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ABSTRACT

Two approaches for integrating images into the framework of a database management system are presented. The

classi�cation approach preprocesses all images and attaches a semantic classi�cation and an associated certainty factor to

each object found in the image. The abstraction approach describes each object in the image by using a vector consisting
of the values of some of its features (e.g., shape, genus, etc.). The approaches di�er in the way in which responses to queries

that are based on image content are computed. In the classi�cation approach, images are retrieved on the basis of whether

or not they contain objects that have the same classi�cation as query objects. In the abstraction approach, retrieval is on
the basis of similarity of feature vector values of these objects. Both the pattern recognition and indexing aspects of the

method are addressed for each approach. The emphasis is on extracting both contextual and spatial information from the

raw images. Methods for storing and indexing symbolic images as tuples in a relation are presented for each approach.
Indices are constructed for both the contextual and the spatial data. The user interface for a pictorial information system

based on these two approaches is also presented.

Keywords: image databases, retrieval by content, spatial databases, image indexing, query optimization

1 INTRODUCTION

There are two approaches for integrating images into a database so that images can be retrieved based on content (e.g.,
�nding all campgrounds within 3 miles of a beach in a database of map images that contain tourist symbols). These two

approaches di�er in the time that the content of the image is classi�ed. One approach, termed the classi�cation approach,

preprocesses all images and attaches a semantic classi�cation and an associated certainty factor to each object that it �nds
in the images. The certainty factor enables more than one possible classi�cation for each object in the database images.

For example, all symbols that are likely to be restaurants, campgrounds, etc, are labeled with their semantic meaning (i.e.,
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that they are restaurants, campgrounds, etc. in contrast to being something else or even being invalid symbols). Images
are retrieved from the database on the basis of containing objects that have the same classi�cation as the objects speci�ed

by the query. An alternative approach, termed the abstraction approach, attempts to �nd some description of the objects
in terms of properties of their visual representation (e.g., shape, length, connectivity, genus, etc.), termed a feature vector,

and then retrieves images from the database that contain objects whose feature vectors match or are close to that of the

feature vector of the objects speci�ed by the query.

In essence, in the abstraction approach we are delaying the classi�cation of the objects in the images until execution

time. This permits greater exibility in responding to queries in that the tolerance with which the objects in the database
images match those that are requested in the query can be varied for each query. In contrast, in the classi�cation approach

this tolerance must be decided at the time the database is populated with the images. However, we can still vary the

tolerance with which we retrieve matching images when using the classi�cation approach by permitting the retrieval of
images that contain objects whose matching classi�cations have smaller (larger) certainty values. The ability to vary the

tolerance is important in image database applications as it is quite rare that an exact match is found. Rather, the goal of

image retrieval in an image database is to �nd a set of candidate images that most likely �t a given speci�cation.

In this paper we study the use of the classi�cation and abstraction approach in an actual image database system and
show how they can be integrated into a relational database management system. The paper is organized as follows. Section 2

discusses the background for this problem and discusses related work. Section 3 outlines the image input methodologies

that we use. Section 4 describes how images are stored in a database management system including schema de�nitions and
example relations. Section 5 gives sample queries along with execution plans for each approach. Section 6 describes our

implementation of the system along with some snapshots of the system performing an example query. Section 7 contains

concluding remarks.

2 BACKGROUND AND RELATED WORK

In order to support retrieval by content in image databases, images should be interpreted to some degree when they

are inserted into the database. This process is referred to as converting an image from a physical representation to a logical

representation. The logical representation may be a textual description of the image, a list of objects found in the image,
a collection of features describing the objects in the image, etc. It is desirable that the logical representation also preserve

the spatial information inherent in the image (i.e., the spatial relation between the objects found in the image). We refer

to the information regarding the objects found in an image as contextual information, and to the information regarding the
location of the objects and the spatial relation between these objects as locational-spatial information and relational-spatial

information, respectively. An index mechanism based on the logical representation can then be used to retrieve images

based on both contextual and spatial (both locational and relational) information in an e�cient way.

Most commercial systems do not have any of these capabilities. These systems are actually image catalogs where the

user may associate keywords (ASCII text) with images and retrieve images based on these keywords. These systems usually
provide some form of browsing via thumbnails (small icons of the images). Some recent commercial systems do have a

notion of retrieval by content. The Illustra object-relational DBMS18 provides media-speci�c class libraries (DataBlades)

for storing and managing image data. IBM's new UltiMedia Manager o�ers content-based image query (based on QBIC10

technology) in conjunction with standard search.

Numerous prototype research IDMS's have been reported in recent years. These systems can be divided into two

categories: those that do not deal with image processing and recognition issues, and those that do deal with these

issues. The systems that do not address recognition issues2,4,5 assume that as a result of applying some unspeci�ed
object recognition technique, they are dealing with tagged images. The main issue that these systems address is how to

index these tagged images in order to support retrieval by image similarity. They are mainly concerned with the spatial

relationship between the objects in the images (i.e., relational-spatial information). They do not deal with locational-spatial
information. The most common data structure that is used for this purpose is the 2-D string and its variants.2

The systems that do deal with image processing and object recognition issues may also be roughly divided into two
categories: (i) those that treat the image as a whole, and (ii) those that treat the image as a collection of objects

that need to be recognized. The systems that treat the image as a whole index the images based mainly on color and

texture. QBIC,10 Photobook,12 and FINDIT17 are examples of systems that use such methods. Very few systems7,8 try to
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recognize individual objects in an image. These systems do not, however, address the issues of spatial relationship between
the objects, and e�cient indexing. Some issues that deal with storing spatial information in a relational database have

been discussed as part of the SEQUOIA 2000 project.16 However, this work did not address the image interpretation,
and contextual indexing aspects involved in integrating images (rather than just spatial data) into a relational database

management system (DBMS).

In contrast, our approach combines indexing on spatial information as well as permitting retrieval on the basis of

contextual (i.e., semantic) information. In our work, we have chosen to focus on images where the set of objects that

may appear in them is known a priori, the geometric shapes of these objects are relatively primitive, and they convey
symbolic information. For example, in the map domain many graphical symbols are used to indicate the location of various

sites such as hospitals, post o�ces, recreation areas, scenic areas etc. We call this class of images symbolic images. We

distinguish between fully-symbolic images and partially-symbolic images. In a fully-symbolic image we can fully classify
each symbol found in the image and report the certainty of this classi�cation. In a partially-symbolic, we assume that the

symbols can be abstracted in such a way that given two symbols we can compute the certainty that they belong to the

same class. All of the examples and experiments in this paper are from the map domain. However, images from many
other interesting applications fall into the category of symbolic images. These include CAD/CAM, engineering drawings,

oor plans, and more. Hence, the methods that we describe here are applicable to them as well.

3 IMAGE INPUT

Images can be represented in one of two ways. In the physical image representation, an image is represented by a
two-dimensional array of pixel values. The physical representation of an image is denoted by Iphys. In the logical image

representation, an image I is represented by a list of tuples, one for each symbol s 2 I. In the classi�cation approach, the

tuples are of the form: (C; certainty; (x;y)) where C 6=unde�ned, (x; y) is the location of s in I, and 0 < certainty � 1
indicates the certainty that s 2 C. In the abstraction approach, the tuples are of the form: f~s; (x; y)g where ~s is the feature

vector representing symbol s, and (x;y) is the location of s in I. Image input is the process of converting an image from

its physical to its logical representation. This process varies according to the image integration approach used.

In the classi�cation approach, an input image I is converted to a logical image by classifying each symbol s found
in I using a training set library. Symbols are classi�ed using a modi�cation a weighted bounded several-nearest neighbor

classi�er. An initial training set library is constructed by giving the system one example symbol for each class that may be

present in the application. In the map domain, the legend of the map may be used for this purpose. A more representative
training set is built by having the user verify the results of the classi�cations for the few �rst images that are inserted

into the database. Feature vectors of symbols that could not be classi�ed correctly using the current training set library

are added to the library. Once the current recognition rate is deemed adequate, the remaining images are processed
automatically. More than one candidate classi�cation may be output for each symbol. Symbols that are classi�ed as

unde�ned are not inserted into the database. See14 for more details.

In the abstraction approach, an image is converted into a logical image by creating an abstraction (the feature vector)

for each symbol in the input image. There is no attempt to classify symbols or to weed out unde�ned symbols during

image input using the abstraction approach. A feature vector is inserted into the database for each connected component
in the input image. One sample symbol from each class is also required in this case. The feature vector of this sample is

used to search for symbols that belong to the same class as the sample when querying the database by content.

4 IMAGE STORAGE

Images and other information pertaining to the application are stored in relational tables. The spatial database that
is used for both approaches is SAND1 (spatial and non-spatial database) developed at the University of Maryland. It is a

home-grown extension to a relational database, in which the tuples may correspond to geometric entities such as points,

lines, polygons, etc. having attributes which may be both of a locational (i.e., spatial) and a non-locational nature. Both
types of attributes may be designated as indices of the relation.
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4.1 Classi�cation approach

(create table classes

name STRING,

semant STRING,

bitmap IMAGE);

(create table physical_images

img_id INTEGER,

descriptor STRING,

upper_left POINT,

raw IMAGE);

(create table logical_images

img_id INTEGER,

class STRING,

certainty FLOAT,

loc POINT);

1

Figure 1: Schemas of relations classes,
physical images, logical images using
the classi�cation approach.

name semant bitmap

S                harbor
 square            hotel
 scenic            scenic view

R                restaurant
P                post office

K                cafe

waves           beach

    triangle          camping site

fish               fishing site

 air               airfield

pi               picnic site

Figure 2: Example instance for the classes

relation in the map domain using the classi�-
cation approach.

img id descriptor upper left raw

image 1 tile 003.012 of Finish road map (6144,1536) Figure 4

image 2 tile 003.013 of Finish road map (6656,1536) Figure 5

Figure 3: Example instance for the physical images relation in the map domain using the
classi�cation approach.

The schema de�nitions given in Figure 1 de�ne the relations in the DBMS following the classi�cation approach. We
use an SQL-like syntax. The classes relation has one tuple for each possible class in the application. The name �eld

stores the name of the class (e.g., star), the semant �eld stores the semantic meaning of the class in this application (e.g.,

site of interest). The bitmap �eld stores a bitmap of an instance of a symbol representing this class. It is an attribute of
type IMAGE. The classes relation is populated using the same data that is used to create the initial training set for the

image input system (i.e., one example symbol for each class that may be present in the application along with its name
and semantic meaning). See Figure 2 for an example instance of the classes relation in the map domain.

The physical images relation has one tuple per image I in the database. The img id �eld is an integer identi�er given
to I when it is inserted into the database. The descriptor �eld stores an alphanumeric description of I given by the user.

The raw �eld stores the actual image in its physical representation. The upper left �eld stores an o�set value that locates

the upper left corner of I with respect to the upper left corner of some larger image J . This is useful when a large image
J is tiled, as in our example map domain. Subtracting this o�set value from the absolute location of s in the the non-tiled

image J yields the location of s in the tile I that contains it. Additional data about the images such as origin, camera

angles, scale, etc. can be added as �elds of this relation. See Figure 3 for an example instance of the physical images

relation in the map domain.

The logical images relation stores the logical representation of the images. It has one tuple for each candidate class

output by the image input system for each valid symbol s in each image I. The img id �eld is the integer identi�er given

to I when it was inserted into the database. The class and certainty �elds store the name of the class C to which s was
classi�ed and the certainty of the classi�cation. The loc �eld stores the (x; y) coordinate values of the center of gravity of

s relative to the non-tiled image. See Figure 6 for an example instance of the logical images relation in the map domain

for the images given in Figures 4 and 5.

Alphanumeric indices cl sem and cl name are constructed to search the classes relation by semant and name, re-

spectively. An alphanumeric index pi id is used to search the physical images relation by img id. A spatial index on
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Figure 4: Example image 1 (image 1). Figure 5: Example image 2 (image 2).

img id class certainty loc

image 1 M 1 (6493,1544)
image 1 P 0.99 (6161,1546)

:

image 1 box 1 (6280,2011)
image 2 arrow 0.99 (6861,1544)
image 2 scenic 0.72 (6803,1565)

:
image 2 R 0.99 (6800,1807)

Figure 6: Example instance for the logical images relation in the map domain using the
classi�cation approach. The tuples correspond to the symbols in the images of Figures 4 and 5.

points pi ul is used to search the physical images relation by the coordinates of the upper left corner of the images. An
alphanumeric index li cl is used to search the logical images relation by class. It has a secondary index on attribute

certainty. A spatial index on points li loc is used to search the logical images relation by location (i.e., to deal with

spatial queries regarding the locations of the symbols in the images such as distance and range queries). The spatial indices
are implemented using a PMR quadtree for points.9

4.2 Abstraction approach

(create table classes (create table physical_images (create table logical_images

name STRING, img_id INTEGER, img_id INTEGER,

semant STRING, descriptor STRING, fv POINT,

bitmap IMAGE, upper_left POINT, loc POINT);

fv POINT); raw IMAGE);

Figure 7: Schemas of the relations classes, physical images, and logical images when
using the abstraction approach.

The schema de�nitions given in Figure 7 de�ne the tables for the abstraction approach. These tables are very similar to

those used in the classi�cation approach. They di�er in the presence of the fv �eld which corresponds to the feature vector
for a sample of the class in the case of the classes relation, and to a feature vector for each of the actual symbols in the
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img id fv loc

image 1 (0.909,0.032,24.854,0.053,17.829,12.047,14.412,55.906) (6162,1546)

image 1 (1.144,0.024,21.053,0.158,15.597,14.062,9.766,18.891) (6494,1546)
:

image 1 (0.687,0.021,35.948,0.471,11.205,0.000,0.000,0.000) (6158,1614)

image 2 (0.166,0.063,61.654,0.263,2.244,0.000,0.055,0.000) (6862,1545)
image 2 (0.456,0.023,46.094,0.500,9.517,0.000,0.000 0.000) (6804,1565)

:
image 2 (0.513,0.054,19.448,0.138,9.834,0.000,0.000,0.000) (6776,1766)

Figure 8: Example instance for logical images relation in the map domain using the abstrac-
tion approach. The tuples correspond to part of the symbols in the images of Figures 4 and 5
(the full table would have 78 tuples).

image in the case of relation logical images. Spatial indices cl fv and li fv are constructed for both the classes and the

logical images relations on the basis of the fv �eld. These indices are realized with a disk-based version of an adaptive
k-d tree,3 a data structure that is suitable for indexing points in high dimensions. By using this disk-based adaptive k-d

tree for indexing the feature vectors, we get very e�cient searches at query time since by de�nition the adaptive k-d tree

is balanced and separates the vectors by the best features. The index has to be recomputed when images are added to the
database. However, since images are usually entered in batches, and since preprocessing an image is quite time consuming,

this is not a concern.

5 RETRIEVING IMAGES BY CONTENT

In order to describe the methods that we use for retrieving images by content, we present some example queries and

demonstrate the strategies used to process these queries.

5.1 Example queries

The example queries in this section are �rst speci�ed using natural language. For the �rst example, we also give

two equivalent SQL-like queries. The �rst assumes the classi�cation approach, and the second assumes the abstraction

approach. For the other example queries, we only give an SQL-like query for the classi�cation approach. An SQL-like
query for the abstraction approach for these queries can be created in a similar manner.

Query Q1: display all images that contain a scenic view.
display PI.raw

from logical_images LI, classes C, physical_images PI

where C.semant = "scenic view" and C.name = LI.class and LI.img_id = PI.img_id;

display PI.raw

from logical_images LI, classes C, physical_images PI

where C.semant = "scenic view" and wdist(C.fv,LI.fv) <= MD and LI.img_id = PI.img_id;

The function wdist takes two feature vectors and returns the weighted Euclidean distance between them. MD is a
parameter, which may be set by the user, that determines the maximum distance (in weighted feature space) between two

feature vectors such that the two symbols that are abstracted by these two feature vectors are considered to be in the same

classi�cation. That is, (wdist(~s1; ~s2) �MD) ^ s1 2 C ) s2 2 C.

Query Q2: display all images that contain a site of interest within 5 miles of a hotel.

display PI.raw

from logical_images LI1, logical_images LI2, classes C1, classes C2, physical_images PI

where C1.semant = "hotel" and C2.semant = "site of interest"

and C1.name = LI1.class and C2.name = LI2.class and dist(LI1.loc,LI2.loc) <= 5

and LI1.img_id = LI2.img_id and LI1.img_id = PI.img_id;
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The function dist takes two geometric objects (such as two points in the example above) and returns a oating point

number representing the Euclidean distance between them.

Query Q3: display all images with a site of interest and output the semantics of anything within 2 miles of these sites of

interest.

display PI.raw C2.semant

from logical_images LI1, logical_images LI2, classes C1, classes C2, physical_images PI

where C1.semant = "site of interest" and C1.name = LI1.class and dist(LI1.loc,LI2.loc) <= 2

and LI1.img_id = LI2.img_id and LI1.img_id = PI.img_id and C2.name = LI2.class;

5.2 Query processing

The following plans outline how responses to queries Q1 and Q2 are computed using the two approaches. These plans

utilize the indexing structures available for each organization. Indices on alphanumeric attributes are capable of locating
the closest value greater than or equal to a given string or number. Indices on spatial attributes are capable of returning

all neighbors within D of a query point in increasing distance. The Xth plan, labeled PxC and PxA, use the classi�cation

approach and the abstraction approach, respectively. See15 for detailed plans for these queries, as well as an analysis of
the expected costs of these plans.
Query Q1: display all images that contain a scenic view.

Plan P1C : Search using an alphanumeric index on class.
Get all tuples of logical images which correspond to \scenic view" (use index li cl)

For each such tuple t

display the physical image corresponding to t

Plan P1A: Search using spatial index on fv.
Get all tuples of logical images whose fv field is within MD

of the feature vector of \scenic view" (use index li fv)

For each such tuple t

display the physical image corresponding to t

Query Q2: display all images that contain a hotel within 5 miles of a site of interest.

Finding a plan for Q2 gives rise to many query optimization issues within the domain of image databases. Most of these

issues are also applicable to spatial databases.1 To illustrate just how complex this issue may be, we present several plans

for computing an answer to Q2. They di�er in the selection of indices that are used to process the queries, and in whether
or not they build intermediate structures while processing the query.

Plan P2AC Search for \site of interest" and \hotel" tuples using the alphanumeric index on class. For each \site of
interest" tuple, check all \hotel" tuples, and see which ones are within 5 miles.

Plan P2BC Search for \site of interest" tuples using the alphanumeric index on class and search for \hotel" tuples

within 5 miles using the spatial index on loc.

Plan P2CC Search for \hotel" tuples using alphanumeric index on class. Build a temporary spatial index on the loc

attribute of these tuples. Search for \site of interest" tuples using alphanumeric index on class. Search for \hotel"

tuples within 5 mile using the temporary index.

Plan P2AA Search for \site of interest" and \hotel" tuples using the spatial index on fv. For each \site of interest"

tuple, check all \hotel" tuples, and see which ones are within 5 miles.

Plan P2BA Search for \site of interest" tuples using the spatial index on fv and search for \hotel" tuples within 5 miles

using the spatial index on loc.

Plan P2CA Search for \hotel" tuples using the spatial index on fv. Build a temporary spatial index on the loc attribute

of these tuples. Search for \site of interest" tuples using the spatial index on fv, and search for \scenic view" tuples
within 5 miles using the temporary index.
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5.3 User interface

Queries may be posed using either an SQL-like language or a graphical user interface (GUI). The SQL-like language
used is part of SAND and it includes primitives for spatial queries such as distance, intersect, nearest neighbor, etc. By

using this language, users can pose a wide range of queries to the system. However, this extended SQL-like language is

not trivial and requires that the user know the schema de�nitions. In contrast, the graphical user interface provides access
to a number of query categories that are common in such a map image database application. The variety of queries that

can be posed using the GUI is limited; however, it is very easy to use. Currently, we have de�ned �ve query categories as

follows:

Contain Query: �nd all map tiles that contain symbol(s) from some given class(es) (e.g., query Q1).

One Within Query: �nd all map tiles in which a symbol from class2 is within a given distance from a symbol from
class1 (e.g., query Q2).

All Within Query: �nd all map tiles in which a symbol from any class is within a given distance from a symbol from
class1 (e.g., query Q3).

Nearest Query: �nd all map tiles with the nearest symbol from class2 to a symbol from class1.

Directional Location Query: �nd all map tiles in which a symbol from class1 is located in a given direction relative to
a symbol from class2.

An additional di�erence between queries speci�ed using SQL and queries speci�ed using the GUI is in the cost (in terms

of time) of responding to the queries. For queries that are speci�ed using SQL, the query plan is generated automatically.
Thus the cost of computing the result is determined by the quality of SAND's query optimizer. As mentioned above, the

problem of writing a query optimizer for a spatial database is very complex, and thus these plans will most likely not be

optimal. On the other hand, using the GUI, the user has access to only a limited number of query categories. The plans
for these query categories are hard-wired into the system, and thus they are very e�cient.

6 IMPLEMENTATION

The image database system was tested on the red sign layer of the GT3 map of Finland, which is one of a series of

19 GT maps that cover the whole area of Finland. The red sign layer contains geographic symbols that mostly denote
tourist sites. The map was scanned at 240dpi. The layer was split into 425 tiles of size 512 � 512. Each one of these tiles

that contained at least one symbol was considered to be an image. Figure 4 is an example image. Of these 425 tiles, 280

contained at least one symbol. These 280 images contained 4111 symbols (both valid and invalid).

The images were input using the image input methodology described in Section 3 for the classi�cation and the ab-
straction approach. The initial training set was created by giving one example symbol of each class as taken from the

legend of the map. There were 22 classes in the map. The �rst 50 images were processed in user veri�cation mode. At

that point, the training set contained 100 instances of symbols and the current recognition rate was determined su�cient.

The remaining images were processed automatically. The results of this conversion (i.e., the logical images) were input to

SAND and inserted into relations as de�ned in Section 4. There were a total of 1093 tuples in the logical images relation

corresponding to 280 logical images when using the classi�cation approach. In the abstraction approach the feature vectors

of both valid and invalid symbols are inserted into the image database. Since these 280 images had 4111 such symbols,

there were a total of 4111 tuples in the logical images relation when using the abstraction approach. Query execution

plans were created for each one of the queries given in Section 5 following the strategies outlined there. These plans were
written in Tcl (short for Tool Command Language), an interpreted scripting language developed by Ousterhout.11

6.1 An example query execution

The following scenario describes how example query Q2 is speci�ed using the GUI and how the results are presented.
Recall, that Q2 was the query \display all images that contain a site of interest within 5 miles of a hotel". Figure 9 shows

the GUI for initiating a query. It consists of a button for each query category and an icon for each of the symbol classes.

The icon is composed of the bitmap and semant �elds of the tuples in the classes relation. To perform a \one within"
query, the user �rst selects the icons of the two required classes followed by clicking the \symbol1 Within x of symbol2"
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Figure 9: Graphical User Interface for query initiation. User has selected a \One Within Query"
between a \hotel" and a \site of interest".

Figure 10: Results of query computation. The user has selected to display the layer tiles of the
�rst four results.

button. The user is then prompted for the required distance. Once the user enters the required distance, the result of

the query is computed using one of the plans outlined in Section 5.2. The result of this query is displayed in a window as

seen in Figure 10. A thumbnail (i.e., a reduced bitmap of the whole tile) is displayed for each layer tile that was found

that meets the query speci�cation. Recall, that in the classi�cation approach each tuple in the logical images relation

has a certainty value that estimates the certainty that the symbol in the location corresponding to the tuple belongs to

the class corresponding to the tuple. The result tiles are displayed in decreasing order of the certainty value. Therefore,

the �rst result tiles are more likely to be correct (i.e., meet the query speci�cation) and the last tiles are more likely to

be incorrect. In the case of the abstraction approach, these certainties are computed on the y according to the distance

from the sample feature vector that is used in the query. The user may now display any of the result tiles by selecting

the corresponding thumbnails followed by clicking either the \Display Layer" or \Display Composite" buttons. Figures 11

and 12 show the results of clicking these two buttons. The \prev" button is used to step through the selected tiles. A

square is drawn around the two symbols that were given to the query. By clicking the \Information" button, the user can
see the information stored regarding each of these tiles in the physical images relation and the locations of the symbols

in these tiles. In addition, the user may choose to display the non-tiled map with the query result tiles highlighted.

6.2 Experimental study

We conducted an experimental study that measured various parameters regarding storage and retrieval performance

using these two image storage approaches. These include image insertion time, storage space, retrieval accuracy, and query
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Figure 11: Displaying the selected layer tiles. Figure 12: Displaying the selected composite
tiles.

Classi�cation Approach Abstraction Approach

Image preprocessing workload heavy moderate

Image insertion time faster slower

User interaction required yes no

Spatial indexing space location location and feature

Retrieval by content workload low moderate

Hybrid query workload low moderate

Number of applications smaller larger

Adaptable at run time slightly highly

Accuracy: type I good moderate

Accuracy: type II good moderate

Table 1: Comparison of the classi�cation approach and the abstraction approach.

execution time. In15 we present the details of these tests and the results. Table 1 summarizes the conclusions from this

experimental study.

7 CONCLUDING REMARKS

Throughout this paper we discussed how to input, store, index, and retrieve symbolic images in an image database
following the classi�cation and the abstraction approaches. The choice of which approach to use depends on the application

at hand. In addition to the (GUI) that we described here, we are currently incorporating pictorial query speci�cations.

In this case, a sample symbol for each class will not be required when using the abstraction approach, as it can be taken
directly from the pictorial query.

The examples and experiments in this paper were from the map domain. However, images from many other interesting
applications also fall into the category of symbolic images. One complication that could arise in other applications is that
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the spatial extent of symbols may be of importance. In our example application, symbols were represented by a point. In
other applications, we may need to use bounding boxes or other geometric entities to represent the symbols in the logical

image. However, by using the methods suggested in this paper we can handle objects with spatial extent just as easily.
The only di�erence would be in the selection of the spatial data structure that is used to index the locational information.

For example, if symbols are represented by bounding boxes, then any data structure that is suitable for indexing rectangles

such as an R-tree6 can be used. The well-known algorithms that exist for range queries on these data structures can
then be utilized for e�cient processing of queries that have a spatial component. In contrast, it is considerably harder to

deal with spatial extent in methods based on 2-D strings.2 Note that we have used similar methods in a system for the

interpretation of oor plans.13
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