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Abstract

A qualitative comparative study is performed of the per-
formance of three popular spatial indexing methods {
the r�-tree, r+-tree, and the pmr quadtree { in the con-
text of processing spatial queries in large line segment
databases. The data is drawn from the tiger/Line �les
used by the Bureau of the Census to deal with the road
networks in the US. The goal is not to �nd the best
data structure as this is not generally possible. Instead,
their comparability is demonstrated and an indication
is given as to when and why their performance di�ers.
Tests are conducted with a number of large datasets
and performance is tabulated in terms of the complex-
ity of the disk activity in building them, their storage
requirements, and the complexity of the disk activity
for a number of tasks that include point and window
queries, as well as �nding the nearest line segment to a
given point and an enclosing polygon.

1 Introduction

Spatial data consists of points, lines, regions, rectan-
gles, surfaces, volumes, and even data of higher dimen-
sion which includes time (e.g., [19,20]). The conven-
tional approach to dealing with spatial data is to store
it explicitly by parametrizing it and thereby obtaining
a reduction to a point in a possibly higher dimensional
space. This is usually quite easy to do in a conventional
database management system since it is just a collec-
tion of records, where each record has many �elds. In
particular, we simply add a �eld (or several �elds) to
the record that deals with the desired item of spatial
information. This approach is �ne if we just want to
perform a simple retrieval of the data.
However, if our query involves the space occupied by

the data (and hence other records by virtue of their
proximity), then the situation is not so straightforward.
In such a case we need to be able to retrieve records
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based on some spatial properties which are not stored
explicitly in the database. For example, in a road
database, we may not wish to specify which roads inter-
sect which other roads or regions. The problem is that
the potential volume of such information may be very
large and the cost of preprocessing it high, while the
cost of computing it on the y may be quite reasonable,
especially if the spatial data is stored in an appropriate
manner. Thus we prefer to store the data implicitly so
that a wide class of spatial queries can be handled (e.g.,
see the discussion in [11]). In particular, we need not
know the types of queries a priori.

Being able to respond to spatial queries in a exi-
ble manner places a premium on the appropriate rep-
resentation of the spatial data. In order to be able to
deal with proximity queries we must e�ectively sort the
data. Of course, all database management systems sort
the data. The issue is which keys do they sort on. In
the case of spatial data, we feel that the sort should be
based on all of the spatial keys. In particular, unlike
conventional database management systems, our sorts
are based on the space occupied by the data. Such tech-
niques are known as spatial indexing methods.

In this paper we study the performance of three pop-
ular spatial indexing techniques { the r

�-tree [2] (a
variant of the r-tree [9]), r+-tree [4,23], and the pmr
quadtree [13,14]. Our goal is not to �nd the best data
structure as we don't believe that this can be done. In-
stead, we demonstrate that they are comparable, while
also indicating when and why their performance di�ers.
We focus on a database consisting of a large collection
of line segments such as that used in the Bureau of the
Census tiger/Line �le [3] for representing the roads
and other geographic features in the US. Our study
uses queries that would be typically posed to such a
database. Thus we see that our study is di�erent from
much of the previous work in the database literature
(e.g., [9]), which has concentrated on the representation
of rectangles, as is common in vlsi applications.

This paper is organized as follows. We �rst review
a number of di�erent methods of indexing spatial data
with an emphasis on collections of line segments. Next,
we describe the three representations that we study {
i.e., the r

�-tree, r+-tree, and the pmr quadtree. We
also discuss the implementation issues that arise in mak-
ing a qualitative comparison. This is followed by a de-
scription of the queries that we are using and an outline
of the algorithms to implement them. The rest of the
paper contains a discussion of the results of our experi-
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ments with the three representations using tiger/Line
�les. We conclude with a brief discussion of our �ndings
and a critique of our experiments, as well as suggestions
for future work.

2 Spatial Indexing

Each record in a database management system can be
conceptualized as a point in a multidimensional space.
This analogy is used by many researchers to deal with
spatial data as well by use of suitable transformations
that map the spatial object into a point (termed a rep-
resentative point) in either the same (e.g., [12]), lower
(e.g., [17]), or higher (e.g., [10]) dimensional spaces.
This analogy is not always appropriate for spatial data.
One problem is that the dimensionality of the represen-
tative point may be too high [16]. One solution is to
approximate the spatial object by reducing the dimen-
sionality of the representative point. Another more se-
rious problem is that use of these transformations does
not preserve proximity.
To see the drawback of just mapping spatial data into

points in another space, consider the representation of a
database of line segments (e.g., [12]). We use the term
polygonal map to refer to such a line segment database,
consisting of vertices and edges, regardless of whether
or not the line segments are connected to each other.
Such a database can arise in a network of roads, power
lines, rail lines, etc. Using a representative point, each
line segment can be represented by its endpoints1. This
means that each line segment is represented by a tuple
of four items (i.e., a pair of x coordinate values and a
pair of y coordinate values). Thus, in e�ect, we have
constructed a mapping from a two-dimensional space
(i.e., the space from which the lines are drawn) to a
four-dimensional space (i.e., the space containing the
representative point corresponding to the line).
This mapping is �ne for storage purposes. However, it

is not ideal for spatial operations involving search. For
example, suppose that we want to detect if two lines
are near each other, or, alternatively, to �nd the near-
est line to a given point or line. This is di�cult to
do in the four-dimensional space since proximity in the
two-dimensional space from which the lines are drawn is
not necessarily preserved in the four-dimensional space
into which the lines are mapped. In other words, al-
though the two lines may be very close to each other, the
Euclidean distance between their representative points
may be quite large.
Thus we need di�erent representations for spatial

data. We believe that using data structures that are
based on spatial occupancy is the best way to over-
come these problems. Spatial occupancy methods de-
compose the space from which the data is drawn (e.g.,
the two-dimensional space containing the lines) into re-
gions called buckets. They are also commonly known
as bucketing methods. Traditionally, bucketing meth-
ods such as the grid �le [15] have always been applied
to the transformed data (i.e., the representative points).
In contrast, we are interested in bucketing methods that
are applied to the space from which the data is drawn
(i.e., two-dimensions for line segments).

1Of course, there are other mappings but they have similar
drawbacks. We shall use this example in the rest of our discussion.

There are four principal approaches to decomposing
the space from which the data is drawn. None of them
are perfect in the sense that they all have some draw-
backs. These drawbacks are mentioned with their de-
scriptions and are discussed in greater detail once the
empirical results have been presented.

One approach buckets the data based on the concept
of a minimumbounding (or enclosing) rectangle. In this
case, objects are grouped (hopefully by proximity) into
hierarchies, and then stored in another structure such
as a b-tree. The r-tree [9] and the r�-tree [2] are exam-
ples of this approach. The drawback of these methods
is that they do not result in a disjoint decomposition of
space. The problem is that an object is only associated
with one bounding rectangle, yet the area that it spans
may be included in several bounding rectangles. This
means that when we wish to determine which object
is associated with a particular point (e.g., the contain-
ing rectangle in a rectangle database, or an intersecting
line in a line segment database) in the two-dimensional
space from which the objects are drawn, we may have
to search the entire database.

The other approaches are based on a decomposition of
space into disjoint cells, which are mapped into buckets.
Their common property is that the objects are decom-
posed into disjoint subobjects such that each of the sub-
objects is associated with a di�erent cell. They di�er in
the degree of regularity imposed by their underlying de-
composition rules and by the way in which the cells are
aggregated. The price paid for the disjointness is that
in order to determine the area covered by a particular
object, we have to retrieve all the cells that it occupies.
This price is also paid when we want to delete an object.
Fortunately, deletion is not so common.

The �rst method based on disjointness partitions
the objects into arbitrary disjoint subobjects and then
groups the subobjects in another structure such as a b-
tree. The partition and the subsequent groupings are
such that the bounding rectangles are disjoint at each
level of the structure. The r+-tree [4,23] and the cell
tree [8] are examples of this approach. They di�er in
the data with which they deal. The r+-tree deals with
collections of rectangles, while the cell tree deals with
convex polyhedra.

Methods such as the r+-tree and the cell tree (as well
as the r�-tree) have the drawback that the decomposi-
tion is data-dependent. This means that it is di�cult
to perform tasks that require composition of di�erent
operations and data sets (e.g., set-theoretic operations
such as overlay). In contrast, the remaining two meth-
ods, while also yielding a disjoint decomposition, have
a greater degree of data-independence. They are based
on a regular decomposition. We can either decompose
the space into blocks of uniform size (e.g., the uniform
grid [6]) or adapt the decomposition to the distribution
of the data (e.g., a quadtree-based approach [13,21]). In
the former case, all the blocks are of the same size. In
the latter case, the widths of the blocks are restricted to
be powers of two, and their positions are also restricted.

The uniform grid is ideal for uniformly distributed
data, while quadtree-based approaches are suited for ar-
bitrarily distributed data. In the case of uniformly dis-
tributed data, quadtree-based approaches degenerate to
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a uniform grid, albeit they have a higher overhead. Both
the uniform grid and the quadtree-based approaches
lend themselves to set-theoretic operations. Thus they
are ideal for tasks which require the composition of dif-
ferent operations and data sets. In general, since spatial
data is not usually uniformly distributed, the quadtree-
based regular decomposition approach seems to be the
more exible and therefore is the one we use in our
comparisons. The drawback of quadtree-like methods
is their sensitivity to positioning in the sense that the
placement of the objects relative to the decomposition
lines of the space in which they are embedded e�ects
their storage costs and the amount of decomposition
that takes place. This is overcome by using a bucketing
adaptation that decomposes a block only if it contains
more than n objects.
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Figure 1: Uniform grid for a collection of line segments.

All of the spatial occupancy methods that we dis-
cussed are characterized as employing spatial indexing
because with each block we only store information with
respect to whether or not it is occupied by the object
or part of the object. This information is usually in the
form of a pointer to a descriptor of the object. For ex-
ample, in the case of a collection of line segments in the
uniform grid of Figure 1, the shaded block only records
the fact that a line segment crosses it or passes through
it. The part of the line segment that passes through
the block (or terminates within it) is termed a q-edge.
Each q-edge in the block is represented by a pointer to
a record containing the endpoints of the line segment
of which the q-edge is a part [13]. This pointer is re-
ally nothing more than a spatial index and hence the
use of this term to characterize this approach. Thus no
information is associated with the shaded block as to
what part of the line (i.e., q-edge) crosses it. This infor-
mation can be obtained by clipping [5] the original line
segment to the block. This is important for often we
do not have the necessary precision to compute these
intersection points anyway.

3 Data Structures

The basic rules for the formation of an r-tree are very
similar to those for a b-tree. All leaf nodes appear at
the same level. Each entry in a leaf node is a 2-tuple
of the form (R,O) such that R is the smallest rectangle
that spatially contains line segment O. O points to the
actual line segment. Each entry in a non-leaf node is a
2-tuple of the form (R,P ) such that R is the smallest
rectangle that spatially contains the rectangles in the
child node pointed at by P . An r-tree of order (m,M )
means that each node in the tree, with the exception of
the root, contains between m � dM=2e and M entries.

The root has at least two entries unless it is a leaf node.
For example, consider the collection of line segments

given in Figure 1. Let M = 3 and m = 2. One possible
r-tree for this collection is given in Figure 2a. Figure 2b
shows the spatial extent of the bounding rectangles of
the nodes in Figure 2a, with broken lines denoting the
rectangles corresponding to the subtrees rooted at the
non-leaf nodes. Note that the r-tree is not unique. Its
structure depends heavily on the order in which the in-
dividual line segments were inserted into (and possibly
deleted from) the tree.
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Figure 2: (a) r-tree for the collection of line segments
in Figure 1 and (b) the spatial extents of the bounding
rectangles.

The algorithm for inserting a line segment (i.e., a
record corresponding to its enclosing rectangle) in an
r-tree is analogous to that used for b-trees. New line
segments are added to leaf nodes. The appropriate leaf
node is determined by traversing the r-tree starting at
its root and at each step choosing the subtree whose
corresponding bounding rectangle would have to be en-
larged the least. Once the leaf node has been deter-
mined, check to see if insertion of the line segment will
cause the node to overow. If yes, then split the node
and redistribute the M + 1 records in the two nodes.
Splits are propagated up the tree.
There are many possible ways to split a node. One

possible goal is to distribute the records among the
nodes so that the likelihood that the nodes will be vis-
ited in subsequent searches will be reduced. This is ac-
complished by minimizing the total areas of the covering
rectangles for the nodes (i.e., coverage). An alternative
goal is to reduce the likelihood that both nodes are ex-
amined in subsequent searches. This is accomplished by
minimizing the area common to both nodes (i.e., over-
lap). At times these goals may be contradictory.
The r�-tree is a variant of the r-tree that uses more

sophisticated node insertion and splitting algorithms.
When deciding which node, say R, is to contain the new
line segment, say N , we choose the one for whom the re-
sulting minimum bounding rectangle has the minimum
increase of amount of overlap with its brothers (i.e., the
other nodes pointed at by its father). Note that this is
superior to choosing the node whose bounding rectangle
would have to be enlarged the least since such a choice
does not reduce the likelihood that the remaining nodes
are examined in subsequent searches.
Once the node to be split has been chosen, we must

determine the axis (i.e., x or y) it is to be split upon,
and the position of the split. The axis is determined
by examining all of the possible vertical and horizontal
splits (i.e., so each resulting node has at least m and
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at most M + 1 � m bounding rectangles), and choos-
ing the split for which the sum of the perimeters of the
two constituent nodes is minimized. Now that the axis
has been chosen, say the x-axis then we choose the split
among the M � 2 �m + 2 possibilities that results in a
minimal amount of overlap between the two new con-
stituent nodes.
Searching for points or line segments in an r-tree is

straightforward. The only problem is that a large num-
ber of nodes may have to be examined since a line seg-
ment may be contained in the bounding rectangles of
many nodes while its corresponding record is only con-
tained in one of the leaf nodes (e.g, in Figure 2, i is
contained in its entirety in R1, R2, R4, and R5). For
example, suppose we wish to determine the identity of
the line segment in Figure 2 that passes through point
Q. Since Q can be in either of R1 or R2, we must search
both of their subtrees. Searching R1 �rst, we �nd that
Q could only be contained in R4. Searching R4 does not
lead to the line segment that contains Q even though Q
is in a portion of bounding rectangle R4 that is in R1.
Thus, we must search R2 and we �nd that Q can only
be contained in R5. Searching R5 results in locating i,
the desired line segment.
The r+-tree is an extension of the k-d-b-tree [18]. The

r
+-tree is motivated by a desire to avoid overlap among

the bounding rectangles. Each line segment is associ-
ated with all the bounding rectangles that it intersects.
All bounding rectangles in the tree (with the exception
of the bounding rectangles for the line segments at the
leaf nodes) are non-overlapping2. Thus there may be
several paths starting at the root to the same line seg-
ment. This may lead to an increase in the height of the
tree. However, retrieval time is sped up.
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Figure 3: (a) r+-tree for the collection of line segments
in Figure 1 and (b) the spatial extents of the bounding
rectangles.

Figure 3 is an example of one possible r+-tree for the
collection of line segments in Figure 1. This particular
tree is of order (2,3) although in general it is not possible
to guarantee that all nodes will always have a minimum
of 2 entries. In particular, pages are not guaranteed to
be m=M full without very complicated record insertion
and deletion procedures. Notice that line segments c
and h appear in two di�erent nodes, while line segment
i appears in three di�erent nodes. Of course, other
variants are possible since the r+-tree is not unique.
The di�erence between the r+-tree and the k-d-b-tree

is that once a space has been partitioned, the r+-tree

2From a theoretical viewpoint, the bounding rectangles for the
line segments at the leaf nodes should also be disjoint. However,
this may be impossible when many line segments intersect at a
point.

�nds the minimum enclosing d-dimensional rectangles
for the objects within the d-dimensional rectangles, say
S, that result from the split, while the k-d-b-tree leaves
rectangles S alone. For example, Figure 4 is the k-d-b-
tree for Figure 1. Note the close similarity to Figure 3.
This distinction minimizes dead space in the r+-tree.
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Figure 4: (a) k-d-b-tree for the collection of line seg-
ments in Figure 1 and (b) the spatial extents of the
bounding rectangles.

Use of the k-d-b-tree leads to faster building times
than the r+-tree while the storage costs are the same.
Point search queries are slightly faster in the r

+-tree
than in the k-d-b-tree since a search can fail earlier in
the former on account of the minimization of the dead
space. Range queries and nearest line segment queries
will be a bit faster in the r+-tree than in the k-d-b-tree
since the bounding rectangles in the nonleaf nodes of the
r
+-tree can lead to more pruning than in the k-d-b-tree.
In our experiments (as in [7]) we use a hybrid that lies

somewhere between the k-d-b-tree and the r+-tree as we
use minimum bounding rectangles for the line segments
in the leaf nodes while we don't do so in the nonleaf
nodes. This leads to a simpli�ed r

+-tree construction
algorithm while only sacri�cing the minimumbounding
rectangles in the nonleaf nodes. This sacri�ce is not
very costly when we realize that the number of nonleaf
nodes is much smaller than the number of leaf nodes.
Thus all usage of the term r

+-tree in the following refers
to this hybrid structure.
Whenever a line segment is inserted into an r

+-tree,
we apply a recursive top-down process that places it
in every leaf node that it intersects. Next, we check
if the leaf nodes in which the line segment was inserted
should be split on account of it being too full. Splits are
propagated up the tree. The r+-tree implementations
described in the literature do not specify a splitting pol-
icy, and it should be clear that there are a number of
possible ways to proceed. We take the approach that a
node should be split in a way that minimizes the total
number of resulting portions of line segments (bound-
ing rectangles when the node is not a leaf node). This
requires that we try all possible vertical and horizontal
split lines, and for each split we calculate the number
of line segments (or bounding rectangles) that are in-
tersected by the split line. We then select the split line
with the minimum number of intersections. In case of
a tie, we choose the split line that yields the most even
distribution of line segments (or bounding rectangles)
among the two constituent nodes.
The third data structure that we examine is the pmr

quadtree [13,14]. It is a member of a family of data
structures that adaptively sort the line segments into
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buckets of varying size. There is a one-to-one cor-
respondence between buckets and blocks in the two-
dimensional space from which the line segments are
drawn. There are a number of approaches to this prob-
lem [19]. They di�er by being either vertex based or
edge based. Their implementations make use of the
same basic data structure. All are built by applying the
same principle of repeatedly breaking up the collection
of vertices and edges (making up the polygonal map)
into groups of four blocks of equal size (termed broth-
ers) until obtaining a subset that is su�ciently simple so
that it can be organized by some other data structure.
The pmr quadtree is edge-based and makes use of

a probabilistic splitting rule. A block is permitted to
contain a variable number of line segments. It is con-
structed by inserting the line segments one-by-one into
an initially empty structure consisting of one block.
Each line segment is inserted into all of the blocks that
it intersects or occupies in its entirety. During this pro-
cess, the occupancy of each a�ected block is checked to
see if the insertion causes it to exceed a predetermined
splitting threshold. If the splitting threshold is exceeded,
then the block is split once, and only once, into four
blocks of equal size. The rationale is to avoid splitting
a node many times when there are a few very close lines
in a block. this avoids pathologically bad cases.
A line segment is deleted from a pmr quadtree by re-

moving it from all the blocks that it intersects or occu-
pies in its entirety. During this process, the occupancy
of the block and its siblings (the ones that were cre-
ated when its predecessor was split) is checked to see if
the deletion causes the total number of line segments in
them to be less than the predetermined splitting thresh-
old. If the splitting threshold exceeds the occupancy of
the block and its siblings, then they are merged and the
merging process is recursively reapplied to the resulting
block and its siblings.
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Figure 5: pmr quadtree for the collection of line seg-
ments of Figure 1. (a) - (e) illustrate snapshots of the
construction process with the �nal pmr quadtree given
in (e).

Figure 5(e) is an example of a pmr quadtree corre-
sponding to a set of 9 edges labeled a through i in-
serted in increasing order. Observe that the shape of
the pmr quadtree depends on the order in which the
lines are inserted into it. Figure 5(a){(e) shows some of
the steps in the process of building the pmr quadtree of
Figure 5(e). This structure assumes that the splitting
threshold value is two. In each part of Figure 5(a){(e),
the line segment that caused the subdivision is denoted
by a thick line, while the gray regions indicate the blocks
where a subdivision has taken place. The insertion of

line segments c, e, g, h, and i causes the subdivisions
in parts a, b, c, d, and e, respectively, of Figure 5. The
insertion of line segment i causes three blocks to be sub-
divided (i.e., the se block in the sw quadrant, the se
quadrant, and the sw block in the ne quadrant). The
�nal result is shown in Figure 5(e).

Generally, as the splitting threshold is increased,
the storage requirements of the pmr quadtree decrease
while the time necessary to perform operations on it will
increase. Note that although a bucket can contain more
line segments than the splitting threshold, this is not a
problem. In fact, it can be shown [19] that the maxi-
mum number of line segments in a bucket is bounded
by the sum of the splitting threshold and the depth of
the block (i.e., the number of times the original space
has been decomposed to yield this block).

4 Implementation Issues in the Qualita-
tive Comparisons

Comparing the di�erent data structures is not an easy
task. For example, in the case of the r+-tree, the details
of how they are built and what are ideal parameters are
left open. Another problem is that each data structure
can be implemented in a di�erent way, thereby making
it easy to bias the comparison in favor of a particular
structure. These di�ering implementationsmake it very
di�cult to conduct a meaningful comparison since an
observer can conclude that we are in e�ect comparing
implementations rather than data structures. It is hard
to formulate a meaningful response to such a criticism.

Our approach is to try to compare the data struc-
tures using implementations that are commonly asso-
ciated with them. When to our knowledge, these im-
plementations are not favorable to the data structure,
we modify the implementations so that better perfor-
mance is achieved. This may lead to a slightly di�erent
data structure than has been described in the literature.
When this is the case, we carefully explain our motiva-
tion and show why it is a reasonable modi�cation.

Our goal is to achieve good execution times for the
queries outlined in Section 5. This caused us to look a
bit more closely at the de�nitions of the data structures
that we were testing and to see what changes in the
implementations would enable them to perform better.
When the issue is one of time versus storage, we some-
times opted for the more costly solution from the storage
standpoint. Since we are dealing with large databases
that are expected to be disk-resident, our main statis-
tics are in terms of operations that are expected to cause
reading a page of data that is not currently resident in
main memory (termed disk accesses). This is not dif-
�cult to detect as our data structures are organized in
terms of pages. Thus we can easily distinguish between
operations that access the same page and those that
need to access another page. Of course, our disk ac-
cess statistics only mean that there was a potential for
a disk access since depending on the paging policy, the
page could be memory-resident. This is often the case.
We don't always give raw execution times as they are
very di�cult to obtain in an accurate manner.

It is di�cult to choose parameters that make the test-
ing environments similar. One approach is to stipulate
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that the data structures use the same amount of storage.
This is not always possible. For example, the r+-tree
requires much more space than the r�-tree since the r+-
tree stores a line segment with more than one block to
insure that the bounding blocks are disjoint. However,
the page (i.e., node) sizes can be the same.
The most common implementation of the pmr

quadtree is as a linear quadtree which means that only
the leaf blocks are retained. Recall that each leaf block
can contain several line segments. Each of these line
segments is represented by a 2-tuple (L;O) where L is
the locational code3 of the block (a 2-tuple containing
the depth of the corresponding node in the quadtree and
an integer corresponding to the bit interleaved value of
the x and y coordinate values of its lower left corner)
and O is a pointer to a segment table that contains the
endpoints of the line segment. The segment table is as-
sumed to be on disk where the endpoints of the line seg-
ments are stored with whatever precision is deemed nec-
essary. Each 2-tuple (L;O) is stored in a b-tree indexed
on the basis of the value of L. With such an implemen-
tation, and using 4 bytes per entry, each 2-tuple requires
8 bytes of storage. Using 1K byte pages for the b-tree
nodes, we can store 120 line segments on each page. As
we see, the notion of a bucket (i.e., a node in the pmr
quadtree) is really just a conceptual tool for grouping
similar line segments. In particular, the line segments
associated with a particular pmr quadtree node should
be stored on the same page.
Another issue is the format of a node in the r-tree

variants. The most e�cient, storage-wise, is to repre-
sent each node as a record containing the size of the
space spanned by the node (i.e., the minimum bound-
ing rectangle) and pointers to the son nodes. However,
this is quite ine�cient from an execution-time point of
view since in order to determine the bounding rectangle
of a son node, we must access the son node which causes
a disk access. An alternative, and what we do, is to rep-
resent each node as a set of 2-tuples (R;O) where R is
the smallest rectangle that contains the data stored in
son O. For line segments, this means that each 2-tuple
requires 5 entries { 4 for the x and y coordinate values
of the bounding rectangle and one entry for the pointer
to the son node. In the case of a leaf node, O is really a
pointer to a segment table that contains the endpoints
of the line segment just like in the pmr quadtree. With
such an implementation, and using 4 bytes per entry,
each 2-tuple requires 20 bytes of storage and thus each
1K byte page contains a maximum of 50 line segments.
For our experiments, we used our own implementa-

tions of the data structures. The pmr quadtree was
tested using the quilt geographic information system
[22] where it is implemented using a linear quadtree as
described above. It is disk resident and makes use of
a bu�er pool of 16 pages, each of which contains 1K
bytes. Pages are replaced using a least-recently-used
policy. The splitting threshold value 4 was chosen on
the basis of the observation that we are dealing with
collections of line segments that correspond to road net-
works and that it is rare for more than 4 roads (i.e., line
segments) to intersect.
For the r-tree variants, given a page size S and k

3Also known as a Morton code etc. (see [20] for more details).

bytes per 2-tuple, we �nd thatM is approximately S=k.
We let m be 40% of M in accordance with the values
reported to be best by the originators of the r�-tree [2].
Recall from Section 3 that our implementation of the
r
+-tree is a hybrid (more like a k-d-b-tree) in that our

splitting rule for the insertion does not yield a minimum
bounding rectangle. Both r-tree variants were also im-
plemented using a bu�er pool of 16 pages and a least
recently used page replacement policy.

5 Queries

We focus on �ve queries. The queries are speci�ed in
a way that is independent of the implementation of the
underlying data structure. Each query is a bit more
complex than the previous one.

1. Given an endpoint of a line segment, �nd all the line
segments that are incident at it (this is a variant of
a point query).

2. Given an endpoint of a line segment, �nd all the line
segments that are incident at the other endpoint of
the line segment.

3. Given a point in the two-dimensional space contain-
ing the line segments, �nd the nearest line segment
using a Euclidean distance metric.

4. Given a point in the two-dimensional space con-
taining the line segments, �nd the minimal enclos-
ing polygon by outputting its constituent line seg-
ments.

5. Given a rectangular window, �nd all line segments
in the window (this is also known as a range query
or a window query).

Queries 1 and 2 are simple search queries that don't
require that the space occupied by the line segments
be sorted. They only involve the endpoints of the line
segments. They are more realistic than a point query
which would just return the block containing the point.
Queries 3 and 4 bene�t from sorting the space oc-

cupied by the line segments. The execution of query
4 requires that we �nd a line segment that is near the
query point and then traverse the boundary of the poly-
gon that surrounds it. The traversal is performed by
repeatedly executing query 2 and determining the right
line segment from the ones that are returned. This could
be facilitated if the line segments that are stored within
a bucket in a pmr quadtree, or a page in an r-tree,
were sorted. In general, sorting these line segments is
not easy as depending on the data structure there are
several possible sort techniques { e.g., by orientation
around a common point, by x intercept value, by y in-
tercept value, etc.
Query 3 can be used to �nd the nearest subway line

to a particular house, etc. Query 5 can be viewed as a
generalization of queries 1 and 3 although its execution
is quite di�erent. Query 5 can be used to �nd all roads
that pass through a given region (rectangular here).
The algorithms for executing these queries are

straightforward. In the case of the r-tree variants, the
algorithms are very similar with the exception that the
point query will be faster in the r+-tree than the r�-
tree due to the disjointness of the search space. Queries
1 and 2 are point queries and their algorithms are well
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known. Queries 3 and 4 require that we �nd the near-
est line segment to a query point. An algorithm for this
task for a pmr quadtree is given in [11] and a similar
approach is used in the r-tree variants.
Query 5 is executed by a tree traversal that checks for

overlap of the nodes with the window rectangle. The r-
tree variant algorithms are quite standard [20], while
the pmr quadtree uses a new window decomposition
algorithm [1].

6 Empirical Results

For each query type and map, 1000 tests were performed
using an r

�-tree, an r
+-tree, and a pmr quadtree.

Tests were run on 6 maps of counties in Maryland
where each map contained approximately 50,000 line
segments. The counties included urban areas (Balti-
more), suburban areas (Anne Arundel), and rural areas
(Cecil, Charles, Garrett, and Washington).
The pmr quadtrees were built using a maximum

depth of 14, thereby enabling an image of size 16K by
16K to be handled. For all the data structures, a mini-
mum bounding square was computed for each map, and
all coordinate values were normalized with respect to
a 16K by 16K region. This meant that each map was
assumed to contain 228 pixels and hence the maximum
depth of the pmr quadtree was 14. Of course, the depth
of the b-tree implementations of all the trees (including
the pmr quadtree) was considerably smaller (i.e., 4).
We also measured the costs of building the structures

in terms of storage, disk accesses and cpu time (on an
HP 720; 57 MIPS). Table 1 shows the number of bytes
in the b-tree, and disk accesses arising in the building
process for each map and data structure. The storage
requirements of the r+-tree and the pmr quadtree were
comparable, with the pmr quadtree using between 13
and 43% more than the r�-tree, and the r+-tree using
between 26 and 43% more than the r�-tree. The disk
accesses for all three structures were also comparable,
with the pmr quadtree requiring the fewest, and the
r
�-tree the most for all but one of the six data sets.

We do not include the segment table size since it is the
same for all of the structures. Of course, the number of
disk accesses do not tell the whole story of the building
process. In particular, there is a considerable amount of
other activity going on such as optimization of the splits
in the case of the r�-tree which is not at all present in
the pmr quadtree and r

+-tree.
In terms of execution time, we found that the build-

ing times of the r+-tree were the smallest, with the pmr
quadtree taking 1.5{1.7 times more, and the r�-tree was
more costly by a factor of 7.8{9.1. Building the pmr
quadtree was costlier than building the r+-tree because
whenever a q-edge is inserted into a pmr quadtree node
we must keep the contents of the resulting b-tree nodes
sorted which means that data may have to be moved. In
contrast, the 2-tuples that comprise the r+-tree nodes
need not be sorted. Thus a 2-tuple corrsponding to a
q-edge can simply be inserted as the last element in the
r
+-tree node. Of course, this does a�ect the execution

times of some of the queries. The r�-tree building times
su�ered from the computationally expensive node over-
ow technique where 30% of the bounding boxes are
reinserted into the structure. If the reinsertion fails to

size (Kbytes) disk accesses cpu seconds
map name segs R* R+ PMR R* R+ PMR R* R+ PMR

Anne Arundel 46335 1284 1840 1821 12965 12178 13556 1233 142 237
Baltimore 48068 1345 1907 1925 11901 11007 10640 1310 144 233
Cecil 46900 1325 1722 1541 11034 10644 8829 1137 131 209
Charles 50998 1429 1854 1618 14738 11632 10477 1205 142 225
Garrett 49895 1421 1797 1637 13828 11833 9551 1190 138 211

Washington 49575 1402 1840 1812 12452 11132 10610 1175 150 231

Table 1: Data structure building statistics.

resolve the overow, the node is then split in a locally
desirable manner.
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Figure 6: Disk accesses during build by page size and
bu�er size for the pmr quadtree and the r+-tree.

Figure 6 shows the e�ect of changing the page size and
the size of the bu�er pool on the number of disk accesses
for the r

+-tree and the pmr quadtree. In particular,
they decrease as the page sizes and the size of the bu�er
pool increase. Moreover, for identical page and bu�er
pool con�gurations, the number of disk accesses for the
pmr quadtree is smaller than for the r+-tree. This is a
direct result of the fact that the r+-tree pages contain
fewer line segment tuples than the pmr quadtree since
the 2-tuples for the former require 20 bytes versus 8
bytes for the latter. In the rest of the experiments we
used pages of size 1K and a bu�er pool of 16 pages.
Two of the test queries (i.e., �nding the nearest line

and the surrounding polygon) involve the use of ran-
domly generated query points. We tried two di�erent
techniques to generate a query point at random. The
�rst testing technique used a uniform distribution. The
problem with such an approach is that many of the
query points lie outside the boundaries of the maps of
interest, or in large empty areas.
The second testing technique correlates the query

points with the data. In particular, regions with high
concentrations of line segments are more likely to be
queried than sparse regions. Observe that the pmr

quadtree provides a good approximation to such a data
model as the regions with many line segments are gener-
ally small and bunched together while regions with few
line segments are generally large. Therefore, we used
a two-stage process to generate the query points. We
�rst generated the pmr quadtree block at random us-
ing a uniform distribution based on the total number of
blocks|not their size. Next, having obtained a random
block, we generated a query point at random within the
block. In this case, we did draw the coordinate values
of the query point from a uniform distribution.
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Window queries were attempted using 0.01 percent
of the total area represented by the data structure (a
similar strategy was used in the original testing of the
r
�-tree [2]). For example, for a 1K by 1K map, this area

is 100 pixels wide (i.e., a 10 by 10 region) while for a
16K by 16K map, this area is 160 by 160 pixels.

One of the problems we encountered was that the line
segment distributions for the maps were quite di�erent
(recall Table 1). In particular, polygons in urban areas
usually consisted of 5-6 line segments corresponding to
a city block. On the other hand, in rural areas, the den-
sity of line segments is much lower and polygons have
much higher line segment counts (e.g., a polygon can be
formed by the boundary of a stream and a road where
the road and the stream meander in tandem). For ex-
ample, in our surrounding polygon queries (i.e., query
4), the average polygon size that we encountered was
19 in Baltimore county (an urban and suburban mix)
while it was 132 in Charles county (rural). This a�ects
many of the queries. For example, the algorithm for the
surrounding polygon query (i.e., query 4) performs one
nearest line query (i.e., query 3) and then proceeds to
traverse a polygon which is just a repeated application
of the query that �nds the second endpoint of a line seg-
ment given its �rst endpoint (i.e., query 2). Clearly, its
performance di�ers depending on the average number
of line segments in a polygon.
In order to lessen the impact of these di�erences on

the execution times of the queries, for a given map, we
normalize the performance of the r-tree data structures
(i.e., the r

�-tree and the r
+-tree) against the perfor-

mance of the pmr quadtree. For each quantity that was
measured using a particular data structure, we tabulate
its normalized range. The normalized range highlights
the average normalized value for the 6 maps making it
easier to see variability. Because of the normalization,
the values for the pmr quadtree are always 1.
For each query (7 when the two random point genera-

tion methods are used), data structure (3), and map (6),
we computed the number of disk accesses and segment
accesses, and bounding box computations (in the case of
the r�-tree and r

+-tree) or bounding bucket computa-
tions (in the case of the pmr quadtree). Thus 378 values
were computed for the queries. Normalization enables
us to reduce it to three �gures { one for each of the
three quantities measured, when they are comparable.
Each �gure shows the normalized range (plotted in the
vertical direction) as a function of the query type (plot-
ted in the horizontal direction) for each of the di�erent
data structures. They are summarized in Figures 7-9.
In order to understand the orders of magnitude of the
quantities that we are comparing, we tabulate in Ta-
ble 2 the results of our experiments for Charles county,
which were typical of all the maps.
Figure 7 only shows the performance of the r+-tree

normalized against the r
�-tree. The problem is that

although the bounding bucket computations in the pmr
quadtree play a similar role to that of the bounding
box computations in the r-trees, they usually di�er by
two orders of magnitude in favor of the pmr quadtree.
Hence it was not feasible to plot them using normalized
ranges.

A number of conclusions can be drawn from these �g-

Charles County
query metric PMR R+ R*

Point1 disk accesses 1.55 2.07 2.74
segment comps 3.48 2.43 2.39

bbox / node comps 1.00 105.02 149.89
Point2 disk accesses 1.72 2.29 2.90

segment comps 4.43 3.38 3.35
bbox / node comps 2.00 209.75 299.10

Nearest disk accesses 2.21 2.52 3.35
Line segment comps 11.23 27.02 36.16

(2-stage) bbox / node comps 5.33 248.01 389.05
Nearest disk accesses 7.18 6.75 3.38
Line segment comps 22.32 75.08 40.35

(1-stage) bbox / node comps 8.77 387.86 765.98
Polygon disk accesses 13.19 18.46 14.07
(2-stage) segment comps 451.43 388.23 389.85

bbox / node comps 185.98 16996.69 23730.10
Polygon disk accesses 12.62 18.67 13.43
(1-stage) segment comps 368.10 347.95 333.55

bbox / node comps 152.35 14101.58 20387.28
Range disk accesses 2.93 3.24 3.50

segment comps 14.70 8.17 6.88
bbox / node comps 16.57 149.24 179.76

Table 2: Data for Charles county.
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ures. From Figure 8, the number of disk accesses that
we measured showed that the pmr quadtree seemed to
have a slight edge over the r-trees. However, the di�er-
ences were not that great. Moreover, the r+-tree was
usually better than the r�-tree because of the disjoint
decomposition of space that the r+-tree induces. The
di�erences in the nearest line query is explained below
in conjunction with the discussion of the two random
point generation methods. An exception was the poly-
gon query (i.e., query 4). At a �rst glance, this seems
contradictory because this query consists of one appli-
cation of the nearest line query (i.e., query 3) and re-
peated application of a next point query (i.e., query 2).
In particular, on a query by query comparison, the r+-
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Figure 8: Relative disk accesses.
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tree was superior; yet, for the repeated application of
the point queries, the r�-tree was slightly better. This
is not really surprising when we recall that the r�-tree
takes less space and thus the locality of the polygon
means that a disk access will be less likely.
Each segment comparison means an access to the seg-

ment table which is disk-resident. Of course, since the
segments are usually in proximity, they will be stored
close to each other and thus although many segments
will be involved, there will only be minor di�erences
in disk activity. From Figure 9 we �nd that they are
comparable with the exception of the range and nearest
line queries. The advantage of the r-trees for the point
queries is relatively small when we consider the order
of magnitude of the measured quantities. The perfor-
mance of the r�-tree and the r+-tree was comparable
with the exception of the two-stage nearest line query
where the r+-tree seemed to perform decidedly better
than the r�-tree. This is most likely due to the disjoint
decomposition of space induced by the r+-tree.
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Figure 9: Relative segment comparisons.

The data for the segment comparisons should be ex-
amined in conjunction with the data for the bounding
box and bounding bucket comparisons. The reason is
that unlike the r-trees, no bounding boxes are stored
in the pmr quadtree. Thus in the case of the pmr

quadtree, the segment comparisons and the bounding
bucket comparisons (a very small number) together play
the same role as the segment and bounding box com-
parisons in the r-trees. When we examine the bound-
ing box comparisons (e.g., Table 2 which is typical), we
see that this is where much of the computation in both
of the r-trees takes place. The advantage of the pmr
quadtree over the r-trees in this respect is as high as
several orders of magnitude.
It should be clear that the number of segment com-

parisons in the pmr quadtree can be reduced by modi-
fying the de�nition of the pmr quadtree so that a min-
imum bounding rectangle is stored with every line seg-
ment or every block. Thus we would have a 3-tuple with
a total of 6 entries in contrast to a 2-tuple in the pmr
quadtree with just 2 entries. The storage costs would
be higher but not by much since the locational code
component of the 2-tuple already localizes the bound-
ing rectangle and thus very little additional information
needs to be stored (i.e., considerably less than 16 bytes
will be required for the bounding rectangle). However,
when we examine the relative di�erence in the absolute

number of segment comparisons, we �nd that it may
not be worthwhile to introduce this added complexity.
The results of the two types of random point genera-

tion methods (i.e., using one or two stages) did not show
a big di�erence in the surrounding polygon query be-
cause its execution time is dominated by the task of �nd-
ing the successive endpoints of the line segments that
comprise the polygon. The number of segment compar-
isons was comparable for all three structures. For both
methods, the number of disk accesses was fewest for the
pmr quadtree. Not surprisingly, the r+-tree was better
with the two-stage method than the r�-tree, while the
results were reversed for the one-stage method.
For the nearest line segment query, the pmr quadtree

had fewer disk accesses for the two-stage method than
both of the r-trees, while the r�-tree had the most. The
situation was reversed for the one-stage method { i.e.,
the r�-tree had the least, while the pmr quadtree had
the most. This was expected as the two-stage method
generates more query points where the line segment
density is highest and the locality provided by meth-
ods based on disjointness (i.e., the r+-tree and the pmr
quadtree) result in superior performance. Regardless of
the query point generation method, the segment com-
parisons were fewest for the nearest line segment query
when using the pmr quadtree. This is because the pmr
quadtree sorts the line segments and is able to prune
the search space. The r+-tree performed better than
the r

�-tree in this case because of the disjointness of
the space decomposition induced by it.

7 Concluding Remarks

Although our study has been restricted to collections
of line segments, the data structures that we examined
are not necessarily restricted to such objects. For ex-
ample, the r-tree variants have been frequently applied
to rectangles. Since they are based on the concept of
a bounding box for the spatial data type under consid-
eration, it is easy to extend them to other data types
as long as we always use a minimal bounding box. On
the other hand, although the pmr quadtree is designed
especially for representing collections of line segments,
it can also be adapted to represent other data types.
Not surprisingly, our studies did not result in claims of
overwhelming superiority for any of the data structures.
Qualitatively speaking, they are similar. The di�erences
in relative storage costs were as expected.
In terms of choosing a representation for a speci�c

application, the choice can only be made once the reper-
toire of operations that is to be executed is known. The
r
+-tree and the pmr quadtree are best when the oper-

ations involve search since they result in a disoint de-
composition of space. If the results of the operations
are to be composed with the results of other operations
such as overlay of maps of di�erent types, then the fact
that the decomposition induced by the pmr quadtree is
oriented so that the decomposition lines are always in
the same positions makes it preferable to the r+-tree.
The r�-tree is more compact than the r+-tree but its
performance is not as good as the r+-tree due to the
non-disjointness of the decomposition induced by it.
An interesting observation is that in the case of the

pmr quadtree, the splitting threshold plays a role simi-
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lar to bucket capacity. One possible way to equalize the
comparisons is to use a splitting threshold value that
would yield an average bucket (node) occupancy simi-
lar to an average page occupancy in the r-trees. This is
not di�cult to compute. Using our implementations of
1K byte pages, we found that the average number of line
segments in an r�-tree page was 36 while it was 32 in an
r
+-tree tree page. The average number of line segments

in a bucket with a splitting threshold value of x is usu-
ally :5x. This would mean that a pmr quadtree splitting
threshold value of approximately 64 may lead to com-
parable results in the sense that in this case the average
page and bucket occupancies will be about the same.
Unfortunately, we still need to account for the di�ering
amounts of information stored for each line segment in
the structures (i.e., whether or not a bounding box is
stored for each line segment in the pmr quadtree). Also,
to make the comparisons meaningful, we must address
the issue of how the individual line segments stored in a
page or bucket are organized (i.e., are they sorted?). Of
course, whatever we do we must bear in mind that the
real danger of such sophisticated experiments is that
the data structures may be crippled by the quest for
identical experimental conditions.
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