a loose quadtree the

maximum possible width w of the minimum enclosing expanded
quadtree cell c for an object o with MBHR(o,b,r) and cell expan-
sion factor p. We have also shown that w is independent of the po-
sition of o. This property enables determining the cell with which
o is associated and can be used, for example, in an algorithm to
build a loose quadtree in an environment that deploys a pointer-
less quadtree. In particular, this independence means that the algo-
rithm requires little or no search and could be used, for example, to
populate a spatial database with the latest wave of multiprocessors
such as those that make use of GPUs (e.g., [27]). It could also be
used in point cloud applications (e.g., [39]). Our experiments (in-
cluding the N-body simulation which did not rely on a pointerless
quadtree) have demonstrated that letting p take on a value infinites-
imally smaller than 1 leads to the best results in minimizing the
need to update the index when objects are moving thereby increas-
ing the size of the collection (i.e., database) of objects that can be
supported. This is in contrast to the conventional use of p = 1 [47].
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