
Proc. of the 20th Intl. Conf. on Very Large Data Bases, Santiago, Chile, Sept. 1994, pp. 156{167 1

Performance of Data-Parallel Spatial Operations�

Erik G. Hoely

Geography Division

Bureau of the Census

Washington, D.C. 20233

hoel@cs.umd.edu

Hanan Samet

Computer Science Department

Center for Automation Research

Institute for Advanced Computer Studies

University of Maryland

College Park, Maryland 20742

hjs@cs.umd.edu

Abstract

The performance of data-parallel algorithms
for spatial operations using data-parallel
variants of the bucket PMR quadtree, R-tree,
and R+-tree spatial data structures is com-
pared. The studied operations are data struc-
ture build, polygonization, and spatial join
in an application domain consisting of planar
line segment data (i.e., Bureau of the Cen-
sus TIGER/Line �les). The algorithms are
implemented using the scan model of paral-
lel computation on the hypercube architec-
ture of the Connection Machine. The re-
sults of experiments reveal that the bucket
PMR quadtree outperforms both the R-tree
and R+-tree. This is primarily because the
bucket PMR quadtree yields a regular dis-
joint decomposition of space while the R-tree
and R+-tree do not. The regular disjoint de-
composition increases the potential for inter-
processor communication and parallelism in
the bucket PMR quadtree, thereby enabling
the execution times to decrease relative to
those needed by the R-tree and R+-tree.

1 Introduction

Parallel database systems have been the subject of in-
creasing attention. This is due in part to the advent of
highly parallel architectures, adoption of the relational
model, and challenges posed by object-oriented sys-
tems [13, 25]. Much of the parallel database research
has focused on multi-attribute declustering techniques
(such as Bubba's extended range declustering [7] and
multi-attribute grid declustering [18]), data placement
[11], and intra-operator parallelization [12]. Topics
such as algorithms for manipulating relations contain-
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ing highly skewed attribute values, and parallel spatial
data structures and algorithms remain open.

Prior research in the spatial domain has been lim-
ited to quadtrees and R-trees, with di�erent goals.
The quadtree research [4] was conducted under the
data-parallel SAM model of computation, and its goal
was the development of algorithms to operate on the
data structure in parallel. The R-tree research has con-
centrated on the development of algorithms for build-
ing data-parallel R-trees and polygonization [22], as
well as spatial joins for both data-parallel bucket PMR
quadtrees and data-parallel R-trees [23]. This work,
and the results we report here, di�ers signi�cantly
from other approaches in that we make use of many
processors to execute the spatial queries rather than
merely store the data on parallel disks while operating
with a single cpu (e.g., [24]).

Our emphasis is on the performance of spatial oper-
ations in a data-parallel environment when the data is
represented using hierarchical spatial data structures
[31, 32]. Our approach is similar in spirit to an ear-
lier study [21] in that the same data structures are
examined (i.e., the R-tree, PMR quadtree, and the
R+-tree). The di�erence is that here we test opera-
tions requiring a signi�cant amount of computation so
that using parallelism may be attractive. Thus we do
not study point operations such as �nding the nearest
line to a point as in [21]. Instead, we examine more
complex operations such as data structure creation,
polygonization, and spatial join.

In this paper our sample spatial database is one
that contains collections of line segments (i.e., maps)
corresponding to features such as roads, railway lines,
boundaries of political and economic units, utility
data, etc. Data structure creation is the time neces-
sary to build the data structure for a particular map.
This is an important issue as when the data structure
is used for just one query, it may not be worthwhile
to expend much e�ort in its construction. Polygoniza-
tion is the process of determining all closed polygons
formed by a collection of planar line segments. For
example, it can be used to �nd the boundaries of all
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countries in the world. Both data structure creation
and polygonalization involve just one data set.

In contrast, the spatial join involves two data sets.
It is one of the most common operations in spatial
databases. This term is usually used in conjunction
with a relational database management system [14]. In
that context, a join is said to combine entities from two
data sets into a single set for every pair of elements in
the two sets that satisfy a particular condition. These
conditions usually involve speci�ed attributes that are
common to the two sets. In the spatial variant of the
join, the condition is interpreted as being satis�ed (i.e.,
two elements are joined) when the elements of the pair
cover some part of the space that is identical. In the
sequential domain, this problem has been studied al-
gorithmically and empirically for the R-tree [8], while
in the data-parallel domain it has only been studied in
an algorithmic context [23].

We examine a variant of the spatial join that seeks
to �nd all line segments that lie within a given dis-
tance of line segments of another type (the line seg-
ments need not be contiguous). This is the spatial
analog of a range query (also termed a window) in a
conventional database where the query region is not
limited to a rectangle. It is also known as a corridor
or a bu�er zone in GIS, or image dilation in image pro-
cessing. As an example, suppose that we have one map
corresponding to the roads in the United States and
another map corresponding to the border of Colorado
and we want to determine all roads that lie within 10
miles of the border of Colorado.

In this paper we focus on representations that sort
the data with respect to the space that it occu-
pies. This results in speeding up operations involv-
ing search. The e�ect of the sort is to decompose the
space from which the data is drawn (e.g., the two-
dimensional space containing the lines) into regions
called buckets. One approach known as an R-tree [19]
buckets the data based on the concept of a minimum
bounding (or enclosing) rectangle. In this case, lines
are grouped (hopefully by proximity) into hierarchies,
and then stored in another structure such as a B-
tree [10]. The drawback of the R-tree is that it does
not result in a disjoint decomposition of space | that
is, the bounding rectangles corresponding to di�erent
lines may overlap. Equivalently, a line may be spa-
tially contained in several bounding rectangles, yet it
is only associated with one bounding rectangle. This
means that a spatial query may often require several
bounding rectangles to be checked before ascertaining
the presence or absence of a particular line.

The non-disjointness of the R-tree is overcome by a
decomposition of space into disjoint cells. In this case,
each line is decomposed into disjoint sublines such that

each of the sublines is associated with a di�erent cell.
There are a number of variants of this approach. They
di�er in the degree of regularity imposed by their un-
derlying decomposition rules and by the way in which
the cells are aggregated. The price paid for the dis-
jointness is that in order to determine the area cov-
ered by a particular line, we have to retrieve all the
cells that it occupies. Here we study two methods: the
R+-tree [15] and a variant of the PMR quadtree [27].

The R+-tree partitions the lines into arbitrary sub-
lines having disjoint bounding rectangles which are
grouped in another structure such as a B-tree. The
partition and the subsequent groupings are such that
the bounding rectangles are disjoint at each level of the
structure. The drawback of the R+-tree is that the de-
composition is data-dependent. This makes it di�cult
to perform tasks that require composition of di�erent
operations and data sets (e.g., set-theoretic operations
such as overlay). In contrast, the PMR quadtree is
based on a regular decomposition. The space contain-
ing the lines is recursively decomposed into four equal
area blocks on the basis of the number of lines that
it contains. We use a variant termed a bucket PMR

quadtree that decomposes the space whenever it con-
tains more than b lines (b is termed the bucket capac-
ity). The decomposition process can be implemented
by a tree structure. It is useful for set-theoretic oper-
ations as the partitions of the two data sets occur in
the same positions.

As mentioned above, R-trees and R+-trees are
closely related to B-trees. An R-tree or R+-tree of
order (m;M ) has the property that each node in the
tree, with the exception of the root, contains between
m � dM=2e and M entries. The root node has at
least 2 entries unless it itself is a leaf node. Thus we
see that the node capacity M in the R-tree and R+-
tree plays the same role as the bucket capacity in the
bucket PMR quadtree. We will make use of this anal-
ogy in our discussion where, at times, the terms will
be used interchangeably.

The problem with using the data-parallel R-tree
and R+-tree data structures to perform a spatial join
is that they do not contain any information to help
us in determining which bounding rectangles in one
map overlap with bounding rectangles in the other
map. This means that little of the search space can be
pruned while performing the operations. The di�culty
is that although the data-parallel R-tree and R+ tree's
main utility is to enable the user to distinguish easily
between occupied and unoccupied regions in a partic-
ular map, they do not provide a means of correlating
the contents of one map with another map. Unfortu-
nately, this is exactly the ability that is needed to im-
plement spatial join algorithms e�ciently. As we will
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see, this places the data-parallel R-tree and R+-tree
at a considerable disadvantage in comparison to the
data-parallel bucket PMR quadtree as it reduces the
potential for interprocess communication thereby re-
sulting in greater execution times for the data-parallel
R-tree and R+-tree.

We use the scan model of parallel computation
[5]. The scan model has been de�ned by Blelloch
in terms of a collection of primitive operations that
can operate on arbitrarily long vectors (single di-
mensional arrays) of data. Three types of primi-
tives (elementwise, permutation, and scan) are used
to produce result vectors of equal length. A scan

operation [6, 4] takes an associative operator
L
,

a vector [a0; a1; � � � ; an�1], and returns the vector
[a0; (a0

L
a1); � � � ; (a0

L
a1
L

� � �
L

an�1)]. The scan
model considers all primitive operations (including
scans) as taking unit time on a hypercube architec-
ture. This allows sorting operations to be performed
in O(logn) time.

The rest of this paper is organized as follows. Sec-
tion 2 gives the construction and polygonization al-
gorithms for the data-parallel bucket PMR quadtree.
The data-parallel R-tree algorithms are not presented
here as they can be found elsewhere [22, 23]. Sec-
tion 3 is concerned with the data-parallel R+-tree and
contains a description of the construction, polygonal-
ization, and spatial join algorithms. Section 4 com-
pares the three data-parallel data structures in terms
of performance data for the speci�ed operations on a
Thinking Machines CM-5 parallel computer. Section
5 contains concluding remarks as well as a discussion
of topics for future research. In our discussion of the
various data structures, in the interest of brevity, we
will drop the quali�er data parallel unless the distinc-
tion needs to be emphasized in the case of a potential
for misunderstanding a claim.

2 Bucket PMR Quadtrees

In this section we discuss the implementation of the
bucket PMR quadtree algorithms for the spatial op-
erations that we examined. We give the construction
and polygonization algorithms as they have not been
formallypresented before. See [23] for the bucket PMR
quadtree spatial join algorithm.

2.1 Bucket PMR Quadtree Construction

The algorithm for building a bucket PMR quadtree
proceeds as follows. Initially, a single processor is as-
signed to each line in the data set, and one processor
to the resultant bucket PMR quadtree as depicted for
the sample data set in Figure 1. Using a downward
scan operation, the number of lines associated with

the single node processor (9 in the example) is deter-
mined and then passed to the node processor. If the
number of lines associated with the node processor ex-
ceeds the bucket capacity (2 in our example), then the
node must be split into four subnodes and each of the
lines must be regrouped, according to the nodes it in-
tersects.

lines

nodes
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Figure 1: Initial bucket PMR quadtree processor as-
signments.

The splitting occurs in two stages. The regrouping
is applied after each split and is achieved with an un-

shu�e operation [4] (where two intermixed types are
rearranged into two disjoint groups termed segments

via two monotonic mappings) which is used to con-
centrate those line processors together into two new
segments, each of which will correspond to all of the
line processors lying either in whole or in part to the
left and right of the x coordinate value of the center
of the block associated with the node processor. The
result of this un-shu�e operation is depicted in Fig-
ure 2. This is achieved by monotonically shifting to
the left (right) all line processors with a midpoint less
(greater) than the split coordinate value. Note that a
line may span two or even three nodes, thus requiring
the line to be duplicated or even triplicated and hence
either one or two additional processors in the line pro-
cessor set are allocated for it (termed cloning [4]). For
example, consider line i in the process of subdivid-
ing the �rst node in Figure 2. Here we see that line
a intersects both the left and right halves of the root
node.
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Figure 2: Result of applying the un-shu�e operation
to the x coordinate value of the center of the block
associated with the node processor.

The second stage applies the un-shu�e to the re-
sulting two segments, thereby creating two sets of two
segments each of which will correspond to all of the line
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Figure 3: Result of applying the un-shu�e operation
to the y coordinate value of the center of the block
associated with the node processor.

processors which lie either in whole or in part below
and above the y coordinate value of the center of the
block associated with the node processor. The result
of this un-shu�e operation is depicted in Figure 3.
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Figure 4: Result of the �rst node subdivision, line du-
plication and un-shu�ing.

Continuing with this iterative process, each line seg-
ment group determines the number of lines it contains,
and then communicates the count to the associated
node processor. For example, in Figure 4, the �rst
line segment group transmits a count of three to node
1, the second line segment group transmits a count
of two to node 2, etc. Each of the node processors
then determines whether or not the transmitted line
count exceeds the bucket capacity. If the bucket ca-
pacity is exceeded, the node will subdivide, and the
associated lines will be regrouped according to which
of the resulting subnodes they intersect. For example,
in Figure 4, the NW and SE nodes will subdivide.

This iterative subdivision process continues until all
nodes in the bucket PMR quadtree have a line count
less than or equal to the bucket capacity, or the max-
imal resolution of the quadtree has been reached (i.e.,
a node of size 1 � 1). Note that in the degenerate
case, even at the maximal resolution of the quadtree,
it is possible that the number of lines associated with a
node exceeds the bucket capacity. For practical split-
ting thresholds (i.e., 8 and above), this situation is
exceedingly rare and will not cause any algorithmic
di�culties provided that the quadtree algorithms do
not assume an upper bound on the number of lines
associated with a given node.

The result of the third and �nal subdivision for our
example data set is shown in Figure 5. Note that one
of the quadtree nodes (node 9) still has its splitting
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Figure 5: Result of the bucket PMR quadtree build
process.

threshold exceeded. To facilitate the discussion of the
algorithms, this node will not be further subdivided.
The bucket PMR quadtree building operation takes
O(logn) time, where each of the O(logn) subdivision
stages requires O(1) computations (a constant number
of scans and re-shu�es).

2.2 Bucket PMR Quadtree Polygonization

Identify each polygon uniquely by the bordering line
with the lexicographicallyminimumidenti�er (i.e., line
number) and the side on which the polygon borders the
line. Polygonization can be achieved without a spa-
tial data structure. Basically, the lines can be sorted
according to their identi�er in O(logn) time. Next,
each line, in sorted sequence, transmits its endpoint
coordinates, line identi�er, and current left and right
polygon identi�ers to all following lines via a sequence
of O(n) scan operations. Each line can independently
determine the identi�ers of the left and right polygons.
The drawback is that it is an O(n) operation with a
large number of scans. Data-parallel variants of spatial
data structures such as the bucket PMR quadtree, as
well as the R-tree and R+-tree can reduce the number
of global scan operations (i.e., a scan across the en-
tire processor set) by instead relying upon segmented
scans executed in parallel.

Given a bucket PMR quadtree, the polygonization
process begins by constructing a partial winged-edge
representation [2] (an association between the incident
line segments forming the minimal and maximal angles
at each endpoint of each segment). This representa-
tion enables us to determine all edges that comprise a
face (i.e., polygon) and all edges that meet at a ver-
tex in time proportional to the number of edges. In
constructing the partial winged-edge representation,
the endpoints of each line in a node are broadcast to
all other lines in the node through a series of scans.
By broadcast we mean the process of transmitting a
constant value from a single processor to all other pro-
cessors in the same node via a scan operation (i.e.,
the vector [a0; a0; : : : ; a0]). Locally, each line proces-
sor maintains the minimal and maximal angles formed
at each endpoint as well as the identities of the cor-
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responding lines. Once the broadcasts are done, each
line processor locally assigns an initial polygon iden-
ti�er for the bordering polygon on the left and right
side (moving from source to destination endpoint).

min

max
max

min

zw

x

y

v

Figure 6: Selecting the initial polygon identi�ers.

In Figure 6, the left polygon identi�er for line seg-
ment z is selected from the minimum identi�ers of the
source endpoint minimal angle (wR, where w is the
line identi�er and R denotes the right side of w), the
destination endpoint maximal angle (yR), and the line
identi�er itself (zL). For the right polygon identi�er
select the minimum identi�er among the source end-
point maximum angle (xR), the destination endpoint
minimal angle (vR), and the line identi�er (zR). In
Figure 6, line z is assigned wR as the initial left poly-
gon identi�er, and vR as the right polygon identi�er.
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Figure 7: Initial polygon assignments.

Figure 7 shows the initial polygon assignment for
the depicted example where the left and right polygon
identi�ers are contained in LID and RID, respectively.
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Figure 8: Polygon assignments after the �rst round of
leaf node merging.

Starting at the leaf level, sibling nodes are then
merged together into their parent nodes (i.e., in Fig-
ure 7, leaf nodes 4 { 7 are merged together, resulting
in leaf node 4 in Figure 8). All the lines in the merged
sibling leaf nodes are sorted, and any duplicate lines
are marked. In Figure 7, the merging of sibling leaf
nodes 4 { 7 will result in one pair of duplicate lines

(line b) as there is a line b in nodes 5 and 7. In or-
der to ensure that each duplicate line has consistent
polygon identi�ers as well as correct winged-edge rep-
resentations, each duplicate line has its endpoints and
polygon identi�ers broadcast to the other duplicate
lines in the merged node. If any of the duplicates'
polygon identi�ers are updated, the identi�er updates
must also then be broadcast among all other lines in
the merged nodes. By update, we mean assigning a
lexicographically smaller polygon identi�er. With the
duplicate line b's in the merged node, initially one in-
stance has left and right polygon identi�ers aL and
aR, and the second instance has polygon identi�ers bL
and bR. The left and right polygon identi�ers of the
second instance of line b are updated from bL to aL,
and bR and aR respectively.

When the second instance of line b is updated (i.e.,
bL becomes aL, and bR becomes aR), these two identi-
�er updates are then broadcast to all other lines in the
merged node. For each line, if the transmitted poly-
gon identi�er update matches either of its current left
or right polygon identi�ers (i.e., the bL to aL update
matches any line's left or right polygon identi�er hav-
ing value bL) the line's polygon identi�er is changed to
reect the broadcast update and the lexicographically
smaller identi�er.

Finally, when merging four sibling nodes together,
any line whose endpoint falls on the shared node
border (i.e., lines a and b in Figure 9a), must also
have their endpoints and polygon identi�ers broadcast
among the merged nodes.
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Figure 9: (a) Example of two leaf nodes A and B merg-
ing (the contents of sibling nodes C and D are not
shown), and (b) the result of the merge operation.

Consider the example in Figure 9a where four sib-
ling nodes labeled A{D are being merged (for sake of
clarity, the contents of nodes C and D are not shown).
There are no duplicate lines in the merging nodes, but
lines a and b have an endpoint that intersect the com-
mon node border. The endpoint coordinates and poly-
gon identi�ers of these two lines are broadcast among
the merged lines, and any appropriate winged-edge up-
dates are made (i.e., the source endpoint of line b is
updated to reect the incidence of line a). For all lines
whose winged-edge representations are updated, the
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polygon identi�ers are checked for possible updates.
For example, line b, whose winged-edge representation
is updated to reect line a, checks its polygon identi-
�ers against line a's and �nds that bL can be updated
to aL, and bR can be updated to aR. Any updates
that are made are then broadcast to all other lines in
the merged node (e.g., the bL to aL update, and the
bR to aR update in Figure 9a). For each merged line,
if the broadcast polygon update matches either its left
or right polygon identi�ers, the polygon identi�er is
changed to reect the broadcast polygon identi�er up-
dates. In Figure 9a, the right polygon identi�er of
line e (bR) is changed to reect the polygon identi�er
update bR to aR. Similarly, the left side polygon iden-
ti�ers of lines d and f (bL) are changed to reect the
polygon identi�er update bL becomes aL. Figure 9b
shows the resulting polygon identi�ers.

a f h a b c e g d f c d g
a f a a a c c a d d c d d
L L R L L L L R L L L L L
a f a a a a a c d d c c c
R R L R R L L L R R R R L

a b

cd

e
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R ID

nodes

lines

1 2 3 4

h

Figure 10: Polygon assignments after the second round
of leaf node merging.

The merging and updating process continues up the
entire bucket PMR quadtree until all lines are con-
tained in a single node and all necessary broadcasts
have been made (as shown in Figure 11, with the �nal
assigned polygon identi�ers circled).
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R R L L L L L L

a b
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e
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nodes
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1

h

aR cL
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Figure 11: Completion of the polygonization opera-
tion.

The bucket PMR quadtree's spatial sort greatly lim-
its the amount of inter-segment communication neces-
sary as compared with a non-spatially sorted dataset
where all lines would have to communicate their end-
points and polygon identi�ers to all others.

3 R+-trees

The R+-tree algorithms are similar to those for the R-
tree. The principal di�erence is in the amount of work
needed in the data structure building phase to ensure

a good node split. Below we give a brief outline of the
algorithms for the various operations.

3.1 R+-tree Construction

The R+-tree construction algorithm is similar to that
of the R-tree with a few additional modi�cations. Ini-
tially, one processor is assigned to each line of the
data set, and one processor to the resultant R+-tree.
Within the line processor set, a downward scan opera-
tion is performed on the line processor set to determine
the number of lines associated with the single R+-tree
node processor. The number of lines in the segment is
then passed to the single R+-tree node processor. If
the number of lines in the segment exceeds the node
capacity M , then the R+-tree root node must be split
into two leaf nodes and a root node. The two new
leaf nodes are inserted into the R+-tree node proces-
sor set, with the root node updated to reect the two
new children.

The R+-tree node splitting algorithm �rst sorts all
lines in the node according to the left edge of their
bounding boxes. For each node split whose result sat-
is�es a pre-established minimal node occupancy level
of m=M lines in the two resulting nodes, the coordi-
nate value of the left edge is broadcast to each of the
lines in the node being split. Each line in parallel clips
itself against the split coordinate value. The clip re-
sults in either one (the line does not intersect the split
coordinate value) or two lines (the line intersects the
split coordinate value). Each resulting line determines
in which of the two new nodes it is contained. The
de�nition of an R+-tree requires that each node at a
given level of the tree is disjoint from all other nodes.
In order to ensure this disjoint decomposition, some
lines will have to be split across multiple nodes in the
�nal decomposition. This situation also arises in the
bucket PMR quadtree. Once each line determines the
node in which node it will lie, a sequence of scan op-
erations is used to determine the bounding box that
will contain the lines in the two new nodes. Finally,
the perimeter of the two resulting bounding boxes is
computed.

The splitting process continues for each of the legal
node splits and split axes. Once all legal node splits
have been determined and the resulting node perime-
ters are computed, the split axis and coordinate value
that correspond to the minimal perimeter of the two
resulting nodes is selected as the �nal node split value.
In the event of a tie, some other metric such as choos-
ing the split with the minimal bounding box areas may
be employed. After choosing the splitting axis and the
coordinate value, an un-shu�e operation concentrates
those line processors together into two new nodes, each
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of which corresponds to one of the two R+-tree leaf
node processors.

The insertion algorithm proceeds iteratively as de-
scribed above, with each node determining the number
of lines it contains, and transmitting the count to the
associated R+-tree node processor. If the number of
lines in the node exceeds M , then the node (and corre-
sponding R+-tree node processor) are split. Note that
the leaf node subdivision process may result in proces-
sors that correspond to internal nodes in the R+-tree
being forced to split when the number of their children
(e.g., leaf nodes) exceeds the node capacity. These in-
ternal node splits may possibly propagate up to the
root node of the R+-tree (and are referred to as up-
ward splits).

An additional complication in the node splitting
process arises if the splitting of an internal node forces
the splitting of some of the descendents (both nodes
and lines) of the splitting internal node. Unlike the
R-tree which does not enforce a disjoint decomposi-
tion, an upward internal node split may result in the
selection of a split axis and a coordinate value that
intersects the descendents of the splitting node. The
disjoint decomposition requires that any intersecting
descendents (nodes or lines) must also be split. Split-
ting the descendents of a node is termed a downward
split. The process terminates when all nodes in the
node processor set have at most M child processors
(either internal R+-tree nodes or line processors).

3.2 R+-tree Polygonization

The R+-tree polygonization algorithm is very similar
to that for the R-tree [22]. Because the R+-tree em-
ploys a disjoint decomposition, a single line may reside
in more than one leaf node (similar to the bucket PMR
quadtree). In order to handle this di�erence with re-
spect to the R-tree, the polygonization algorithmmust
be changed somewhat during the node merging phase.

Rather than marking all lines that intersect any of
the overlapping regions formed by the bounding boxes
of the nodes that are merging (as there are none with a
disjoint decomposition), the update procedure follows
the technique described in the bucket PMR quadtree
polygonization algorithm in Section 2.2. All the lines
in the merged sibling node are �rst sorted according
to identi�er, and all duplicate lines are marked for
rebroadcasting among the lines in the merged nodes.
This enables the correct updating of duplicate lines in
the merged nodes. The duplicate node rebroadcasting
operation is used to update the winged-edge represen-
tations of all duplicate lines and maintain consistency.
During the update, we note any polygon identi�ers
that must also be updated (i.e., among duplicate lines,

if one line has polygon identi�ers that are less than the
polygon identi�ers of the second line). In addition, all
lines whose endpoint falls on a common node border
are marked for the rebroadcast of their endpoint coor-
dinates in order to update the winged-edge represen-
tations and polygon identi�ers of any line that may
share an endpoint but lie in another node.

If any line has its polygon identi�ers updated dur-
ing the �rst round of rebroadcasting, then the poly-
gon identi�er update must be communicated in a sec-
ond round of broadcasting to all other lines in the
merged node. Locally, if the transmitted polygon up-
date matches either the left or right polygon identi�ers
of the local line, then the local polygon identi�er is up-
dated to reect the polygon identi�ers that have been
broadcast.

As is the case with the bucket PMR quadtree and
R-tree polygonization algorithms, the merging and up-
dating process continues up the entire R+-tree until all
lines are contained in a single node and all necessary
broadcasts have been made.

3.3 R+-tree Spatial Join

The R+-tree spatial join algorithms are identical to the
one used with the R-tree [23], with one small modi�-
cation at the end of processing. Because the disjoint
decomposition of the R+-tree may cause some lines to
be split across multiple leaf nodes, it may be the case
that a line in the source map is only within a given
distance of a portion of a line that has been split in
the target map. Thus, some of the pieces of a partic-
ular line in the original target map may be marked as
within a given distance, while other portions are not
marked. In order to resolve this inconsistency among
portions of lines that correspond to the same line in
the original target map, once all intersection determi-
nations are completed, the pieces of the target lines are
sorted according to identi�er. This results in all pieces
of a line in the original target map occupying a con-
tiguous space in the linear ordering of processors. An
upward and a downward scan operation can be used to
resolve any inconsistencies, resulting in all target lines
being properly marked.

4 Performance Comparison

The performance of the three spatial structures in
the data-parallel environment is compared using the
TIGER/Line File map of Prince Georges County, MD
(containing approximately 35000 line segments). Our
data-parallel algorithms assume that the entire data
structure resides in main memory of the Thinking Ma-
chines CM-5 (32 processors, 1 GB RAM). Thus mea-
surements of I/O performance are meaningless in this
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context (the development of disk-based data-parallel
analogs to the described algorithms is a subject for
future research).
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Figure 12: Build times for the three data structures for
the map of Prince Georges County, MD (35000 lines).

4.1 Data Structure Build Performance

Figure 12 presents the build times for the three data
structures for node capacities ranging from 5 to 50.
The R+-tree was built with a 49.5% minimal occu-
pancy level (see the discussion below). From the �g-
ure, all three structures exhibit decreasing build times
as the node capacities increase. This behavior is due
to the decreased amount of spatial sorting that takes
place with the increased node sizes. The three data
structures exhibit analogous behavior in the sequential
environment [21]. It is also apparent that the bucket
PMR quadtree is approximately 3{4 times faster than
the R-tree for similar node capacities. The relative dif-
ference in build performance is attributable to the use
of a regular decomposition in the case of the bucket
PMR quadtree which makes it very easy to split an
overowing node as there is just one choice. In con-
trast, the R-tree and the R+-tree make use of irregular
decomposition which requires testing a possibly large
numbers of split axis/coordinate pairs in determining
a locally optimal node split.

Figure 13 shows the build times for the R+-tree
on the Fredericksburg, VA map containing approxi-
mately 1700 line segments. In addition to varying the
node capacity between 10 and 50, we also varied the
minimal occupancy levels between 25% and 50% (as
a point of reference, the best performance for an R-
tree, termed an R�-tree [3], has been observed to 30%
and is the one that we use in our experiments). When
splitting a node, a minimal occupancy level of k% en-
sures that each of the two resulting nodes is at least
k% full. Hence, when the minimal occupancy level
is raised, fewer split axis/coordinate pairs are tested
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Figure 13: Execution time in seconds for the R+-
tree build algorithm for the map of Fredricksburg, VA
(1700 lines).

when choosing the best split. This results in increas-
ing the speed of of the build process as can be seen in
Figure 13. As is the case in the Prince Georges map,
in Figure 12, increasing the node capacity also results
in decreased build times.

It is important to note that although Figure 13 rep-
resents a map that is approximately 5% of the size of
that in Figure 12 (i.e., 1700 lines versus 35000 lines),
the R+-tree takes 198.85 seconds to build while the
R-tree (using a node capacity of 50 and a minimal oc-
cupancy level of 30%) for the same map requires 37.78
seconds to build and the bucket PMR quadtree re-
quires just 12.97 seconds. We found that despite the
R-tree and R+-tree being quite similar in structure,
the R+-tree takes approximately 2 orders of magnitude
longer to build per line segment in the dataset. This
di�erence is attributable to a combination of the use of
the scan model and the fact that the R-tree does not
employ a disjoint decomposition of space (thus pre-
venting the children of a splitting node from them-
selves splitting), making it possible to determine the
locally optimum node split with a constant number
(approximately 10) of upward and downward scan op-
erations. In contrast, the node splitting process in the
R+-tree, with its disjoint decomposition of space, is an
iterative process where the number of iterations is di-
rectly proportional to the number of items in the node
that is being split. This testing for splits means that
a large number of clipping operations must to be per-
formed as we need to determine which part (or parts)
of the line is associated with the two nodes resulting
from the split.

Note that although the bucket PMR quadtree (with
its disjoint decomposition) also requires line clipping,
each line is clipped in parallel a maximum of 4
times the height of the tree. Also the fact that the
bucket PMR quadtree employs a regular decomposi-
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node R-tree R+-tree
capacity time scans time scans

25 37.2 865 1309.3 28212
30 35.6 823 1274.6 27545
35 33.5 739 1268.0 27305
40 30.4 654 1269.2 27187
45 29.5 614 1261.3 27040
50 28.5 614 1246.6 26691

Table 1: Data structure build statistics for the R-tree
and R+-tree both using a 49.5% minimal occupancy
level for the Prince Georges map.

tion means that when a node is split, there are e�ec-
tively only two candidate split axis/coordinate pairs.

It is interesting to observe that the R+-trees that
we built for the Prince Georges map used a minimal
occupancy level of 49.5% (resulting in approximately
3000 line clips) and a node capacity varying between
25 and 50. This took between 1309.30 seconds and
1246.6 seconds as shown in Table 1. The analogous
R-tree (employing the same node capacities and mini-
mal occupancy levels), took between 37.2 seconds and
28.5 seconds. Note that if we would have used an
R+-tree with a minimal occupancy level of 30% (as in
the R-tree), these numbers would have been at least
one order of magnitude higher. Unfortunately, due
to hardware and time limitations we were not able to
perform these tests.
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Figure 14: Polygonization times for the three struc-
tures.

4.2 Polygonization Performance

Figure 14 shows the execution times for map polygo-
nization for each of the three spatial data structures
using the Prince Georges maps built in Section 4.1.
Due to the performance ine�ciencies of the R+-tree, a

minimal occupancy level of 49.5% was employed, while
the R-tree used the standard 30% level. From the �g-
ure it is clear that the bucket PMR quadtree o�ers
signi�cant performance advantages over both the R-
tree and the R+-tree. The di�erence is roughly one
order of magnitude. It is attributable primarily to the
considerable amount of time that the R-tree and the
R+-tree must spend in determining which nodes are
intersecting (or adjoining in the case of the R+-tree)
when merging sibling nodes. For the bucket PMR
quadtree, this computation is immediate as a result
of regular decomposition. In addition, at each stage
of the polygonization process, the R-tree and R+-tree
merge many more nodes/lines together (i.e., a node
occupancy of n implies a fanout of n), while for the
bucket PMR quadtree four nodes are merged together
at each stage of the computation. Essentially, the
bucket PMR quadtree performs a larger number (equal
to the height of the tree) of smaller node merges (with
respect to the number of nodes being merged) than
the R-tree and the R+-tree.

4.3 Spatial Join Performance

The key issue in the performance of the bucket PMR
quadtree vis-a-vis the R-tree and the R+-tree is the
use of regular decomposition. Thus since the data-
parallel algorithms for the R-tree and the R+-tree are
so similar, we only tested the R-tree algorithms. The
performance of the R+-tree will be worse than that
of the R-tree because of the use of disjoint decompo-
sition in addition to being irregular. Thus lines are
broken into smaller portions resulting in correspond-
ingly more leaf nodes. This leads to an increase in the
intersection lists between source and target nodes and
implies greater execution times. Thus, due to space
limitations, here we focus on the di�erences between
the R-tree and the bucket PMR quadtree.

In the interest of obtaining a better understanding
of the R-tree spatial join operation, we tested both
a top-down and bottom-up algorithm, while only a
bottom-up algorithm was tested for the bucket PMR
quadtree as this is the most logical approach to imple-
ment the operation. For additional comparison pur-
poses, a brute-force solution that does not employ any
spatial decomposition (i.e., each source line is broad-
casted to each target line) was implemented as well.
Note that the execution time of this brute-force ap-
proach is independent of the spatial join condition (i.e.,
the distance within which the desired lines are found).

For each of the spatial joins, the set of lines corre-
sponding to railroads in the Prince Georges map (334
line segments) was chosen as the source map, while the
set of lines corresponding to the road network in the
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Prince Georges map (28514 line segments in contrast
to a total of 35000 line segments in the original map
which includes all of the linear features rather than
just the roads) was chosen as the target map. In this
case, the spatial join query is one that seeks to deter-
mine which roads are within a speci�ed distance of a
railroad line. The distance (i.e., radius of expansion)
varied between 0 and 50 where the mapwas normalized
on a scale of 16384 � 16384. In addition, the bucket
capacity for the bucket PMR quadtree varied between
8 and 32, while R-tree node capacities ranged between
10 and 50.
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Figure 15: Execution time in seconds for the bucket
PMR quadtree spatial join algorithm.

Figure 15 presents the cpu times for the bucket
PMR quadtree spatial join operation as a function
of the radius of expansion and the bucket capacity.
We observe that for this map the execution time is at
its minimum for a bucket capacity of roughly 14 to
16. As the radius of expansion increases toward 50,
these bucket capacities continue to exhibit good per-
formance although the advantage is not as great.

Two basic forces work against each other as the ra-
dius of expansion and bucket capacity increase. First,
with a larger radius of expansion, fewer source lines are
removed from consideration as we iterate at levels suc-
cessively closer to that of the root node, thus resulting
in more source line to target line endpoint transmis-
sions. Second, as the bucket capacity increases for a
�xed radius of expansion, we have fewer nodes but of
larger capacity. The lessened node count results in a
quadtree of shallower depth (which will result in fewer
iterations of the spatial join algorithm), but each iter-
ation takes longer as more source line segments need
to transmit their endpoint coordinates to the target
lines.

Figure 16 shows the cpu times for the top-down R-
tree spatial join as a function of the radius of expansion
and the node capacity. Note that R-trees with smaller
node capacities (i.e., 10 or 15) exhibit execution times
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Figure 16: Execution time in seconds for the top-down
R-tree spatial join algorithm.

that are considerably less than for larger node capac-
ities (i.e., 45 or 50). The reason for this substantial
di�erence in performance is that smaller node capac-
ities result in a �ner decomposition of space. In par-
ticular, each of the smaller source nodes intersects a
smaller number of target nodes. With this �ner granu-
larity, there is increased opportunity for parallel com-
munication when broadcasting the source lines to the
appropriate target nodes.

Not surprisingly, the execution times for a �xed
node capacity tend to increase as the radius of expan-
sion increases. Similar to what was observed with the
bucket PMR quadtree, the increased radius of expan-
sion results in a greater number of source/target node
intersections as the region around each source node
that has a potential of being within the given distance
of a target node is larger.
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Figure 17: Percentage of additional execution time
required by the leaf node intersection determination
phase of the bottom-up R-tree spatial join algorithm
relative to the top-down algorithm.

Figure 17 shows the percentage of additional execu-
tion time required by the node intersection phase of the
bottom-up R-tree spatial join algorithm relative to the
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expansion CPU seconds
radius PMR R-tree
0 32.34 195.68
5 32.93 199.82
10 33.57 200.87
20 36.43 224.87
30 37.61 225.61
40 39.32 229.79
50 43.00 240.48

Table 2: Execution times for the bucket PMR quadtree
and R-tree spatial join algorithms taken from Fig-
ures 15 and 16 (node capacity 20).

node intersection phase of the top-down R-tree spatial
join algorithm. For the given node capacities and radii
of expansion, the bottom-up procedure requires be-
tween 40{135% more cpu time to determine all node
intersections. It should be clear that the top-down
algorithm (which makes full use of the R-tree decom-
position) o�ers signi�cant performance advantages as
compared with the simpler bottom-up algorithm. The
advantage of the top-down algorithm was pronounced
when the node capacities were smallest (i.e., 10{25)
and the corresponding tree height was greatest. More-
over, the top-down algorithmperformed relatively bet-
ter with a small radius of expansion. Unfortunately,
the node intersection determination phase of the spa-
tial join operation only consumes 2{25% of the entire
algorithm (with the greatest fraction occurring when
the node capacity and radius of expansion are small).

When comparing the execution times of the bucket
PMR quadtree and top-down R-tree spatial join algo-
rithms, it is apparent that the bucket PMR quadtree
o�ers signi�cant performance advantages. For exam-
ple, consider Table 2 which lists the cpu times for the
Prince Georges map's bucket PMR quadtree and R-
tree (each with a node capacity of 20) for a variety of
source map expansions. For each of the listed expan-
sions, the R-tree takes approximately 5{6 times longer
than the corresponding bucket PMR quadtree. This
performance advantage is primarily because the bucket
PMR quadtree makes use of a regular disjoint decom-
position of space which, in a data parallel environment,
facilitates increased amounts of parallel communica-
tion between source and target maps in comparison
to the R-tree. This drawback of the R-tree cannot be
overcome by using classical R-tree improvements such
as the R*-tree [3].

Our �nal comparison was designed to answer the
question of whether using a spatial decomposition
method is worthwhile. This was achieved by mak-

ing use of a true brute-force approach where a spa-
tial decomposition is not employed (i.e., each source
line broadcasts to each target line). It proved supe-
rior to both R-tree algorithms in terms of the execu-
tion time required. The brute-force approach for the
Prince Georges map required 54.95 cpu seconds, re-
gardless of the radius of expansion. In contrast, the
top-down R-tree spatial join algorithm required a min-
imum of 118.79 seconds for all combinations of node
capacity and radius of expansion, while the bottom-up
R-tree required a minimum of 151.26 seconds. On the
other hand, our bucket PMR quadtree spatial join al-
gorithms proved superior to the brute-force approach
in all but one combination of splitting threshold and
radius of expansion (the data parallel bucket PMR
quadtree for the Prince Georges map required between
26.41 and 55.16 seconds).

Of course, we must bear in mind that these execu-
tion times are for two map spatial joins. If we were
to implement single map versions of the queries (i.e.,
given a single map containing line segments represent-
ing both roads and railways being distinguished by
appropriate attribute ags), the performance of the
R-tree would increase considerably; perhaps even to a
level comparable to that displayed by the bucket PMR
quadtree. Single map spatial join algorithms are a
topic for future research.

5 Concluding Remarks

Data-parallel algorithms for data structure construc-
tion, polygonization, and computing a spatial join for
the bucket PMR quadtree, R-tree, and R+-tree spa-
tial data structures have been presented. Tests were
conducted for each algorithm which revealed better
performance for the bucket PMR quadtree. The main
reason for this behavior is the fact that the bucket
PMR quadtree yields a regular disjoint decomposi-
tion of space while this is not the case for the R-tree
or the R+-tree. Interestingly, for the spatial join, a
brute-force approach that does not employ a spatial
decomposition proved superior to both of our R-tree
and R+-tree implementations. This further empha-
sizes the penalty incurred by using either non-disjoint
or irregular decompositions in the parallel domain.
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