To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

Orthogonal Polygons as Bounding Structures
in Filter-Refine Query Processing Strategies

1

Claudio Esperanca! * and Hanan Samet? **

! COPPE, Prog. Eng. Sistemas
Universidade Federal do Rio de Janeiro
Cidade Universitaria, C.T., Sala H319
Rio de Janeiro, RJ, 21945-970, Brazil
E-mail: esperanc@Ilcg.ufrj.br

Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Science
University of Maryland at College Park
College Park, Maryland 20742

E-mail: hjs@umiacs.umd.edu

Abstract. The use of bounding structures in the form of orthogonal polygons
(also known as rectilinear polygons) with a varying number of vertices in contrast
with a minimum bounding rectangle (an orthogonal polygon with just 4 vertices
in two dimensions) as an object approximation method is presented. Orthogonal
polygons can be used to improve the performance of the refine step in the filter-
refine query processing strategy employed in spatial databases. The orthogonal
polygons are represented using the vertex representation implemented as a vertex
list. The advantage of the vertex representation implemented as a vertex list is that
it can be used to represent orthogonal polygons in arbitrary dimensions using just
their vertices. This is in contrast to conventional methods such as the chain code
which only work in two dimensions and cannot be extended to deal with higher
dimensional data. Algorithms are given for varying the number of vertices used to
represent the objects. It is shown that the use of non-trivial orthogonal polygons
(i-e., with more than four vertices) is of benefit when a spatial index is used in the
filter step for processing spatial queries such as point-in-object and windowing. If
no spatial index is used, then all objects must be examined. In this case, many of
the objects are small thereby not benefiting from the variation in the number of
vertices that they have as the simple bounding box is adequate.

1 Introduction

The efficient processing of queries is an important issue in spatial
databases [10]. This is facilitated, in part, through the use of spatial indexing

* The support of Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico
(CNPq), Projeto GEOTEC / PROTEM 11 is gratefully acknowledged.

** The support of the National Science Foundation under Grant IRI-92-16970 is
gratefully acknowledged.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

methods (e.g.,[22,23]) coupled with approximations. These techniques serve
as the basis of a query processing strategy known as filter-and-refine [3]. In
this case, the spatial indices serve to restrict the search to a subset of the
data (termed the filter step) which is usually a subspace of the data. Once the
subset has been defined, the queries are often executed with approximations
of the underlying data as well as the query objects (termed the refine step).
The rationale is to avoid excessive computation where the data is likely not
to satisfy the query.

For example, determining the intersection point of two straight line
segments is a surprisingly complex process due to issues of limited preci-
sion [15,17]. If we can determine that the segments do not intersect, then
we can avoid the need to compute the intersection point thereby saving a
considerable amount of effort. This can be done by approximating the two
segments with some objects in which they are guaranteed to lie such as their
enclosing rectangles, and then checking if the two enclosing objects overlap.
This is a a relatively easy process especially if the rectangles are axes-aligned
(i.e., their sides are parallel to the coordinate axes). This test can be made
even more selective by ensuring that the rectangles fit the lines as closely as
possible (termed a minimum bounding rectangle (MBR)).

We can generalize the line intersection problem to arbitrary curves in
which case the selectivity of the refine step can be increased by loosening
the requirement that the sides of the enclosing rectangles are parallel to
the coordinate axes, thereby obtaining an enclosing object which is truly an
MBR. Unfortunately, we are now confronted with our original problem of
determining whether two arbitrary straight lines in space intersect since we
must check if a pair of sides (one from each of the MBRs) intersect. Thus
the only alternative is to loosen the restriction that the enclosing objects
are rectangles and permit them to be orthogonal polygons! (also known as
rectilinear polygons [5] having a varying number of vertices (i.e., more than
four).

Interestingly, orthogonal polygons are not always the result of the approx-
imation of the data. Instead, at times the original data is in the form of an
orthogonal polygon due to the manner in which it was acquired (e.g., using
raster conversion). For example, in a GIS application, orthogonal polygons
can be used to indicate in what parts of a country a given crop is grown or
the boundaries of lakes and water bodies.

These orthogonal polygons can be represented using the vertex repre-
sentation [6,24]. The use of vertex representation as the representation of
orthogonal polygons is the subject of this paper. The advantage of these
methods is that they work for data of arbitrary dimensionality while still
only recording the vertices of the orthogonal polygon. This is quite powerful
as most higher-dimensional object representations make use of several of the

! In this paper we use the term orthogonal polygon in its most general sense to
refer to data of arbitrary dimensionality.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

lower dimensional components to represent the object. For example, in three
dimensions, we may use the winged-edge representation [1,23] (also known
as a BRep or a boundary model [16]) which represents the boundary of the
object in terms of its vertices, edges, and faces.

In contrast, the vertex representation enables the representation of the ob-
ject just using its vertices and the implicit assumption of orthogonal bound-
ary elements. Notice that such implicit orthogonality assumptions about the
boundary connectivity are also made when using chain codes [7] to represent
two-dimensional data. However, it is impossible to generalize chain codes
to higher dimensions as unlike the vertices (really edges) in two dimensions
which are ordered in sequence of connectivity since each boundary element
can be adjacent to just two elements, for d > 2 there is no such order associ-
ated with (d — 1)-dimensional hyperplanes which are the boundary elements
in d-dimensions.

The rest of this paper is organized as follows. Section 2 reviews the con-
cept of a bounding structure and gives the key properties that make it useful
in the processing of queries in spatial databases. Section 3 describes the use
of the vertex representation of orthogonal polygons as bounding structures.
This includes a definition of the vertex list implementation of the vertex rep-
resentation. Section 4 discusses the actual process of dynamically varying the
number of vertices in the bounding structures (termed coarsening) and gives
an algorithm for doing so. The results of some experiments using the vertex
representation as a bounding structure are given in Sect. 5 while concluding
remarks are drawn in Sect. 6.

2 Properties of Bounding Structures

As mentioned in Sect. 1 in some situations it is advantageous to trade an
exact geometric representation for an approximate one, provided it can be
processed more efficiently. This is the key observation behind what we call the
bounding structure technique. The most common type of bounding structure
is the axes-aligned rectangle, mainly because of its simple geometry. Minimum
bounding rectangles are used extensively in spatial databases, mainly in the
design of spatial access methods. The R-tree [11] and its variations [2,25], for
instance, rely heavily on the bounding properties of rectangles. Polygons, on
the other hand, are in general too complex to be suitable as bounding struc-
tures, although they have been investigated and have been found promising
in certain applications [4,13]. An alternative to the bounding structure as an
object approximation is a decomposition of the space spanned by the object
into a collection of cells (possibly, but not necessarily, disjoint). Such rep-
resentations include the region quadtree [12,14] as well as the RT-tree [25].
The variation in the number of cells as an approximation technique has been
studied [8,18]. We do not discuss this approach further in this paper.

One of the main uses of bounding structures is to help in the evaluation
of spatial predicates. Consider a spatial object S, where S may be a line,

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

a polygon, a collection of line segments or any other object that can be
regarded as a set of points. We may use set notation to denote operations
and predicates about spatial objects. For example, we may use predicate
SUR = 0 to say that spatial objects S and R do not overlap in space.
Depending on the nature of § and R, the evaluation of such a predicate
may vary in complexity from trivial (e.g., when both S and R are points)
to very hard (e.g., when both S and R are sets of polygons). On the other
hand, bounding structures are usually very simple geometric objects, so that
evaluating common spatial predicates is never too costly.

One property of bounding structures that enables us to evaluate predi-
cates on their corresponding bounded objects is the subset property. If B(S)
is a bounding structure for S, then S must be a subset of B(S) (written
S C B(S)). For example, if two objects have a non-empty intersection, then
their bounding structures also intersect, i.e.:

SNR#0= B(S)NB(R) # 0.

An equivalent assertion is to say that if two bounding structures do not
intersect, then their bounded objects cannot intersect either, i.e.:

B(S)NB(R) =0 = SNR=1.

Another frequent use of bounding structures is to help estimate distances
between spatial objects. Let §(a, b) denote the distance between two points a
and b according to some metric. Then, the distance between two sets S and
R, written 6(S5, R), is defined as the minimum distance between two points
belonging to S and R, respectively. Formally,

) = in 4 .
(5, R) = min o(s,7)
One could also consider the mazimum distance (written A(S, R)) as a way
of defining the distance between two sets, i.e.,

A(S,R) = serg,%)e(Ré(S’ 7).

Bounding structures are of little use if the exact distance between two
objects is to be computed. However, in many applications, distance compu-
tations are used in predicates to measure closeness between two objects, e.g.,
“0(S, R) < 10” or “6(S, R) > 5”. In these cases, bounding structures can be
used to give estimates which are sometimes sufficient to avoid computing the
actual distance between the corresponding bounded objects. In particular, it
is easy to see that the minimum and maximum distances between bounding
structures provide bounds for the (minimum) distance between the bounded
objects, i.e.,

3(B(S), B(R)) <4(S, R) < A(B(S), B(R))

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

Depending on the nature of the bounding structure B(S), it is possible
to estimate a better (tighter) maximum bound for §(5, R). As an example,
consider a minimum bounding rectangle (MBR). If S is an object defined in
R4, then its MBR has 2-d faces and, by construction, each face is guaranteed
to contain at least one point of S; this is called the MBR face property [21].
If this property holds for bounding structure B(S), then an upper bound
for (9, R) can be established by computing the maximum distance between
each pair of faces of B(S) and B(R) and taking the minimum of these. Let
us call this measure Ay(B(S), B(R)). Then, using the notation d(B(S), ¢) to
refer to each of the 2 - d faces of B(S), we can define

As(B(R), B(S)) = A(O(B(S), 1), 0(B(R), J))

min
i=1...2-d,j=1...2-d
Actually, we may think of d(B(S),4) as any subset of B(S) which is
guaranteed to contain a point of S. Notice that As(B(R), B(S)) is often?
less than and can never be greater than A(B(R), B(S)) (see Fig. 1).

B(S) B(R) —

AB(S).B(R)

A,B(S).B(R)

Fig. 1. Comparison between A(B(S), B(R)) and As(B(S), B(R)) for two sample
objects.

We end this section by summarizing properties of a bounding structure
B(S) with respect to its corresponding bounded object S.

1. § C B(9).

2. BS)NBR)=0= SNR=0.

3. 6(B(S), B(R)) < (S, R) < A(B(S), B(R)).

4. If we can extract from B(S) (and B(R)) subsets d(B(S),¢) such
that each of them contains at least one point of S, then 6(S, R) <
A5(B(S), B(R)) < A(B(S), B(R).

3 Orthogonal Polygons as Bounding Structures
An orthogonal polygon is a polygon whose sides are perpendicular to the
coordinate axes. Axes-aligned rectangles are the most common instances of

?In fact, it can be shown that As(B(R),B(S)) is always smaller than
A(B(R), B(S)), unless the boundary of B(S) (and B(R)) is equal to B(S) itself.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

orthogonal polygons and the fact that they can be represented and pro-
cessed efficiently has made them popular as bounding structures. Simple non-
orthogonal polygons can be represented economically as a circular list of its
endpoints and can be tuned to approximate a given region in two-dimensional
space. However, certain key bounding structure operations are relatively hard
to compute on polygons, e.g. testing whether two polygons intersect or com-
puting the distance between them. Moreover, although polygons may easily
be defined in multi-dimensional spaces, the effort to represent and process
them in more than two dimensions makes them unattractive as bounding
structures.

Recently, a new representation for orthogonal objects based on a data
structure called the wvertex representation has been presented [6,24]. This
representation can be implemented in a manner that makes it possible to
store an orthogonal polygon in any (integer) number of dimensions as a list
of its vertices (termed a verter list)®>. Many common operations on orthogo-
nal polygons represented by vertex lists may be efficiently computed by using
algorithms based on the sweeping plane [20] approach. In particular, set oper-
ations such as those required for the processing of bounding structures have
expected O(d - N) time complexity[6], where d is the number of dimensions
and N is the total number of vertices in the vertex list(s). Our contribution is
in the use of orthogonal polygons as bounding structures as well as the com-
putation of morphological operations such as coarsening which is described
in Sect. 4.

3.1 Vertex Representation

A polygon in two dimensions is usually represented as a circular list of its
endpoints. This scheme cannot be extended to three or more dimensions since
there is no obvious way in which vertices can be enumerated sequentially. The
vertex list implementation solves his problem by using the order in which a
hyperplane (e.g., a line in 2D or a plane in 3D) would encounter the vertices
while sweeping the space from minus- to plus-infinity along one of the coordi-
nate axes. Vertices that lie on the same hyperplane are similarly ordered by
imagining a hyperplane of lower dimension sweeping that space. In addition
to the coordinate values of its position in space, each vertex is accompanied
by a scalar value termed the vertex weight*. Fig. 2 depicts an orthogonal
polygon represented as a vertex list.

3 Note that a polygon in three dimensions is called a polyhedron or, in general,
a polytope. In this paper we will mostly deal with examples in two dimensions,
and thus we opted to use the less precise term “polygon”, although the described
techniques can be applied to orthogonal polytopes of any number of dimensions

* Henceforth, we will use the term “vertex” to refer to weighted points, and the
term “vertex list” to refer to a list of such weighted points. The term “vertex
list” 1s not to be confused with the common way of representing two-dimensional
polygons as a circular list of its endpoints.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

y “ _1 +1
<
-1 1l
+1 -1
5
+1 -1
7X

Fig. 2. An orthogonal polygon in 2D represented as a vertex list.

Intuitively, each vertex corresponds to the tip of an infinite cone. Each
cone is equivalent to an unbounded object formed by the intersection of d
(assuming d-dimensional data) orthogonal halfspaces that are parallel to the
d coordinate axes passing through the vertex. The weights of the vertices
have signs which serve to indicate whether the space spanned by their cones
is included or excluded from the object being modeled. The space spanned by
the union of the cones defines the object being modeled. Formally, the vertex
representation is intended as a representation for orthogonal scalar fields. A
scalar field is simply a function that maps points of the domain space to
scalar values. An orthogonal scalar field is a scalar field where regions of the
domain space which are mapped to the same value are delimited by faces
orthogonal to the coordinate axes. The overall idea which enables the vertex
representation to model orthogonal polygons is to think of these as scalar
fields where points inside the polygon are mapped to 1, and points outside the
polygon are mapped to 0. A vertex at a point p = (p1, p2,...pq) and weight
w has the effect of adding w to the mapping of all points ¢ = (¢1,¢2, - - -¢4)
such that ¢; > p; for all i = 1...d (see Fig. 3a). As a consequence, one can
tell if a point ¢ is inside or outside the polygon by adding the weights of all
vertices that contribute to its mapping, i.e., a vertex at point p contributes
to the mapping of ¢ if and only if p; < ¢; for all i = 1...d (see Fig. 3b).

3.2 Fitting an Orthogonal Polygon around a Spatial Object

The general procedure for creating an orthogonal polygon B(S) that can
serve as a bounding structure for a spatial object S consists of:

1. Partitioning S into smaller objects s1,s5... sg.
2. Finding the minimum bounding rectangle MBR(s;) for each sub-object
S;.

3. Computing the union of all MBRs: Ule MBR(s;).

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

m] o o o 4
O a
o o o o
o
u] -~—n
L B . . o °
a * o
DD m] o m] ¢ ¢ ° °
X X
(a) (b)

Fig.3. (a) A vertex (black dot) and some of the points influenced by it (black
squares). (b) The point (black square) is only influenced by the vertices shown as
black dots.

The problem of partitioning an object into smaller objects is frequently
trivial (e.g., a set of line segments can be partitioned by taking each line
segment separately) or may require some additional processing. For example,
we might use triangulation [19] to split a (simple) polygon into triangles. An
MBR for each triangle can be computed easily yielding four vertices which
can then be stored in a list. To compute the union of all MBR’s, we use
the algorithm for performing set operations on vertex list implementations
of vertex representations as described in [6]. This is illustrated in Fig. 4.

(a) (b) (©)

Fig. 4. (a) Polygon is split into triangles, (b) an MBR is fitted around each triangle,
(c) taking their union produces an orthogonal bounding polygon.

In some cases, the boundary of a spatial object is amenable to trivial par-
titioning, while the object itself is not. A general polyhedron, for instance,
is delimited by polygonal faces and these can be partitioned with little dif-
ficulty by using triangulation as described above. However, the partitioning
of its interior, say into tetrahedrons, is rather complicated. In such cases, we
may compute an orthogonal bounding polygon for the object by performing

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

a morphological operation known as closing® on its boundary. The operation
of closing for rectangular structuring elements can be computed efficiently
on orthogonal objects represented by a set of vertices and stored as a vertex
list [6]. Loosely speaking, closing has the property of filling gaps and holes in
polygons. A more precise description of the procedure is as follows:

Compute MBR(S), the minimum bounding rectangle of object S.
Partition the boundary of S into components sq, sz ...sg.

Find the minimum bounding rectangle MBR(s;) for each sub-object s;.
Compute the union of the MBRs of all subobjects, i.e., Ule MBR(s;).
Perform a closing operation on the orthogonal polygon obtained in (4)
using MBR(S) as the structuring element.

Tk W N —

This procedure is illustrated in Fig. 5 for a simple polygon in two dimensions.
A side effect of this method is that it always produces orthogonally convex
polygons,® which might be undesirable for non-convex objects.

(a) (b) (©)

Fig.5. (a) An MBR for each edge of the polygon is computed. (b) The union of
these may produce an orthogonal polygon with holes. (¢) A closing operation fills
eventual holes and gaps.

It is not difficult to see that the orthogonal polygons obtained through the
use of the above methods satisfy the bounding structure properties outlined
in Section 2. Nevertheless, if B(S) is such a polygon, then property 4 requires
us to define a method for obtaining suitable subsets d(B(S5),). We notice
that both methods for building orthogonal polygons use unions of MBRs
as starting points and, although the faces of the MBRs are guaranteed to
contain at least one point of the bounded object, the faces of the resulting

% Due to space limitations, we cannot provide here background information on
morphological operations. We encourage readers who might be unfamilhar with
the subject to refer to any good text on image processing (e.g., [9]).

% A polygon in two dimensions is orthogonally convex if its intersection with any
horizontal or vertical line has at most one connected component [19]. This def-
inition can be extended to any number of dimensions by replacing “line” with
“hyperplane” and “horizontal/vertical” with “normal to a coordinate axis”.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

orthogonal polygon do not necessarily do so (see Fig. 6). However, some
faces of such polygons do have that property, namely those that constitute
local minima or maxima. A face f is said to constitute a local minimum or
maximum if all adjacent faces lie to the same side of the plane defined by
f. Such faces can easily be extracted from a vertex list implementation of
a vertex representation by means of a plane-sweep algorithm [6]. Note that
local minimum and maximum faces can then be used as subsets 9(B(S5), 1)
in the context of property 4 as explained in Sect. 2.

(a) (b)

Fig. 6. Although faces of minimum bounding rectangles are guaranteed to contain
at least one point of the bounded objects (a), the faces of the orthogonal polygon
resulting from their union (b), unless they are local maxima or minima (e.g., faces
drawn with thin lines), do not necessarily preserve that property (e.g., faces drawn
with thick lines).

4 Coarsening Orthogonal Polygons

The primary objective of bounding structures is to provide a good approxi-
mation of the bounded object while taking as little space as possible. Thus,
when we consider using an orthogonal polygon for this purpose, it is essen-
tial to be able to achieve an optimum tradeoff between tightness and space.
It is possible to obtain a vertex representation which is as close to a given
spatial object as desired. All that is necessary is to partition that object into
a suitable number of small fragments and apply the procedure outlined in
Section 3.2. However, the vertex representation produced in this way may be
too complex (i.e., it may have too many vertices). Therefore, some procedure
must be devised which will produce less detailed (coarser) versions of orthogo-
nal bounding polygons while preserving, as much as possible, their usefulness
as a bounding structure. In this section, we describe two approaches to solve
this problem.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

4.1 The “Moving Faces” Approach

This approach derives from the observation that, in general, if a face which
is perpendicular to one of the coordinate axes is displaced along that axis,
the total number of vertices of the representation will never increase. By
choosing an appropriate displacement, it is possible to guarantee that the
resulting polygon will not only be coarser (i.e., have less vertices) than the
original, but will also preserve the bounding properties outlined in Section 2.

Given an orthogonal polygon in d dimensions represented by a vertex
list, it is possible to sweep a plane along the d'” coordinate axis and extract
the faces perpendicular to that axis by a simple sequential scan of the list.
These faces can be divided into two groups, which we term the positive and
negative faces. A positive face corresponds to a region where the sweeping
plane enters the polygon in its movement from minus- to plus-infinity along
the d'? coordinate axis, whereas a negative face corresponds to a region where
the sweeping plane leaves the polygon (see Fig. Ta). Coarsening is achieved

1 +1 1 1 1 +1
v ———— . v ———— . v P —
= R = 1 I +1 =
»E_ . u = .
+1 -1 +1 | -1
.
T +1 T +1 -1 +1 -1
Sweeping plane
X X X
(a) (b) (c)

Fig. 7. 2D example of coarsening with the “moving faces” approach. Positive and
negative faces are identified (a) and moved away from the polygon until they meet
another face of the same sign (b), resulting in a coarser polygon (c).

by moving a positive face until it touches another positive face or, similarly,
moving a negative face until it touches another negative face. As we must
maintain the bounding properties of the polygon, faces must be moved in
directions that will result in polygon expansion. This means that positive
faces are moved in the opposite direction of the coordinate axis and negative
faces are moved in the same direction of the coordinate axis (see Fig. 7b).
Once faces are moved in this fashion, some vertices of the moved face will
cancel out vertices of the face to which it is now adjacent, thereby resulting
in a coarsened polygon (Fig. 7c).

Notice that since no faces are actually created in the process, faces which
were guaranteed to contain a point of the bounded object still do so in the
coarsened polygon, thus preserving property 4 as described in Section 2.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

A full implementation of the “moving faces” approach requires that the
process be repeated for faces perpendicular to all coordinate axes. This can be
achieved by reordering the list so that a plane swept along each axis may find
the corresponding faces. Also, the choice of which faces to move must take in
consideration the size of each candidate face and the amount of displacement
required. A rule of thumb is to choose the face displacements which will result
in the least enlargement of the original polygon.

4.2 The “Rectangle Pairs” Approach

The moving faces approach will fail to produce a coarsened polygon in some
cases. For example, some polygons with holes or having more than one con-
nected component (see Fig. 8) may not contain suitable positive or negative
faces. In such cases, a more general approach is needed.

(a) (b)

Fig. 8. Some polygons with holes (a) or having more than one connected compo-
nents (b) cannot be coarsened with the “moving faces” approach.

In the “rectangle pairs” approach, the original polygon is first divided into
a set of rectangles (see Fig. 9a). ;From these, a few pairs are chosen and, for
each pair, a minimum bounding rectangle (MBR) is constructed (Fig. 9b).
The union of the original polygon and MBRs will result in a coarsened poly-
gon (Fig. 9c). The overall idea is that each selected pair of rectangles should
contain a number of vertices of the original polygon and, by replacing them
with a minimum bounding rectangle, some of these vertices will be eliminated
from the representation. A quick calculation shows that, since in d dimensions
a rectangle has 2¢ vertices, the substitution of two rectangles r,,r;, by their
minimum bounding rectangle MBR (74, 7;) may eliminate up to 2¢ vertices
from the representation.

In an actual implementation of this algorithm, we must address the fol-
lowing points:

1. How to divide an orthogonal polygon into a set of rectangles? This prob-
lem can be solved with Shechtman’s algorithm for splitting a polygon in
maximal horizontal rectangles in two dimensions [24]. This algorithm was

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

(a) (b) (c)

Fig.9. Coarsening with the “rectangle pair” approach. Polygon is divided into
rectangles (a), some pairs are chosen (2-3 and 4-5) and a MBR for each pair is
computed (b). Coarsened polygon is union of MBRs and original polygon (c).

extended in [6] to deal with polygons in arbitrary dimensions. Fig. 9a is
an example of such a subdivision.

2. Which rectangle pairs to choose? Ideally, rectangles which are close to
each other should be considered first. Another consideration is the total
amount of “wasted space” introduced when substituting a pair of rect-
angles by its MBR. The algorithm for dividing polygons into rectangles
returns those rectangles in the same order in which the sweeping plane
finds them. Although this order does not guarantee that two consecutive
rectangles are the closest pair to each other, it does provide a certain
amount of clustering. Thus, the selection of pairs of rectangles may con-
sider consecutive rectangles and reject those which are too distant from
each other or those whose pair-wise MBR is too large compared with the
size of the rectangles.

4.3 The Complete Algorithm

We have implemented a complete coarsening algorithm using both approaches
just described. The algorithm takes as input a d-dimensional orthogonal poly-
gon B(S) with n vertices and the desired maximum number of vertices k. Its
output is an orthogonal polygon containing no more than % vertices that can
be used as a bounding structure for S satisfying the properties outlined in
Section 2.

The algorithm consists of a heuristic method for combining the strengths
of both approaches in a controlled way. The ultimate goal is to obtain a
bounding structure of limited complexity which nevertheless approximates
the bounded object as closely as possible. A reasonable strategy involves
estimating how much the polygon will grow as each modification prescribed
by either approach is applied. In the “moving faces” approach, selecting a
face f and displacing it by ¢ units can be seen as computing the union of the
original polygon with a “plug” polygon given by sweeping f perpendicularly
by ¢ units. Similarly, in the “rectangle pairs” approach, if the MBR, of a pair
of rectangles (r1,r2) is used in the coarsening process, then we may estimate

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

that the original polygon will grow by an amount represented by the regions
of MBR(r1,r2) not already occupied by r1 or r2. In other words, we can
imagine that we applied to the original object a “plug” polygon corresponding
to MBR(r1,72)\ (r1U r2)7. Overall, we can consider each plug shape as a
possible modification that will coarsen the original polygon. The amount of
growth due to this modification can be estimated as the integral (e.g. area in
2D or volume in 3D) of the plug. This enables us to eliminate plug polygons
which are too large.
The complete algorithm is summarized below.

1. If the length of list B(S) is less or equal to k, then return B(S).

. Initialize array Plug which will hold plug polygons.

3. Repeat the following steps for all coordinate axes:

(a) Use the “moving faces” approach to compute faces which can be
displaced to coarsen B(S). For each candidate face f, compute also
the corresponding displacement i. Create a plug polygon by sweeping
f by ¢ units and add it to Plug.

(b) Use the “rectangle pairs” approach. Perform a rectangle partition
of the polygon. Take every two consecutive rectangles (r1,r2) as re-
turned by the rectangle partitioning algorithm and compute their
pair-wise MBR. Compute each plug polygon given by MBR(r1,r2)\
(r1Ur2) and add it to Plug.

(c) Reorder the vertices of vertex list B(S) so that plane sweeping may
occur along another coordinate axis.

4. Compute the integral of each polygon in Plug and sort Plug in increasing
order of integrals.

5. If Plug has m polygons at this point, then discard the |m/2] largest
polygons. This heuristic aims to consider only “small” plug polygons.
Applying “big” plug polygons might lead to a faster coarsening, at the
expense of achieving worse approximations. Note that up to m — 1 plug
polygons could be discarded, but at least one plug polygon must be con-
sidered so that the coarsening process terminates.

6. Scan Plug sequentially and apply each plug polygon to B(S) (i.e, com-
pute the union of B(S) and the plug) until the resulting polygon has k&
vertices or less or Plug is exhausted. In the latter case, return to step 2.

[N

Step 6 deserves a more detailed explanation. Since B(S) and plug poly-
gons are represented by of vertex lists, computing their union takes time
proportional to the sum of their (list) lengths [6]. Hence, if B(S) is a fairly
long list, then repeatedly computing its union with each plug polygon would
be too costly. Fortunately, there is no need to compute the union for each
plug polygon, only to count how many vertices the resulting polygon will
have. In practice, one may use a data structure, say Match, which is suit-
able for storing and searching points in d dimensions (e.g., a k-d-tree [23]).

" The symbol “\” is used here to denote set difference.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

Initially, Match is initialized with all vertices of B(S). Then, as each plug
polygon is considered, Match is searched for vertices at identical positions.
When matching vertices are found and these have opposite signs, the length
of the result would decrease by 1;if not, the length of the result increases by 1.
Once all plug polygons are processed in this fashion, the resulting coarsened
B(S) can be built by collecting all vertices in Match.

The time complexity analysis of this algorithm is rather involved and
is not given here (see [6]). However, we state without proof that the time
complexity of the coarsening algorithm can be estimated at O(2¢- N - log? N)
on average, where IV is the number of vertices in the original polygon. The
2¢. N factor is the average number of vertices in all plug polygons generated
in step 3. One log NV factor comes from the search used in Match for identical
vertices. The remaining log N factor arises from step 5 which causes the
algorithm to be performed log N times.

It must be observed that the approach described above for obtaining
coarse approximations of complex objects is not too attractive if the desired
approximation contains much fewer vertices than the original object. For
instance, if we are trying to obtain an MBR, for a complex object, a straight-
forward algorithm that computes the limits of the object in each dimension
is much more efficient. Thus, in these cases, an alternative approach would
consist of starting with an MBR, and, by means of successive “erosion” steps,
produce a finer approximation until the desired level of approximation is
obtained. Such an algorithm is currently being investigated.

5 Experiments

In this section we empirically evaluate both the proposed coarsening algo-
rithm and the usefulness of orthogonal polygons as bounding structures.
Whereas bounding structures are used for many purposes in several applica-
tion areas, we focus on a typical application of bounding structures in the
context of a spatial database system.

The experiments were conducted on data extracted from a digital map
depicting forest coverage types in Canada. A raster image of this map was
provided by Canada’s National Atlas Information Service® and is shown in
Fig. 10. The data consists of a collection of orthogonal polygons delimiting
the homogeneous 4-connected regions of the raster image. The algorithm for
converting raster images into a set of orthogonal polygons stored as vertex
lists is the one described in [6]. A total of 403 polygons ranging from 4 to
1408 vertices (average 50.8) were found.

® The URL http://elllesmere.ccm.emr.ca/naismap/naismap.html locates this
data in the World Wide Web

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

Fig. 10. Forest coverage by type in Canada

5.1 Coarsening experiments

A series of experiments were conducted to determine the general behavior of
the proposed algorithm in coarsening the polygons of the sample data set. All
polygons were first coarsened to no more than 256 vertices. This limit was
repeatedly halved until the coarsened polygons contained exactly 4 vertices,
which is a lower bound for polygons in two dimensions. Fig. 11 shows the
result of coarsening the polygons to no more than 64, 16 and 4 vertices,
respectively.

The graph in Fig. 12 shows the time taken by the coarsening algorithm
to produce the 4 vertex MBR of the polygons of different sizes. Although
the final 4 vertex MBRs could have been obtained just as easily through the
standard procedure of finding the minimum and maximum values of the z
and y coordinate values, our goal was to determine how the complexity (i.e.,
number of vertices) of the original polygon impacts the speed of coarsening.
As can be observed from Fig. 12, the graph curve is somewhat irregular due
to the small number of polygons of high complexity. Nevertheless, the time
complexity of the algorithm seems to be in accordance with the estimate
presented in Section 4.3.

We were also interested in evaluating how coarsening affects the area of an
orthogonal polygon. The area of a coarsened polygon, when compared with
that of the original polygon, provides a measure of how tightly one shape
bounds the other. With this in mind, for each coarsening level we computed

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

..}GID-

Fig.11. Map of Canada’s forest coverage by type, where each orthogonal polygon
was coarsened to no more than 64 (a), 16 (b) and 4 vertices (c).

25000 T T T T T

20000

15000

10000

Time (ms)

5000

0 400 800 1-
Number of vertices of original polygon

1200 1600

Fig.12. Plot of times taken by algorithm coarsen to reduce to 4 the number of
vertices of orthogonal polygons.

the result of taking the sum of the areas of all coarsened orthogonal polygons
and dividing that value by the sum of the areas of the original polygons (i.e.,
their ratio). The plots of these ratios as a function of the coarsening level
are shown in Fig. 13a. Note that in this evaluation, total areas for the whole
data set were considered, which leaves room for inordinately large polygons
to influence the result. This effect can be reduced if we compare relative areas
on a per-polygon basis. The relative area consists of the fraction obtained by
dividing the area of a coarsened polygon by that of the corresponding original
polygon. In Fig. 13b we plot average relative areas.

5.2 Adaptive coarsening

In a spatial database environment, a data set such as the one we have cho-
sen for our experiments could be accessed on the basis of several selection

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

1.35
o 1.3
=
© g2 125
o s
o © 1.2
© g
o © 115
& IS
o IS 1.1
2 et
© 1.05
l | | | | | l | | | | |
8 16 32 64 128 256 4 8 16 32 64 128 256
vertices in coarsened polygon vertices in coarsened polygon
(a) (b)

Fig.13. Plot of ratio between areas covered by orthogonal polygons after and
before coarsening. (a) Refers to the ratio between the total area of all coarsened
polygons and the total area of all original polygons. (b) Shows the average area
ratios between each coarsened and non-coarsened polygon.

criteria. A very common operation in spatial databases is the retrieval of
objects that satisfy a condition expressed in terms of spatial proximity. The
processing of such queries frequently relies on heuristics employing bounding
structures to prune out objects which cannot possibly satisfy the condition.
The effectiveness this pruning process depends on two factors:

1. How closely the bounding structure approximates the bounded object.

2. How much extra work must be done to determine if the bounded object
satisfies the condition in case the test against the bounding structure is
not conclusive.

This suggests that in order to compute a bounding structure of optimal com-
plexity for a given object one has to take into consideration not only the
object’s complexity but also its extent (i.e., size).

Consider a simplified scenario where a collection of objects is queried in
order to select the ones which intersect a single point p (termed the point
intersection query). We will assume that the position of p is uniformly dis-
tributed over a rectangular region A (e.g., the limits of the original map im-
age). Thus, we can estimate the following costs incurred in deciding whether
a sample object S intersects p:

1. Determine if B(S) intersects p. This can be done at a cost that is linearly
dependent on the complexity (number of vertices) of B(S). If we stipulate
that constant ¢ is an estimate of the per-vertex cost of an intersection
computation, then the total cost of this first step is:

Cy = ¢ x length(B(9)).

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

2. Test S against p. In our case, since S is also represented by a vertex
list, the cost of such a test is given by ¢ x length(S). However, this step
only takes place if B(S) intersects p. The probability of this event is
proportional to area of B(S). In the limit, that is, when B(S) is equal to
A, the probability is 1. Therefore, we may estimate that the cost due to
this step is

area(B(S))

Cy = ¢ x length(S) x arealA)

Cost estimates (7 and C; were used to perform an adaptive coarsening
of the polygons in our sample data set. Starting with a very fine approxi-
mation of each polygon, this was progressively coarsened until the value of
C1 + C5 ceased to decrease. Since this process only requires that successive
cost estimates be compared, the actual value of constant ¢ is of no impor-
tance. Notice that if the successive values of C'y + C5 do not decrease at all,
the first (finest) approximation is used. If they decrease monotonically, the
coarsest approximation (i.e. the MBR) is used. One could also argue that
many inflection points in this sequence of values could exist thereby leading
to a false stopping point; however, this did not occur in our experiments (see
Section 5).

One last consideration must be made concerning the sampling area rep-
resented by A. The assumption that A spans the space covered by all of
the map is consistent with a query processing strategy based on sequential
search. A more realistic scenario, however, must allow for the use of spatial
indices. In other words, if a spatial index is used to filter out values which
cannot satisfy the query, then a polygon will be tested only if the index itself
was incapable of giving a positive diagnostic. For example, if polygons are
indexed by means of an R-tree [11], then any given polygon will be tested
only if p falls within its MBR. We can easily modify our adaptive coarsening
procedure to take spatial indices into consideration by adjusting the value of
A to that of MBR(S).

In our experiments, adaptive coarsening produced the following average
number of vertices for B(S):

Average number of vertices
Sequential search|4.1649
Spatial Index 4.9123

When using a sequential search strategy to test the entire set of polygons
against the query point, we find that the average number of vertices at the
time the adaptive coarsening process halted was very close to 4 (i.e., 4.1649)
which means that the resulting bounding structure was a rectangle (i.e., an
orthogonal polygon with 4 vertices). This implies that it is not worth our
time to use a bounding structure that has a varying number of vertices.
Instead, we can use an MBR. On the other hand when using a spatial index
to decide which polygons should be tested against the query point, a tighter

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

bounding structure does lead to better results as can be seen by the fact that
the average number of vertices when the adaptive coarsening process halted
was close to 5 (i.e., 4.9123). These results are consistent with our intuition in
the sense that executing the point intersection query by testing every polygon
against the point (i.e., using sequential search) requires testing B(S) for every
value of § in the data set, and thus this test should be as fast as possible. In
contrast, a spatial index already provides a good way of pruning the search
based on spatial proximity, so that fewer objects are tested. Thus, in order
to be reduce the set of candidate objects from consideration, it is necessary
to use tighter, i.e., more elaborate bounding structures. Loosely speaking, we
may think that, in this case, the spatial index provides a rough approximation
for the spatial distribution of the objects, while tighter bounding structures
are used in a second stage to prune the search even further before testing the
actual objects.

5.3 Window query experiments

A series of window query experiments were conducted in order to evaluate the
usefulness of adaptive bounding structures in a more realistic spatial database
environment. This type of query consists in selecting all objects which inter-
sect a given rectangle, or “window”. This query is a two-dimensional general-
ization of the point intersection query discussed in Section 5.2. Experiments
were made for window sizes ranging from 1% to 50% of the total map area
using both sequential search and spatial index-based strategies. The same ex-
periments were also conducted using MBRs (as opposed to adaptive orthogo-
nal polygons) and using no bounding structures whatsoever. The experiments
involving spatial indices used a PMR-~quadtree [23] with a maximum depth
of 10, and a splitting threshold value of 16. Fig. 14a shows the total query
evaluation times for the experiments using sequential search, and Fig. 14b
shows the equivalent results obtained with a spatial index based strategy.

One conclusion that can be drawn from these results is that the more
flexible bounding structures derived from our adaptive approach lead to bet-
ter query performance in all cases. The difference is more evident in the
tests using a spatial index, but this was expected since the adaptive scheme
only prescribed bounding structures significantly more complex than MBRs
when indices were used. Further evidence that adaptive bounding structures
are more beneficial when used in conjunction with spatial indices is shown in
Fig. 15 which plots the average number of times in which bounding structures
failed to determine if the object satisfied the query.

Overall, although the empirical tests do not demonstrate a dramatic im-
provement when adaptive bounding structures are used, they suggest that
bounding structures of variable complexity might lead to significantly en-
hanced processing of some queries, e.g. window selection queries for large
windows (see Fig. 14).

(b)

Fig. 14. Comparison of running times for different bounding structure configura-
tions, using the sequential search (a) and the spatial index-based query evaluation

plans (b).

6 Concluding remarks

The use of bounding structures in the form of orthogonal polygons with a
varying number of vertices in contrast with a minimum bounding rectangle
(an orthogonal polygon with just 4 vertices in two dimensions) as an ob-
ject approximation method is presented. Orthogonal polygons can be used
to improve the performance of the refine step in the filter-refine query pro-
cessing strategy employed in spatial databases. The orthogonal polygons are
represented using the vertex representation implemented as vertex lists. The
advantage of the vertex representation is that it can be used to represent
orthogonal polygons in arbitrary dimension using just their vertices. This is
in contrast to conventional methods such as the chain code which only work
in two dimensions and cannot be extended to deal with higher dimensional
data.

Algorithms were given for varying the number of vertices used to represent
the objects. We showed that use of non-trivial orthogonal polygons (i.e., with
more than four vertices) is of benefit when a spatial index is used in the filter

(b)

Fig.15. Relative number of times bounding structure tests fail to give a positive
answer; (a) rates for the sequential search plan, and (b) rates for the index-based
plan.

step for processing spatial queries such as point-in-object and windowing.
If no spatial index is used, then all objects must be examined. In this case,
many of the objects are small thereby not benefiting from the variation in the
number of vertices that they have as the simple bounding box is adequate.

Future work includes a thorough comparison between the adaptive bound-
ing structures presented in this paper and other fixed-size bounding structures
proposed, e.g., in [3]. We also plan to incorporate vertex representations im-
plemented as vertex lists in real spatial database query processor and building
query processing strategies around its use. These strategies would be embed-
ded in a query optimizer for queries containing conditions that involve values
of both spatial and non-spatial attributes.

References

1. B. G. Baumgart. Geometric modeling for computer vision. Stanford Artificial
Intelligence Laboratory Memo AIM-249 STAN-CS-74-463, Stanford University,
Stanford, CA, October 1974.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an
efficient and robust access method for points and rectangles. In Proceedings of
the SIGMOD Conference, pages 322-331, Atlantic City, NJ, June 1990.

T. Brinkhoff, H. P. Kriegel, R. Schneider, and B. Seeger. Multi-step process-
ing of spatial joins. In Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, pages 197-208, Minneapolis, MN, June
1994.

A. Brodsky, C. Lassez, J. Lassez, and M. J. Maher. Separability of poly-
hedra for optimal filtering of spatial and constraint data. In Proceedings of
the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 54-65, San Jose, CA, May 1995.

H. Edelsbrunner, J. O’Rourke, and E. Welzl. Stationing guards in rectilinear
art galleries. Computer Vision, Graphics, and Image Processing, 27(2):167-176,
August 1984.

C. Esperanca. Orthogonal Objects and their Application in Spatial Databases.
PhD thesis, University of Maryland, December 1995. (also available as Tech-
nical Report TR-3566, University of Maryland, College Park, MD).

H. Freeman. Computer processing of line-drawing images. ACM Computing
Surveys, 6(1):57-97, March 1974.

V. Gaede. Optimal redundancy in spatial database systems. In M. J. Egenhofer
and J. R. Herring, editors, Advances in Spatial Databases — Fourth Interna-
tional Symposium, SSD’95, pages 96-116, Portland, ME, August 1995. (also
Springer Verlag Lecture Notes in Computer Science 951).

R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley,
Reading, MA, June 1992.

R. H. Gliting. An introduction to spatial database systems. Special Issue on
Spatial Database Systems of the VLDB Journal, 3(4), October 1994.

A. Guttman. R-trees: a dynamic index structure for spatial searching. In
Proceedings of the SIGMOD Conference, pages 47-57, Boston, MA, June 1984.
G. M. Hunter. Efficient computation and data structures for graphics. PhD
thesis, Princeton University, Princeton, NJ, 1978.

H. V. Jagadish. Spatial search with polyhedra. In Proceedings of the Sixth IEEFE
International Conference on Data Fngineering, pages 311-319, Los Angeles,
February 1990.

A. Klinger. Patterns and search statistics. In J. S. Rustagi, editor, Optimizing
Methods in Statistics, pages 303-337. Academic Press, New York, 1971.

G. D. Knott and E. D. Jou. A program to determine whether two line segments
intersect. Department of Computer Science TR-1884, University of Maryland,
College Park, July 1987.

M. Mantyla. An Introduction to solid Modeling. Computer Science Press,
Rockville, MD, 1987.

J. Nievergelt and P. Schorn. Das ratsel der verzopften geraden. Informatik-
Spektrum, 11:163-165, 1988. (in German).

J. A. Orenstein. Redundancy in spatial databases. In Proceedings of the SIG-
MOD Conference, pages 294-305, Portland, OR, June 1989.

J. O’Rourke. Computational Geometry in C. Cambridge University Press, 1994.
F. P. Preparata and M. 1. Shamos. Computational Geometry: An Introduction.
Springer—Verlag, New York, 1985.

To appear in Proceedings of the 5th Symposium on Spatial Databases, SSD’ 97

21

22.

23.

24.

25.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In
Proceedings of the ACM SIGMOD Conference, pages 71-79, San Jose, CA,
May 1995.

H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, Reading, MA, 1990.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

J. Shechtman. Processamento geométrico de méscaras VLSI. Master’s thesis,
Eng. Elétrica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, April
1991.

M. Stonebraker, T. Sellis, and E. Hanson. An analysis of rule indexing im-
plementations in data base systems. In Proceedings of the First International
Conference on Ezxpert Database Systems, pages 353-364, Charleston, SC, April
1986.

