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ABSTRACT

News sources around the world generate constant streams
of information, but effective streaming news retrieval re-
quires an intimate understanding of the geographic content
of news. This process of understanding, known as geotag-
ging, consists of first finding words in article text that corre-
spond to location names (toponyms), and second, assigning
each toponym its correct lat/long values. The latter step,
called toponym resolution, can also be considered a classi-
fication problem, where each of the possible interpretations
for each toponym is classified as correct or incorrect. Hence,
techniques from supervised machine learning can be applied
to improve accuracy. New classification features to improve
toponym resolution, termed adaptive context features, are
introduced that consider a window of context around each
toponym, and use geographic attributes of toponyms in the
window to aid in their correct resolution. Adaptive pa-
rameters controlling the window’s breadth and depth afford
flexibility in managing a tradeoff between feature compu-
tation speed and resolution accuracy, allowing the features
to potentially apply to a variety of textual domains. Ex-
tensive experiments with three large datasets of streaming
news demonstrate the new features’ effectiveness over two
widely-used competing methods.
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1. INTRODUCTION
Today’s increasingly informed and connected society de-

mands ever growing volumes of news and information. Thou-
sands of newspapers, and millions of bloggers and tweeters
around the world generate constant streams of data, and
the demand for such data is skyrocketing as people strive
to stay up-to-date. Also, Internet-enabled mobile devices
are increasingly common, which expands the requirement
for location-based services and other highly local content—
information that is relevant to where users are, or the places
in which they are interested. News itself often has a strong
geographic component, and newspapers tend to character-
ize their readership in terms of location, and publish news
articles describing events that are relevant to geographic lo-
cations of interest to their readers. We wish to collect these
articles and make them available for location-based retrieval
queries, which requires special techniques.

To enable news retrieval queries with a geographic com-
ponent, we must first understand the geographic content
present in the articles. However, currently, online news
sources rarely have articles’ geographic content present in
machine-readable form. As a result, we must design algo-
rithms to understand and extract the geographic content
from the article’s text. This process of extraction is called
geotagging of text, which amounts to identifying locations
in natural language text, and assigning lat/long values to
them. Put another way, geotagging can be considered as
enabling the spatial indexing of unstructured or semistruc-
tured text. This spatial indexing provides a way to exe-
cute both feature-based queries (“Where is X happening?”)
and location-based queries (“What is happening at location
Y ?”) [5] where the location argument is specified textually
rather than geometrically as in our related systems such
as QUILT [34] and the SAND Browser [31]. Geotagging
methods have been implemented in many different textual
domains, such as Web pages [3, 23, 27], blogs [28], ency-
clopedia articles [14, 36], tweets [33], spreadsheets [2, 17],
the hidden Web [19], and of most relevance for us, news
articles [8, 11, 18, 20, 21, 29, 32, 37]. Particular domains
such as blogs and tweets may pose additional challenges,
such as having few or no formatting or grammatical re-
quirements. The methods in this paper were applied in the
NewsStand system [37], which uses a geotagger to assign ge-
ographic locations to clusters of news articles based on their
content, which allows users to visually explore the news in
NewsStand’s interactive map interface. Also, several com-
mercial products for geotagging text are available, such as
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MetaCarta’s Geotagger1, Thomson Reuters’s OpenCalais2,
and Yahoo!’s Placemaker3, the latter two of which we inves-
tigate here.
Geotagging consists of two steps: finding all textual ref-

erences to geographic locations, known as toponyms, and
then choosing the correct location interpretation for each
toponym (i.e., assigning lat/long values) from a gazetteer
(database of locations). These two steps are known as to-
ponym recognition and toponym resolution, the second of
which we investigate here, and are difficult due to ambigu-
ities present in natural language. Importantly, both these
steps can be considered as classification [10] problems: To-
ponym recognition amounts to classifying each word in the
document’s text as part of a toponym or not, and toponym
resolution amounts to classifying each toponym interpreta-
tion as correct or incorrect. With this understanding, and
with appropriately annotated datasets, we can leverage tech-
niques from supervised machine learning to create an effec-
tive geotagging framework. These techniques take as input
sets of values known as feature vectors, along with a class la-
bel for each feature vector, and learn a function that will pre-
dict the class label for a new feature vector. Many such tech-
niques for classification, and other machine learning prob-
lems, exist and have been used for geotagging purposes, in-
cluding SVM [4, 13, 24], Bayesian schemes [9, 12, 41], and
expectation maximization [6].
The effectiveness of such techniques for a given problem

domain depends greatly on the design of the input features
that comprise each feature vector. One common feature used
for geotagging is the population of each interpretation, since
larger places will tend to be mentioned more frequently and
are more likely to be correct. However, using population
alone or overly relying on it, as many methods do, resulted
in greatly reduced accuracy in our experiments, especially
for toponym recall. Instead, in this paper, we consider a
new class of features to improve the accuracy of toponym
resolution, termed adaptive context features. These features
construct a window of variable size around each toponym t,
and use the other toponyms in the window to aid in resolv-
ing t correctly by considering the geographic relationships
between interpretations lt of t and those of other toponyms
in the window. In particular, we search for interpretations
that are geographically proximate to lt, or are siblings of lt
in terms of a geographic hierarchy (e.g., cities in the same
state). The more such relationships appear in the window,
the greater evidence there is that lt is the correct interpre-
tation of t. These window features are a natural extension
of other context-sensitive features which depend on other
words nearby the toponym, such as object/container and
comma group [20] evidence, as well as pairing notions such
as pair strength [19].
We call these features adaptive because the window’s pa-

rameters can be varied for different domains, or to achieve
different ends. Some relatively small windows can contain a
significant number of highly ambiguous toponyms, especially
for toponyms at fine scales [26], and considering all possible
combinations of interpretations places inhibitive penalties
on feature computation speed. For example, consider Fig-
ure 1, which is an excerpt from a press release [25] published
in the Earth Times newspaper, with toponyms highlighted
and the numbers next to each toponym indicating the num-
ber of interpretations in our gazetteer for the toponym. If

1http://metacarta.com
2http://opencalais.com
3http://developer.yahoo.com/geo/placemaker

. . . in and around [Louisville 17] and
[Lexington 31], [Kentucky 6], [Nashville 27] and
[Cordova 55], [Tennessee 5], [Richmond 69],
[Virginia 42], [Fort Lauderdale 1] and
[Orlando 9], [Florida 96], [Indianapolis 3],
[Indiana 8] and [Atlanta 22], [Georgia 12].

Figure 1: Excerpt from an Earth Times press release [25]
with toponyms and their number of interpretations high-
lighted, showing the extreme ambiguity of these toponyms
and illustrating the need for adaptive context features.

we consider all possible combinations of resolutions for these
toponyms, this results in about 3·1017 possibilities, an as-
tonishingly large number for this relatively small portion of
text, which is far too many to check in a reasonable time.
Instead, we can set parameters which we term the window’s
breadth and depth, named analogously to breadth-first and
depth-first search, which control the number of toponyms
in the window and the number of interpretations examined
for each toponym in the window, respectively. The adaptive
context features thus afford us flexibility since by varying
these parameters, we can control a tradeoff between feature
computation time and resolution accuracy. The more to-
ponyms and toponym interpretations we examine, the more
likely we are to find the correct interpretation, but the longer
resolution will take, and vice versa. Some textual domains
such as Twitter, where tweets arrive at a furious rate, de-
mand faster computation times, while in other, offline do-
mains, the time constraint is relaxed and we can afford to
spend more time to gain higher accuracy. While window-like
features and heuristics have been used in other work related
to geotagging (e.g., [15, 16, 24, 30, 35, 42]), these features’
adaptive potential has not been explored.

As we pointed out, in this paper our focus is on toponym
resolution, while toponym recognition makes use of our pre-
vious work [18]. Our work differs from that of others in
a number of ways, including our focus on streaming data,
and most importantly the size of the domain of the data
used in our evaluation. In particular, in our evaluation we
make use of articles from a large set of news sources, many
of which are from small localities, and the domain of loca-
tions is very large, as evidenced by our gazetteer containing
8.1M location interpretations, in contrast to systems such as
Web-a-Where [3] which contains only about 30,000 location
interpretations.

The rest of this paper is organized as follows: Section 2
introduces the geotagging framework that enables us to test
our adaptive context features, and describes our toponym
recognition and resolution processes as a whole. We also in-
troduce several other features that complement our adaptive
context features and serve as baselines for comparison. Sec-
tion 3 describes our new adaptive context features, as well
as algorithms for their computation. Section 4 details exten-
sive experiments showing our methods’ performance benefits
over OpenCalais and Placemaker, that also test various fea-
ture combinations and parameters. Finally, Section 5 offers
potential avenues of future work and concludes.

2. GEOTAGGING FRAMEWORK
In this section, we present the framework that enables

testing of our geotagging methods. This framework was
originally developed for and is an integral component of the
NewsStand [37] and TwitterStand [33] systems. We describe
our toponym recognition (Section 2.1) and resolution (Sec-
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tion 2.2) procedures, as well as a set of baseline features
(Section 2.3) that we use in combination with our adaptive
context features, which will be presented in Section 3.

2.1 Toponym Recognition
Our toponym recognition procedure is designed as a mul-

tifaceted process involving many types of recognition meth-
ods, both rule-based and statistics-based. After an initial to-
kenization step, our method proceeds by performing lookups
into various tables of entity names, including location names
and abbreviations (e.g., “Maryland”, “Md.”), business names
(e.g., “Apple”, “Toyota”), person names (e.g., “Chad”, “Vic-
toria”), as well as cue words for the above types of entities
(e.g., “X County”, “Mr. X ”, “X Inc.”). We also refactor
geographic names by shifting particular cue words (e.g., “X
Lake” to “Lake X ”).
In addition to the above rule-based methods, we leverage

statistical NLP tools. We use an NER package to recognize
toponyms and other entities, and perform extensive postpro-
cessing on its output to ensure higher quality. We also per-
form part-of-speech (POS) tagging to find phrases of proper
nouns, since names of locations (and other types of entities)
tend to be composed of proper nouns. The POS tagging
also provides a means of recognizing additional grammatical
forms that hint at entities’ types, including active verbs and
noun adjuncts, which we use as signals to adjust entity types.
Furthermore, we incorporate evidence from other documents
in the document’s news cluster. After the above recognition
steps, we establish groups of entities to be resolved at the
same time, by grouping similar entities together.
This multifaceted recognition procedure is designed to be

flexible to capture variations that appear in streaming news,
and also to be as inclusive as possible when recognizing to-
ponyms, to maximize toponym recall, which comes at the
cost of lower precision. Our recognition procedure’s high
recall is also corroborated by experimental results in Sec-
tion 4.3. Since toponym recognition is only the first step
in a two-part geotagging process, our toponym resolution
methods will serve to restore precision to the entire process.

2.2 Toponym Resolution
As mentioned earlier, geotagging can be understood as a

classification problem, and we use methods from supervised
machine learning to implement toponym resolution. Specif-
ically, we cast it as a binary classification problem, in that
we decide for a given toponym/interpretation pair (t, lt),
whether lt is correct or incorrect. These location interpre-
tations are drawn from a gazetteer, which is a database of
locations and associated metadata such as population data
and hierarchy information. Our gazetteer, which is based on
GeoNames4, is vastly larger than many gazetteers typically
used in geotagging methods, which both increases our meth-
ods’ utility as well as geotagging’s difficulty. We characterize
our gazetteer further in our experiments in Section 4.1.
For our classifier, we use a decision tree-based ensemble

classifier method known as random forests [7], which has
state-of-the-art performance for many classification tasks.
Briefly, given an annotated training dataset, the random
forests method constructs many decision trees based on dif-
ferent random subsets of the dataset, sampled with replace-
ment. In addition, each decision tree is constructed using
random subsets of features from the training feature vectors.
Because the features and subsets are chosen randomly, a va-
riety of trees will be in the forest. Classifying a new feature

4http://geonames.org

vector is relatively simple: each tree in the forest votes for
the vector’s class, and the consensus is taken as the result.
Note that individual trees may be excellent or poor class
predictors, but as long as some features allow better-than-
random classification, the forest taken as a whole will be a
strong classifier. Another useful aspect of random forests
is that the number of trees that vote for a given class can
be used as a confidence score for the classification, and pro-
vides a means of tuning the precision/recall balance of the
classifier. Assuming the score is an accurate estimate of
the method’s predictability, accepting classifications with a
lower score will result in lower precision but higher recall,
and vice versa. For our implementation, we used the fast
random forest implementation5, integrated with the Weka
machine learning toolkit6.

As an alternative to classification, Martins et al. [24] con-
sidered the use of SVM regression to estimate a distance
function based on feature vector values that is intended
to capture the distance between a given lt, and t’s ground
truth interpretation. They use the resulting distance values
to rank the interpretations, essentially using them as confi-
dence scores, and select the one with smallest distance value
as the interpretation for t. However, a significant drawback
of this technique is that it assumes that all toponyms in-
put to the toponym resolution process are not erroneous,
i.e., that the toponym recognition procedure is perfect in
identifying toponyms, while in reality, no such procedure is
perfect. The distance measures they compute, while use-
ful for ranking, are not necessarily meaningful as confidence
scores for deciding whether a given lt has strong enough
evidence to consider it correct. For example, an inferred
distance of “10” may indicate strong evidence for a given
lt, but weak evidence for another. On the other hand, our
framework using random forests and their confidence scores
provide consistent and meaningful scores for deciding clas-
sification strength.

2.3 Resolution Features
In addition to the adaptive context features introduced

in the next section, we use several baseline toponym reso-
lution features in our methods. To borrow terms from lin-
guistics, these features, which will be computed for each
toponym/interpretation pair (t, lt), can be loosely classed
as what we term context-sensitive and context-free features.
Put simply, context-sensitive features depend on t’s posi-
tion in relation to other toponyms in the document, while
context-free features do not. Note that our adaptive context
features subsume and generalize context-sensitive features,
so we will describe them in the next section. On the other
hand, the context-free features we use include the following:

I: interps. Number of interpretations for t; more interpre-
tations means more opportunities for errors.

P: population. The population of lt, where a larger popu-
lation indicates that lt is more well-known.

A: altnames. Number of alternate names for lt in various
languages. More names indicates greater renown of lt.

D: dateline. Geographic distance of lt from an interpreta-
tion of a dateline toponym, which establishes a general
location context for a news article.

L: locallex. Geographic distance of lt from the newspa-
per’s local lexicon [21], the expected location of its pri-
mary audience, expressed as a lat/long point.

5http://code.google.com/p/fast-random-forest
6http://www.cs.waikato.ac.nz/ml/weka
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The interps, population, and altnames features are do-
main independent, i.e., they can be used in any textual do-
main, while the dateline and locallex features are specific
to the news domain. In our experiments in Section 4.4, we
consider these features alone and in various combinations to
understand each feature’s relative utility.

3. ADAPTIVE CONTEXT FEATURES
In this section, we present our adaptive context features

to aid in the resolution of toponyms. These features reflect
two aspects of toponym coocurrence and the evidence that
interpretations impart to each other, which include:

1. Proximate interpretations, which are both nearby in
the text as well as geographically proximate, and

2. Sibling interpretations, which are nearby in the text
and share containers in a geographic hierarchy.

We capture these interpretation relationships and encode
them in features. To compute these features, we examine
for each toponym t a window of text around t, and com-
pare interpretations of toponyms in the window with the
interpretations of t. That is, a given interpretation lt of t
is promoted if there are other interpretations of toponyms
in the window that are geographically proximate to it, or
are sibling interpretations. In addition, we vary two pa-
rameters of the window termed window breadth and window
depth, which control a tradeoff between computation speed
and discriminative utility for the features by changing the
number of toponyms in the window, and the number of in-
terpretations per toponym, respectively.
Figure 2 is a schematic representation of the algorithm

used to compute our features. Each box represents a to-
ponym, and the lines under the boxes represent location
interpretations for each toponym. Different toponyms have
different levels of ambiguity, as measured by the number
of interpretations for the toponyms. In Figure 2, we are
computing adaptive context features for the highlighted to-
ponym and its interpretations in the middle. We compute
these features for all toponyms at a document distance of
less than the window breadth wb, and we compare the first
few interpretations of each toponym in the window, up to a
maximum of wd interpretations, the window depth.
Note that our proximity and sibling features subsume and

generalize other commonly-used features in toponym res-
olution. In particular, these features generalize context-
sensitive features, which compute a toponym interpreta-
tion’s likelihood of correctness based on the other toponyms
nearby to it in the document. One example of these context-
sensitive features includes the object/container pair (e.g.,
Paris, Texas, Dallas in Texas), consisting of two toponyms,
one of which contains the other. Authors use them when
their audiences are not familiar with the location in question,
and use the containing toponym to provide a geographic
context for the toponym. Object/container pairs are a par-
ticularly common type of evidence used in many types of
documents, and much research has investigated its utility
(e.g., [3, 16, 21, 30, 35]). This type of evidence can be un-
derstood as an extreme case of our sibling feature, in the
case where the window is restricted to the immediately next
or preceding toponym. More general than object/container
pairs is the comma group [20], which consists of a sequence
of toponyms adjacent to each other separated by connec-
tor tokens (e.g., “Paris, Dallas, San Antonio and Houston”)
that share geographic characteristics (in our example, all
cities in Texas), and hence provide mutual evidence for each

others’ correct interpretations. These relationships can be
captured using our features with a window of appropriate
size to contain all the toponyms. Another difference between
these sources of evidence and our adaptive context features is
that we do not assume any meaning for the specific position
of toponyms within the window. For example, we do not
consider the grammatical structure involved, or the tokens
present between toponyms in the window. This increases
the flexibility of our features as compared to, e.g., comma
groups, whose recognition depends on specific wording and
organization of the toponyms. As noted by Lieberman et al.
[20], comma groups in particular can be constructed in var-
ious ways that can mislead rule-based heuristics, such as in
our original example in Figure 1.

The following sections describe our proximity (Section 3.1)
and sibling (Section 3.2) features, and the algorithms we use
to compute them (Section 3.3). We also describe a strategy
for propagating significant feature values for a toponym to
its other instances in the same document (Section 3.4).

3.1 Proximity Features
The proximity features we use are based on geographic

distance. Because this distance is continuous, appropriate
thresholds for what is considered “near” and “far” are not
apparent. Thus, it behooves us to defer their definitions to
learning algorithms that can learn appropriate and mean-
ingful distance thresholds.

To compute our proximity features for a toponym/inter-
pretation pair (t, lt), we find for each other toponym o in the
window around t the closest interpretation lo to lt. Then,
we compute the proximity feature for (t, lt) as the aver-
age of the geographic distances to the other interpretations.
Thus, a lower feature score indicates a higher level of over-
all geographic proximity for toponyms within the window.
This feature strategy also balances fairness with optimism,
in that it allows all toponyms in the window to contribute
to (t, lt)’s feature score, while each toponym in the window
contributes its best (i.e., geographically nearest) interpreta-
tion to the feature score. It has the additional benefit that
no distance thresholds are hard-coded into the feature. In-
stead, the learning procedure can learn appropriate distance
thresholds from its training data.

3.2 Sibling Features
Our second class of adaptive context features are those

based on sibling relationships between interpretations in a
geographic hierarchy. In other words, this feature will cap-
ture the relationships between textually proximate toponyms
that share the same country, state, or other administrative
division. The sibling feature is intended to capture inter-
pretations that are at the same level in the hierarchy (e.g.,
states in the same country, cities in the same state) as well
as interpretations at different levels (e.g., a state and its con-
taining country, a city inside its containing state). The first
case captures “true” sibling relationships, while the second
case captures containment relationships, which can be con-
sidered siblings at a coarse granularity (e.g., College Park
and Maryland are siblings at a state level of granularity).

We compute sibling features in a similar way as the prox-
imity features. For each toponym/interpretation pair (t, lt),
we use as our sibling feature value the number of other to-
ponyms o in the window around t with an interpretation that
is a sibling of lt at a given resolution. We consider three lev-
els of resolution, which correspond to three sibling features
for each (t, lt): country-level, state-level, and county-level.



In SIGIR’12: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 731–740, Portland, OR, August 2012.

w
d

wb

Figure 2: Computing adaptive context features, illustrating the window breadth wb and window depth wd.

Given that the sibling features are so related to the prox-
imity features, at first glance, the sibling feature appears
to be redundant in that some toponym interpretations that
are siblings will tend to be geographically proximate as well
(e.g., Paris, Texas and Dallas, Texas). However, in some
cases the sibling feature will prove helpful in distinguishing
toponym relationships. For example, cities that are posi-
tioned at opposite ends of a given state might be too far to
be considered geographically proximate, but would still be
considered siblings. Similarly, the notion of geographic dis-
tance for area objects such as countries and states depends
on their representation. If we represent, e.g., a country by
a single point, such as its centroid or the location of its
capital city, it might be considered geographically distant
from many cities contained in it, while the sibling feature
would correctly capture these relationships. Another differ-
ence between the proximity and sibling features is that the
geographic hierarchy is discrete, while geographic distances
are continuous values. As a result, we do not have the same
thresholding problem as for the proximity features, as our
“thresholds” are effectively the same as the hierarchy levels.

3.3 Feature Computation
As noted earlier, our adaptive context features are based

on computing features within a window of context around
each toponym t. We can consider two variables related to
the search for a correct interpretation of t:

1. Window breadth, denoted wb, which corresponds to the
size of the window around t to be considered.

2. Window depth, denoted wd, which is the maximum
number of interpretations to be considered for each
toponym in the window.

The window breadth wb controls how many toponyms
around a given toponym t are to be used in aiding the res-
olution of t. With a larger wb, more toponyms will be used
to resolve t, thus reducing the resolution algorithm’s speed
but hopefully increasing its accuracy. Similarly, the window
depth wd controls the number of interpretations to be con-
sidered for each toponym in the window. A larger wd means
that more interpretations will be checked, with a resulting
decrease in speed, but with more potential for finding cor-
roborating evidence for a correct interpretation of t.
Because the window depth may preclude examination of

all interpretations for a given toponym, the order in which
the interpretations are examined is important. Ideally, inter-
pretations would be ordered using context-free attributes of
each interpretation. In a sense, the ordering is based on an
apriori estimate of each interpretation’s probability of being
mentioned in a given document, though we do not formal-
ize this notion here. We order or rank these interpretations
using various factors, which include, in order of importance:

1. Number of alternate names for the location in other
languages. GeoNames, being a multilingual gazetteer,
contains alternate names and the number of names can
indicate the place’s renown.

2. Population of the location, where a larger population
generally indicates a more well-known place.

3. Geographic distance from a local lexicon location.

These ranking factors can be considered context-free, in that
the ordering of interpretations for a given toponym is in-
dependent of its position in the document. We could use
additional factors such as each interpretation’s geographic
distance from a dateline toponym interpretation, but be-
cause we include these factors as separate features we do
not need to include them in the ranking here.

One seeming drawback with regard to the window depth
is that it may not seem effective in that most toponyms in
our gazetteer have only one or two possible interpretations,
as our experiments in Section 4.1 show. However, toponyms
that are well-known by virtue of having a well-known inter-
pretation (for example, Paris, widely known as the French
capital), will tend to be mentioned more frequently in doc-
uments, and these will be more ambiguous. This is also
reflected in measurements made on the toponyms present in
our experimental datasets (Section 4.2).

In addition, rather than using all toponyms in the window
around each t, we perform some pre-filtering to remove to-
ponyms that detract from the usefulness of our adaptive con-
text features. For example, we do not use toponyms in the
window that have the same name as t, since they will have
the same set of interpretations as t, which will impart no
useful information. In addition, and more generally, we may
not be sure which of the words in the window correspond
to toponyms, due to ambiguities in toponym recognition.
Our toponym recognition process (described in Section 2.1)
is designed for high recall and as a result we will consider
many words which are not true toponyms. In other cases,
we may not be sure of the appropriate interpretation for a
given toponym. For example, consider the phrase “Univer-
sity of Maryland”, which could be interpreted as a whole,
University of Maryland, referring to the school, or as Mary-
land, the state. Rather than immediately deciding on one
of these toponyms, our recognition process keeps both, even
though they overlap. Thus, we can keep and consider all of
them in toponym resolution, though they must be appropri-
ately filtered when processing toponyms in the window.

Our algorithm for computing adaptive context features,
called AdaptiveContext, is shown in Algorithm 1. It
takes as input the toponyms T in the document being pro-
cessed, as well as the window breadth wb and window depth
wd under consideration. The algorithm proceeds by iterat-
ing over all toponyms t ∈ T (line 2). For each t, an array
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Algorithm 1 Compute adaptive context features.

1: procedure AdaptiveContext(T,wb, wd)
input: Topos T , window breadth wb and depth wd

output: Proximity and sibling features
2: for t ∈ T do
3: P ← {}
4: O ← {o ∈ T : Name(t) 6= Name(o)∧

DocDist(t, o) ≤ wb}
5: for o ∈ O do
6: Lo ← Locs(o)[1 . . .min{wd, |Locs(o)|}]
7: for lt ∈ Locs(t) do
8: dmin ← min{∀lo ∈ Lo,GeoDist(lt, lo)}
9: P [lt]← P [lt] ∪ {dmin}
10: for lev ∈ {country, admin1, admin2} do
11: if ∃lo ∈ Lo : Sibling(lt, lo, lev) then
12: Increment SibFeature(t, lt, lev)
13: end if
14: end for
15: end for
16: end for
17: for lt ∈ Locs(t) do
18: ProxFeature(t, lt)← Avg(P [lt])
19: end for
20: end for
21: end procedure

P is initialized which will hold minimum distances to in-
terpretations of toponyms in the window around t, which
will be used in computing the proximity features for t (3).
Next, other toponyms O within the window around t are col-
lected by finding toponyms o ∈ T whose document distance
is smaller than the window breadth wb, and also have a dif-
ferent name than t (4). We then loop over each toponym
o ∈ O to begin comparing interpretations of t and o (5).
First, we collect the location interpretations associated with
o, up to a limit of wd interpretations, the window depth (6).
Then, we loop over each interpretation lt of t (7), and find
the interpretation lo of o with minimum geographic distance
from lt (8). We add the interpretation lo to the location set
P [lt] associated with lt which will be used for computation
of the proximity feature for lt (9). Next, we compute the
sibling features for each level lev of our geographic hierar-
chy (10) by checking whether there exists an interpretation
lo of o with lt as its sibling (11). If so, we increment the sib-
ling feature for that level (12). Finally, after looping over all
toponyms of O, the sibling features are fully computed for
each interpretation lt of t, but the proximity feature remains
to be completed. We do so for each lt (17) by averaging the
geographic distances computed for lt, which results in the
final proximity feature values (18). We use the median geo-
graphic distance as our averaging measure.

3.4 Feature Propagation
Oftentimes, documents will mention the same toponyms

multiple times. When considering pairs of toponyms for use
in computing adaptive context features, described in the pre-
vious section, these toponym repetitions are ignored because
they impart no useful information, since the interpretations
for each pair will be the same. However, we can still make
use of toponym repetition within a single document because
the toponyms appear in different contexts (i.e., at different
offsets) within the document. Since our adaptive context
features are context-sensitive, we can apply stronger feature
values computed for the toponym in one context to the same
toponym in other, weaker contexts.

To leverage these repetitions, as a final processing step, we
compute additional features for each (t, lt) pair by propagat-
ing feature values among toponyms in the document that
share the same name. We propagate feature values that in-
dicate strong evidence that a given toponym interpretation
is correct. For the proximity feature, this corresponds to
the lowest average distance values, while for the sibling fea-
tures, we propagate the largest sibling counts for each level
of resolution we consider.

4. EXPERIMENTS
In this section, we describe the extensive experiments per-

formed on our own and competing geotagging methods. We
first establish the general difficulty of geotagging using our
large gazetteer, due to a large amount of toponym ambi-
guity (Section 4.1), and then introduce the datasets to be
used for measuring geotagging performance, and character-
ize the toponyms present in them (Section 4.2). In terms of
geotagging accuracy, we compare our own adaptive method,
referred to as “Adaptive”, against two existing prominent
competing methods: Thomson Reuters’s OpenCalais, and
Yahoo!’s Placemaker. Both OpenCalais and Placemaker
are closed-source commercial products, but they do pro-
vide public Web APIs which allow for automated geotag-
ging of documents, and hence they have been used exten-
sively in state-of-the-art geotagging and entity recognition
research (e.g., [1, 24, 28, 38, 40]). In addition to not being
able to make direct algorithmic comparisons due to their
black box nature, neither OpenCalais nor Placemaker of-
fer a means of tuning the precision/recall balance, so we
could not explore this aspect of the systems. We discuss how
well these systems fare against our own methods in terms
of toponym recognition (Section 4.3) and toponym resolu-
tion (Section 4.4). For the latter, we also consider various
combinations of features and show how they affect resolu-
tion accuracy, and use a feature ranking method to mea-
sure the importance of each feature when used in resolving
toponyms. Finally, we vary the adaptive context parame-
ters of window breadth (wb) and depth (wd), and show how
they affect the feature computation time and accuracy of
the Adaptive method (Section 4.5).

Note that in all our accuracy experiments, we measure
performance using precision and recall as measured over the
correct interpretations. We also used 10-fold cross validation
to avoid misleading performance numbers due to potential
overfitting. Also, we used 100 trees in our random forests,
with 5 attributes for each tree, and accepted classifications
with at least 0.5 confidence score (i.e., at least half of the
trees voted for the interpretation). All experiments were
conducted on a Dell Precision 470 workstation with a dual
core Intel Xeon 3GHz CPU and 8G RAM.

4.1 Gazetteer Ambiguity
First, we examined our gazetteer to understand the level

of ambiguity of toponyms present in it. The gazetteer con-
tains a total of 8.1M location interpretations, 5.1M distinct
names, and 7.0M alternate names in languages other than
English. The gazetteer’s large size ensures a high level of am-
biguity and ensuing greater difficulty in performing geotag-
ging correctly, when compared to gazetteers used by other
systems such as Web-a-Where [3]. For each toponym in the
gazetteer, we counted the number of interpretations associ-
ated with it, and plotted the results. Results are shown in
Figure 3. Toponyms in the gazetteer exhibit a power-law re-
lationship in terms of the number of interpretations, in that
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Figure 3: Toponyms and the number of interpretations they
have exhibit a power-law relationship.

Table 1: Corpora used in evaluating geotagging.

ACE LGL CLUST

Documents 104 621 13327
Median doc word count 236 242 309
News sources 4 114 1607

Annotated docs 104 621 1080
Annotated topos 2359 4765 11564
Distinct topos 295 1177 2320

Median topos per doc 12 6 8
Median topo ambig per doc 3 14 7

the vast majority of toponyms a small number of interpre-
tations, while a few toponyms have a very large number of
interpretations. Of course, most of these unambiguous to-
ponyms will not be mentioned in a given document, and in
our datasets, described in the next section, the documents’
toponyms have higher levels of ambiguity.

4.2 Datasets
In choosing the datasets for our evaluation, we wanted

news data from a variety of sources, and for a variety of
audiences. To achieve this end, we used three datasets of
news in our evaluation: ACE, LGL, and CLUST. The first,
ACE [22], consists of articles from four large news sources:
Agence France-Presse, Associated Press World, New York
Times, and Xinhua. These articles tend to have a broad
world interest and concern topics such as international diplo-
macy and trade, so they tend to mention large, well-known
places. Thus, ACE serves in our evaluation as a test of the
geotagging methods’ capability for correctly recognizing and
resolving well-known, prominent places. On the other hand,
to test smaller places, we used the LGL [21] dataset, which
consists of articles from about 100 smaller, more local news
sources. These articles are intended for more geographically
localized audiences, and concern local events that mention
small places. Our third dataset, CLUST [18], contains a
variety of articles from both large and small news sources.
Table 1 presents statistics that broadly illustrate charac-

teristics of our three test corpora. ACE is relatively small
compared to LGL and CLUST, both in terms of number
of documents and news sources. However, ACE tends to
have more toponyms per article, which may be due to the
content consisting of generally international news involving
many different countries and other locations, which would
all be mentioned in the articles. In addition, we measured
toponym ambiguity in the articles by checking, for each doc-
ument, the median number of gazetteer interpretations for
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Figure 4: Breakdown of location types within each of our
test corpora.

the toponyms in the document. the median number of in-
terpretations present for toponyms in each document. LGL
has the largest amount of toponym ambiguity, followed by
CLUST and ACE. This is not overly surprising, given that
LGL was constructed deliberately focusing on highly am-
biguous toponyms [21]. However, the measurements show a
high level of ambiguity in all three datasets.

We also classified the annotated locations present in the
documents according to their types, which are shown in Fig-
ure 4. We normalized the type counts for each corpus to
illustrate the fractions of each type within each corpus. For
cities, we further divided the locations into large cities (over
100k population) and small cities (less than 100k popula-
tion). These location types clearly show the important dif-
ferences between the three corpora. The vast majority of
ACE ’s toponyms, 83%, consist of countries and large cities,
indicating ACE ’s broad geographic scope. This is not overly
surprising given that it consists of newswire, which is usually
intended for a broad geographic audience. In contrast, 60%
of LGL’s toponyms are small cities, counties, and states,
and among all three datasets, LGL contains the smallest
fraction of countries and large cities, showing that LGL
mainly concerns smaller, more local places, with a corre-
spondingly smaller geographic audience. CLUST falls in
the middle, with the largest fraction of states among the
three datasets, and in between the other two in terms of
countries, counties, and small cities. Bearing these observa-
tions in mind, in terms of overall geographic relevance, ACE
and LGL can be said to have wide and narrow relevance
respectively, while CLUST falls in the middle, illustrating
our three datasets’ utility in testing geotagging at coarse,
middle, and fine-grained geographic scopes.

4.3 Recognition Accuracy
Though the main focus of this paper is improved toponym

resolution, for completeness, we tested each system’s to-
ponym recognition performance when isolated from the sub-
sequent toponym resolution step. Note that OpenCalais and
Placemaker also provide lat/long values with each toponym,
but we disregard these when testing toponym recognition
using these systems because it is more information than we
need for this experiment. Table 2 shows the performance
results for each method’s toponym recognition step. For
all three datasets, the Adaptive method shows higher recall
performance than either OpenCalais or Placemaker, which
as we discussed earlier is the crucial measure to consider
for toponym recognition used before toponym resolution, as
well as a higher overall F1-score for LGL and CLUST. While
OpenCalais and Placemaker do have higher precision, this
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Table 2: Recognition performance.

P R F1

ACE
Adaptive 0.748 0.867 0.804
OpenCalais 0.883 0.681 0.769
Placemaker 0.899 0.767 0.828

LGL
Adaptive 0.671 0.723 0.696
OpenCalais 0.588 0.222 0.322
Placemaker 0.675 0.658 0.666

CLUST
Adaptive 0.732 0.861 0.791
OpenCalais 0.759 0.425 0.545
Placemaker 0.798 0.692 0.741

Table 3: Resolution accuracy of various methods.

PResol RRecog+Resol

ACE
Adaptive 1635/1659 = 0.986 1635/2359 = 0.693
OpenCalais 1062/1080 = 0.983 1062/2359 = 0.450
Placemaker 1161/1219 = 0.952 1161/2359 = 0.492

LGL
Adaptive 2799/2970 = 0.942 2799/4765 = 0.587
OpenCalais 1260/1632 = 0.772 1260/4765 = 0.264
Placemaker 2516/3466 = 0.726 2516/4765 = 0.528

CLUST
Adaptive 7143/7440 = 0.960 7143/11564 = 0.618
OpenCalais 5397/6352 = 0.850 5397/11564 = 0.467
Placemaker 7524/8642 = 0.871 7524/11564 = 0.650

is mitigated by their relative lack of recall. Also, Adaptive’s
precision is restored by its toponym resolution processing,
which will be shown in the next section. These results are
also consistent with previously-reported performance [18].

4.4 Resolution Accuracy
In the next experiment, we measured the accuracies of

each method’s toponym resolution in isolation—that is, if
each method were given a set of toponyms, how well the
method would select the correct lat/long interpretation for
each toponym. Because OpenCalais and Placemaker do not
allow for the specification of ground truth toponyms, it is
not possible to make direct comparisons of toponym res-
olution’s recall for these systems. Instead, we report the
precision for the resolution process in isolation (PResol), and
the recall for the combined recognition and resolution pro-
cesses (RRecog+Resol). For PResol, we only report accuracy
for toponyms that were correctly recognized by each sys-
tem. Also, for the Adaptive method, we used a window
breadth wb of 80 tokens and unlimited window depth wd.
To determine whether a given interpretation is correct, we
check the geographic distance between the interpretation’s
lat/long values and the ground truth lat/long values, and if
it lies within a small threshold (10 miles) we consider it cor-
rect. This method allows for the inevitable minor variations
between the tested systems, due to their having selected in-
terpretations from different gazetteers.
Table 3 shows the performance results. Of all three meth-

ods, the Adaptive method has the best overall precision, es-
pecially so for the LGL and CLUST datasets. Adaptive also
maintains this high precision while having high toponym re-

Table 4: Toponym resolution accuracy for different feature
combinations.

ACE LGL CLUST
P R F1 P R F1 P R F1

I 0.91 0.41 0.57 0.96 0.26 0.40 0.93 0.30 0.45
I,P 0.97 0.59 0.74 0.96 0.47 0.63 0.98 0.38 0.55
I,P,A=B1 0.99 0.84 0.91 0.96 0.61 0.75 0.98 0.71 0.82

B1,D 0.99 0.90 0.94 0.96 0.62 0.75 0.98 0.72 0.83
B1,L 0.98 0.86 0.92 0.95 0.90 0.93 0.97 0.77 0.86
B1,D,L=B2 0.99 0.90 0.94 0.95 0.90 0.93 0.97 0.76 0.86

B1,W80,∞ 0.98 0.88 0.93 0.94 0.65 0.77 0.96 0.71 0.82
B2,W80,∞ 0.99 0.88 0.93 0.94 0.88 0.91 0.96 0.73 0.83

call. This is best seen for the LGL dataset where Adaptive
has a 17% advantage over OpenCalais, and a 22% advan-
tage over Placemaker, along with a recall advantage of 32%
over OpenCalais and 6% advantage over Placemaker. These
performance numbers indicate our method’s superior perfor-
mance in terms of the toponym resolution task. Examining
performance for all the methods across the three datasets,
the methods performed best on ACE, worst on LGL, and
in the middle for CLUST. These results follow our intuition
that correctly geotagging documents containing smaller, less
well-known locations (LGL) is more difficult than for larger,
more well-known locations (ACE).

Our next set of experiments tested various combinations
of features used in the Adaptive method, to illustrate each
feature’s overall utility. We used different combinations of
the features described in Section 2.3, as well as the adaptive
context features described in Section 3. Table 4 contains
the performance results, with feature abbreviations corre-
sponding to those used in Section 2.3, and feature combi-
nations indicated with commas (e.g., I,P combines interps
and population). In addition, we considered two baseline
feature combinations B1 and B2. B1 tested only the domain-
independent features (I,P,A), while B2 also included those
features tailored for the news domain (D,L). We again used
our adaptive context feature (W80,∞) with window breadth
of 80 tokens and unlimited window depth. In general, reso-
lution precision was high for all feature combinations, so the
main difference was resolution recall. For ACE and CLUST,
the dateline and locallex features did not improve B1

much, but locallex did make a large difference for LGL.
Our adaptive context features in general improved B1, for
LGL in particular. However, in combination with B2, the
adaptive context features showed little improvement and in
some cases lower performance, which is not overly surprising
in that domain-specific features will exhibit domain-specific
performance, and sometimes, adding features to a model
will decrease performance. However, taken as a whole, the
results illustrate our adaptive context features’ utility for
general geotagging purposes, especially over more simplistic
features such as population.

We also conducted an experiment to measure the impor-
tance or utility of our features for classifying toponym in-
terpretations. This process, also known as feature selection
or dimension reduction [10], ranks the individual features in
terms of their overall utility. For our feature importance
measure, we used the gain ratio [10], a commonly-used,
entropy-based measure for decision tree construction. We
computed the gain ratio for each feature, and normalized
the resulting importance values within each dataset. Results
are presented in Figure 5. Interestingly, for each dataset,
the interps and altnames features outranked population.



In SIGIR’12: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 731–740, Portland, OR, August 2012.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

I P A D L Wp Ws

Im
p

o
rt

a
n

c
e

Feature

ACE
LGL

CLUST

Figure 5: Importance of features used in the Adaptive
method, as measured by the gain ratio.
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Figure 6: Performance results when varying window
breadth, showing changes in (a) time and (b) accuracy.

The locallex feature was highly important for LGL, though
this is not too surprising considering the dataset’s content
of smaller, local news articles. The windowprox and win-
dowsib have lower importance values, but interestingly, the
windowprox feature has almost the same feature value as
population. windowsib’s low importance value may be due
to it being little-used in the three datasets.

4.5 Adaptive Parameters
In our final set of experiments, we tested how varying

the adaptive parameters of our window features, namely
the window breadth wb and window depth wd, would affect
the speed and accuracy tradeoff for our methods. We used
our adaptive context features in combination with our first
baseline comparison method, B1, described in the previous
section, which is a combination of the interps, population,
and altnames features. First, we varied the window breadth
between 1–80 tokens and measured the resulting tradeoff.
Figure 6a and Figure 6b show the results in terms of com-
putation time and method accuracy, respectively. As the
window breadth increases, the computation time increases
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Figure 7: Performance results when varying window depth,
showing changes in (a) time and (b) accuracy.

linearly, which is to be expected. The computation time for
CLUST is larger than for the other datasets due to its size.
Interestingly, even with a small window breadth, precision
remains high, and recall is respectable for all three datasets,
giving evidence that the features are applicable even for do-
mains where little time is allocated for geotagging. Also,
while increasing the window breadth, recall also increases
for the datasets, showing the time/accuracy tradeoff as ex-
pected. Results are similar for when varying window depth,
shown in Figure 7a and Figure 7b.

5. CONCLUSION
Our investigations of adaptive context features have shown

their utility and flexibility for improving the geotagging of
streaming news. In future work, we plan to test different
weightings of toponyms in the window to judge their effect
on resolution accuracy. For example, toponyms that are fur-
ther away in the window could be given less weight, using
linear or Gaussian weighting schemes, essentially leveraging
Tobler’s law [39] which states that “Everything is related
to everything else, but near things are more related than
distant things”. In addition, we could consider clusters of
news articles about the same topic, which are collected in
the NewsStand system, and design other features using these
clusters. For example, we might examine other documents
in a cluster to get additional toponyms for consideration in
geotagging the current document. This can be thought of
as creating one large virtual document consisting of some or
all of the documents in a cluster, and then extending the
window to include toponyms in those other documents. As
before, with large clusters, we may not want to consider all
toponyms or all interpretations in other documents in the
cluster, due to inhibitive performance penalties. In sum-
mary, adaptive context features serve as a flexible, useful
addition to geotagging algorithms for streaming news and
other textual domains.
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