
Query Processing and Optimization for

Pictorial Query Trees

Aya So�er1 ? and Hanan Samet2 ??

1 Computer Science Department, Technion City, Haifa 32000, Israel and

Institute for Advanced Computer Science University of Maryland at College Park
E-mail: ayas@cs.technion.ac.il

2 Computer Science Department, Institute for Advanced Computer Science

University of Maryland at College Park, College Park, Maryland 20742
E-mail: hjs@umiacs.umd.edu

Abstract. Methods for processing of pictorial queries speci�ed by pic-

torial query trees are presented. Leaves of a pictorial query tree corre-

spond to individual pictorial queries while internal nodes correspond to
logical operations on them. Algorithms for processing individual pictorial

queries and for parsing and computing the overall result of a pictorial

query tree are presented. Issues involved in optimizing query process-
ing of pictorial query trees are outlined and some initial solutions are

suggested.

Keywords: image databases, query speci�cation, query optimization, retrieval
by content, spatial databases, image indexing

1 Introduction

Image databases must be capable of being queried pictorially. The most common
method of doing this is via an example image. The problem with this method is
that in an image database we are usually not looking for an exact match. Instead,
we want to �nd images similar to a given query image. One of the main issues
is how to determine if two images are similar and whether the similarity criteria
that are used by the database system match the user's notion of similarity. An-
other di�culty with pictorial queries is that they are usually not very expressive
in terms of specifying combinations of conditions and negative conditions. A
good pictorial query speci�cation method should leverage on the expressiveness
of pictorial queries in terms of describing what objects the target images should
contain and their desired spatial con�guration, resolve the ambiguities inherent
to pictorial queries, and enable specifying combinations of conditions.

In our previous work [8], we devised a pictorial query speci�cation technique
for formulatingqueries that specify which objects should appear in a target image

? The support of the Lady Davis Foundation and the National Science Foundation

under Grant CDA-950-3994 is gratefully acknowledged.
?? The support of the National Science Foundation under Grant IRI-97-12715 is grate-

fully acknowledged.

2

as well as how many occurrences of each object are required. Moreover, the min-
imum matching certainty between query-image and database-image objects can
be speci�ed, and spatial constraints that specify bounds on the distance between
objects and the relative direction between objects can be imposed. Expressive
power is achieved by allowing a pictorial query speci�cation to be composed of
one or more query images and by allowing a query image to be negated. In [9]
we extended the pictorial query speci�cation technique to allow the formulation
of complex pictorial queries via pictorial query trees where leaves correspond to
individual pictorial queries while internal nodes represent logical operations on
the set of pictorial queries (or subtrees) represented by its children.

In this paper we describe in detail the algorithm for processing individual
pictorial queries. It can handle multiple instances of each symbol in the query
image as well as in the database image and can also handle wild cards. In ad-
dition, we present an algorithm for parsing and computing the overall result of
a pictorial query tree. We also discuss some issues that are involved in query
optimization of pictorial query trees (i.e., their simpli�cation).

2 Related Work

Most image database research deals either with global image matching based
on color and texture features [4, 5, 10] or with the ambiguity associated with
matching one query-image object to another [3]. These methods do not address
the case of images that are composed of several objects and their desired spatial
con�guration. There has been some work on the speci�cation of topological and
directional relations among query objects [1, 2]. These studies only deal with
tagged images. Furthermore, it is always assumed that the goal is to match as
many query-image objects to database-image objects as possible.

A limited form of spatial ambiguity is allowed in pictorial queries based on
the 2D-string and its variants [2]. The spatial logic described in [1] also allows
speci�cation of query images in terms of spatial relations between objects and
permits users to select the level of spatial similarity. In some cases (e.g., [6]), the
images are segmented into regions either automatically or semi-automatically
and some queries involving spatial constraints specifying the desired arrangement
of these regions can be performed. However, the issue of the distance between
objects is not addressed by these or any other method. Furthermore, none of
these methods provide Boolean combinations or negations of query images.

3 Building Pictorial Query Trees

An individual pictorial query is speci�ed by selecting the required query objects
and positioning them according to the desired spatial con�guration. Next, the
similarity level in terms of three parameters is speci�ed. The matching similarity
level msl is a number between 0 and 1 that speci�es a lower bound on the
certainty that two symbols are from the same class and thus match. Contextual
similarity speci�es how well the content of database image DI matches that
of query image QI (e.g., do all of the symbols in QI appear in DI ?). We use

Visual Information and Information Systems, Lec. Notes in CS 1614, 1999, pp. 60-67.3

Fig. 1. Contextual similarity levels (csl). Fig. 2. Spatial similarity levels (ssl).

four levels of contextual similarity (see Figure 1). Spatial similarity speci�es how
good a match is required in terms of the relative locations and orientation of the
matching symbols between the query and database image. We use �ve levels of
spatial similarity (see Figure 2). For more details and examples, see [8].

Complex pictorial queries are composed of combinations of individual picto-
rial queries and are speci�ed via pictorial query trees. Leaves of a pictorial query
tree correspond to individual pictorial queries. A negated leaf node (NOT) yields
the set of all images that do not satisfy the pictorial query. Internal nodes in the
tree represent logical operations (AND, OR, XOR) and their negations on the
set of images that satisfy the pictorial query (or query subtree) represented by
its children. The root of the tree is either a pictorial query or a logical operator,
while an internal node corresponds to a logical operator and can have one or
more children. For a conjunction of query images where the same symbol ap-
pears in both query images, the user may specify whether the two query-symbols
must match the same instance of the symbol in the database image, or whether
two di�erent instances are allowed. This is termed object binding.

AND

OR

AND

OR 2

5 10

7

ssl = 4
csl = 2 csl = 2

ssl = 4

ssl = 2
csl = 2

5 10

csl = 2
ssl = 4

csl = 2
ssl = 4

ssl = 4
csl = 2

(a) (b)

Fig. 3. Images with a (a) camping site � within 5 miles of a �shing site � OR a

hotel� within 10 miles of a �shing site� AND an airport� northeast of and within
7 miles of the �shing site� . (b) camping site � within 5 miles of a �shing site�
OR with a hotel � within 10 miles of a �shing site� AND with no airport� within

2 miles of the �shing site� (the line above the query denotes negation).

Figures 3 and 4 are examples of pictorial query trees. Figure 3a speci�es

4

AND

OR NOR

ssl = 5
csl = 2

ssl = 5
csl = 2csl = 2

ssl = 4

10

csl = 2
ssl = 4

5

Fig. 4. Images with a camping site � within 5 miles OR with a hotel � within 10

miles of a �shing site � AND with neither a restaurant � nor a cafe� .

more than one acceptable spatial constraint (i.e., a camping site � within 5 of a
�shing site� or a hotel � within 10 of a �shing site�) with an OR. We also
specify that there is an airport� northeast of and within 7 miles of the �shing
site � with an AND. Figure 3b shows negation of a pictorial query specifying
that there is no airport� within 2 miles of the �shing site � . Figure 4 shows
negation of logical operators in internal nodes. Here we are seeking images with
a camping site � within 5 miles of a �shing site � OR a hotel � within 10
miles of a �shing site � but without either a restaurant � or a cafe � .

4 Pictorial Query Processing

In this section, we present an algorithm for retrieving all database images that
conform to a given pictorial query tree speci�cation.

4.1 Processing individual pictorial queries

The �rst step in the algorithm processes each pictorial query image (i.e., each
leaf) individually using function GetSimilarImagesM that takes as input a query
image (QI), the matching similarity level (msl), the contextual similarity level
(csl), and the spatial similarity level (ssl) associated withQI . It returns the set of
database images RI such that each image DI 2 RI satis�es the pictorial query.
Figure 5 summarizes this algorithm. GetSimilarImagesM handles wildcards as
well as multiple instances of each class in the query image and in the database
image.

First, for each symbol in the query image it �nds all database images, DI,
that contain this symbol with certainty � msl. Next, it handles sthe contextual
constraints. If csl is 1 or 2 (images should contain all symbols in QI), then it
intersects the set of result images from the �rst step. If csl is 3 or 4 (any one
symbol from QI is enough), then it takes the union of the result images. If the
contextual similarity level is 1 or 3, then it avoids including images containing
symbols that are not present in QI . Next, it checks the case of multiple instances
of query symbols in the query image. If csl is 1 or 2, then for every instance of
each symbol in QI, it checks whether there exists an instance of the symbol in
DI.

Visual Information and Information Systems, Lec. Notes in CS 1614, 1999, pp. 60-67.5

GetSimilarImagesM(logical image QI, msl, csl, ssl)
m 0
/* check matching similarity */
foreach el 2 QI

if (el = wildcard) then

rm set of all images stored in the database

else

rm set of all images containing C(el) with certainty � msl

(use index on class)

m m+ 1

/* check contextual similarity */
if (csl = 1) _ (csl = 2) then

RI
Tn�1

i=0
ri

elseif (csl = 3) _ (csl = 4)

RI
Sn�1

i=0
ri

if (csl = 1) _ (csl = 3) then

RI RI � fI s.t. I includes symbols not in QIg
(use index on image id)

/* check multiple symbol instance conditions */
if (csl = 1) _ (csl = 2) then

RI RI � fI s.t. 9k : nQIk > nIkg,
i.e. some (k-th) symbol of QI is underrepresented in I

/* check spatial similarity */
foreach I 2 RI

for every possible matching of symbols between QI and I

check feasibility of this matching w.r.t. spatial constraints

if all matchings are infeasible

RI RI � I

return RI ordered by average certainties

Fig. 5. Algorithm to retrieve all database images similar to a query image (QI)
conforming to constraints dictated by msl, csl, and ssl. nI

k
denotes the number

of occurrences of the kth symbol in image I

Finally, it checks whether the spatial constraints are satis�ed for each candi-
date image I in the candidate image list RI. Since multiple instances of symbols
are allowed in QI and in I, this step needs to check many possible matchings. It
can be that some mappings between QI symbols and I symbols create feasible
con�gurations while others do not. For each QI symbol create a set of possi-
ble matches in I. Selecting one element from each of these sets generates one
possible matching. If none of the possible matchings pass the spatial constraints
test, then remove the image from the candidate result set. The spatial similar-
ity between any two matchings is calculated using algorithm CheckSsl [8] which
determines whether the spatial constraints dictated by a query image QI and
spatial similarity level ssl hold in a logical image DI . Images that pass all of the

6

tests are ordered by the average matching certainty of all matching symbols and
returned as the result of the query.

4.2 Parsing and evaluating pictorial query trees

ProcessQueryTree(query tree node: N)

S set of all images in the database (global variable)

if (isLeaf(N))
NR GetSimilarImagesM(QI(N); msl(N); csl(N); ssl(N))

if (hasNegationFlag(N))

NR S �NR

else

n 0

foreach M 2 sons(N)
rn ProcessQueryTree(M)

n n+ 1

NR OP (N)n�1i=0 ri (OP (N) can be
S
;
T
; or
L

, possibly inverted)

return NR

Fig. 6. Algorithm to retrieve all images satisfying the query represented by node
N of a pictorial query tree.

Procedure ProcessQueryTree parses and evaluates the result of a pictorial
query tree. Figure 6 summarizes the algorithm.ProcessQueryTree takes as input
a node N in the query tree, and returns the set of images that satisfy the query
tree rooted at N . If N is a leaf node, then it checks whether the results of
this query are cached from earlier invocations. If they are not, then algorithm
GetSimilarImagesM is invoked. If the leaf node is negated in the tree, then the
complement of the result images set returned by GetSimilarImagesM is taken.
The �nal result image set is returned. If N is an internal node in the query
tree, then ProcessQueryTree is called recursively on each child of N , followed
by applying the appropriate logical operation on the results of these calls. The
whole query tree is evaluated in this recursive manner by invoking algorithm
ProcessQueryTree with the root of the query tree as an argument.

Recall, that users can specify object binding. That is, whether the same
instance of an object is to be used when it appears in more than one of the
pictorial query images that make up the pictorial query tree. The following is an
outline of the additions to our algorithms that are necessary for handling object
binding. Algorithm ProcessQueryTree receives as additional input a global set
of constraints that stipulates the bindings that were speci�ed as part of the
query. This set consists of groups of symbols, where all of the symbols in the
same group should be matched to the same symbol instance in the database

Visual Information and Information Systems, Lec. Notes in CS 1614, 1999, pp. 60-67.7

image. To �lter out database images that are incompatible with respect to the
binding conditions, we combine these binding constraints with information that
is provided by the algorithm GetSimilarImagesM, which is augmented to return
for each database image that was found similar to the query image, the mapping
between query symbols and matched database symbols.

5 Query Optimization Issues

Several optimization techniques can be applied to improve the e�ciency of pro-
cessing pictorial query trees. These include methods designed for optimization of
individual pictorial query processing and optimization of query tree processing.
Individual pictorial query processing may be made more e�cient by handling
spatial and contextual constraints simultaneously rather than one followed by
the other as we do now. We addressed this issue in [7].

Two optimizations are possible for computing the result of the pictorial query
tree. The �rst optimization is to change the order of processing individual query
images in order to execute the parts that are more selective (i.e., result in fewer
images) �rst. The selectivity of a pictorial query is based on three factors.Match-

ing selectivity estimates how many images satisfy the matching constraint as
speci�ed by msl . Contextual selectivity estimates how many images satisfy the
contextual constraint as speci�ed by the query image and csl . Spatial selectivity
estimates how many images satisfy the spatial constraint as speci�ed by ssl .
Depending on ssl, either distance, direction, both, or neither are constrained.
Matching and contextual selectivity factors are computed based on statistics
stored as histograms in the database which indicate the distribution of classi-
�cations and certainty levels in the images. These histograms are constructed
when populating the database. Computing spatial selectivity is much more com-
plex. One approach to measuring the distance aspect of the spatial selectivity
calculates some approximation of the area spanned by the symbols in the query
image. This can be estimated, for example. using an approximation of the convex
hull of the symbols in the query image. Details of this method are beyond the
scope of this paper. Selectivity of an individual pictorial query (leaf) is computed
by combining these three selectivity factors.

The query tree selectivity is computed using a recursive algorithm similar to
the one executing the query. If an individual pictorial query is negated in the
tree, the selectivity is 1 - the selectivity of the query. The selectivity of a subtree
is as follows. For OR or XOR, take the sum of the selectivities of the subtrees
minus the probability that a combination of cases occured. For AND, take the
product of the selectivities of the subtrees.

To illustrate the general use of this optimization method, consider the query
trees in Figure 3. In both queries the left side of the tree requests images with
a camping site � within 5 miles of a �shing site � OR a hotel � within 10
miles of a �shing site � . In query (a), we add the constraint that there exists
an airport � northeast of and within 7 of �shing site � . In our database,
we have very few air�elds and thus the right side is more selective and it will
be processed �rst. On the other hand in query (b), we add the constraint that

8

there is no airport � within 2 miles of the �shing site � . Clearly, in most
cases there will be no such airport� , and thus in this case the right side is not
selective and the left side should be processed �rst.

The second form of optimization is to combine individual query images and to
process them together. To see its usefulness, we study how the query in Figure 4
is processed using the current algorithm. First, �nd fCFg all images with a
camping site � within 5 of a �shing site� . Next, �nd fHFg all images with a
hotel � within 10 of a �shing site � . Then, take the union of these two sets:
fLSg = fCFg[fHFg. Now, �nd the set fRg: images with a restaurant � and
the set fCg: images with a cafe � and compute the set RS = I � (R[C). The
�nal result is the intersection of the two sets: LS \ RS. A more sensible way
to compute this query is as follows. For each �shing site � , �nd the nearest
neighbors up to distance 5 in incremental order. If the next nearest neighbor
is a camping site � or a hotel � , then add this image to the candidate list.
Continue retrieving nearest neighbors in incremental order up to distance 10. If
the next nearest neighbor is a hotel � , then add this image to the candidate
list. For each image I in the candidate list, examine all of the objects in I. If
there is a restaurant � or a cafe� in I, then remove I from the candidate list.

References

1. A. Del Bimbo, E. Vicario, and D. Zingoni. A spatial logic for symbolic description
of image contents. Jour. of Vis. Lang. and Comp., 5(3):267{286, Sept. 1994.

2. S. K. Chang, Q. Y. Shi, and C. Y. Yan. Iconic indexing by 2-D strings. IEEE

Trans. on Patt. Anal. and Mach. Intel., 9(3):413{428, May 1987.
3. W. I. Grosky, P. Neo, and R. Mehrotra. A pictorial index mechanism for model-

based matching. Data & Know. Engin., 8(4):309{327, Sept. 1992.

4. W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, and
P. Yanker. The QBIC project: Querying images by content using color, texture,

and shape. In Proc. of the SPIE, Storage and Retrieval of Image and Video

Databases, vol. 1908, pp. 173{187, San Jose, CA, Feb. 1993.
5. A. Pentland, R. W. Picard, and S. Sclaro�. Photobook: Content-based manipula-

tion of image databases. In Proc. of the SPIE, Storage and Retrieval of Image and

Video Databases II, vol. 2185, pp. 34{47, San Jose, CA, Feb. 1994.
6. J. R. Smith and S.-F. Chang. VisualSEEk: a fully automated content-based image

query system. In ACM Int. Conf. on Multimedia, pp. 87{98, Boston, Nov. 1996.

7. A. So�er and H. Samet. Pictorial queries by image similarity. In 13th Int. Conf.

on Patt. Recog., vol. III, pp. 114{119, Vienna, Austria, Aug. 1996.

8. A. So�er and H. Samet. Pictorial query speci�cation for browsing through

spatially-referenced image databases. Jour. of Vis. Lang. and Comp., 9(6):567{
596, Dec. 1998.

9. A. So�er, H. Samet, and D. Zotkin. Pictorial query trees for query speci�cation in

image databases. In 14th Int. Conf. on Patt. Recog., vol. I, pp. 919{921, Brisbane,

Australia, Aug 1998.

10. M. Swain. Interactive indexing into image databases. In Proc. of the SPIE, Storage
and Retrieval for Image and Video Databases, vol. 1908, pp. 95{103, San Jose, CA,

Feb. 1993.

This article was processed using the LaTEX macro package with LLNCS style

