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ABSTRACT

With online social networks being extended to geographical space,
location context plays a key role in many applications such as local
event detection and location recommendation. Geotagged tweets in
Twi�er serve as an invaluable source to understand people’s activi-
ties in urban space. Analyzing geotagged tweets to identify implicit
contexts among location, time and text is an interesting problem.
In this paper, we present LeGo-CM, a methodology for Leearning
embeddings of Geotagged tweets for Cross-Modal search such as
locations, time units (hour-of-day and day-of-week) and textual
words in tweets. �e resulting compact vector representations of
these entities make it easy to perform searches like “�nd which
locations are mostly related to the given topics“. In LeGo-CM, we
�rst build a graph of entities extracted from tweets in which each
edge carries the weight of co-occurrences between two entities.
�e embeddings of graph nodes are then learned in the same la-
tent space under the guidance of approximating stationary residing
probabilities between nodes which are computed using personal-
ized random walk procedures. We evaluate LeGo-CM on datasets
of New York City and Los Angeles, showing that the proposed
method generally outperforms competitive baseline approaches.
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1 INTRODUCTION

Accessing news tweets by location is of great interest (e.g.,see [1,
2] which are based on the NewsStand system [3–5]). Geotagged
tweets are particularly interesting in the sense that they provide
the complement information about the places of interest [6–13],
e.g., where the activities occur. Such location information is crucial
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when pro�ling human activities by completing the three pieces of
information regarding where, when and what.

In this paper, we aim to uncover the correlation between loca-
tions, time and topics in human’s urban activities hidden in geo-
tagged tweets. It is, however, challenging to extract location, time
and topic context from geotagged tweets. First, although geotagged
tweets provide GPS coordinates indicating where people participate
in activities, these coordinates o�en impose certain disagreement
even for the same event at the same place, due to the �exibility
of people’s movement and sometimes the noise of GPS satellite
signals. Second, it is hard to e�ectively and e�ciently capture the
cross-modal correlations between the spatial, temporal and textual
aspects of people’s daily-life activities. For example, the techniques
of document-term matrix, TF-IDF and Single Value Decomposition
(SVD) are o�en applied to analyze the co-occurrence relationship
between locations and words. Such methods, however, can not
be easily modi�ed to cope with data of three or more dimensions.
Tensor rank decomposition is more promising in modeling high-
dimension data but less applicable for large-scale dataset due to its
high computational complexity.

�is paper aims to learn to represent the spatial, temporal and
textual entities in the geotagged tweets by means of embedding
vectors in the same semantic space. We propose LeGo-CM to ac-
complish this learning task. �e general idea of LeGo-CM works
as follows. First, LeGo-CM extracts essential spatial, temporal and
textual entities from the geotagged tweets. Spatial entities refer
to locations of interest which witness the aggregation of people.
�ey are usually identi�ed using a clustering algorithm [14, 15]
and are in the form of groups of tweet locations. For the publish
time of tweets, LeGo-CM uses the features like hour-of-day and
day-of-week as temporal entities.As for textual entities in tweets,
we address the extracted keywords and phrases a�er removing stop-
words. Second, LeGo-CM systematically constructs a co-occurrence
graph that spans spatial, temporal and textual entities in tweets.
In particular, the nodes represent the entities, and the edges are
weighted by the number of times that two nodes co-occur in tweets.
�ird, LeGo-CM exploits a graph learning algorithm that approxi-
mates the stationary residing probabilities between nodes which
result from performing personalized random walk procedures.

�e contributions of this paper are summarized as follows.
• First, we comprehensively pro�le people’s activities in Twi�er

from 4 aspects: location, words, hour-of-day and day-of-week.
• Second, for cross-modal search, we construct a co-occurrence

graph to calculate stationary residing probabilities between
nodes, which subsequently guides the learning process in the
graph embedding algorithm.
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2 RELATEDWORK

�ere has been much work on identifying correlations between
locations and textual contents and sometimes time factors. Some
work has focused on discovering geographical topics [16, 17]. Our
method is di�erent from these works because they rely on proba-
bilistic graphical models which impose prior distribution assusmp-
tions on the existing data while we rely on the simple co-occurrence
relationship to learn embeddings.

�erefore, we are more interested in studies which similarly rep-
resent locations and topics in the form of vectors. �e techniques
based on document-term matrix (such as TF-IDF, SVD) provide a
typical way of presenting multi-dimensional data as vectors. How-
ever, such techniques are di�cult to extend to high-dimensional
data. Recently, there have been e�orts bringing the technique
of word2vec [18] to location-based social networks in order to
learn embedding representation of locations and users [19–21]. �e
foundation of these methods lies in a graph embedding strategy
proposed in DeepWalk [22].

Similar to ourmethod,CrossMap [23] also exploits co-occurrence
relationships to jointly learns embeddings for location, time and
text. �e key di�erences are two-fold: (1) We try to minimize
the gap between embedding-based probabilities and graph-based
stationary residing probabilities while CrossMap minimizes the
di�erence between embedding-based probabilities and outdegree-
based probabilities; (2) We include the features of hour-of-day and
day-of-week in time while CrossMap relies on detected temporal
hotspots. ReAct [24] also uses co-occurrences between location,
time and text in tweets to learn embeddings. However, its location
is in the form of grid cells of 300mx300m. Although such a tessella-
tion of space may simplify the processing of geospatial location, its
assumption of a uniform distribution may not �t well to real-life
tweet data and is sensitive to parameters like grid cell size and
sometimes noise. In contrast, our method identi�es spatial clusters
of tweets as locations of interest beforehand.

Figure 1: System overview

3 METHOD

3.1 Spatial, Temporal and Textual Entity

Extraction

3.1.1 Spatial Entity Extraction. We use mean shi� to group to-
gether GPS points in tweets and thus identify locations of interest.
Mean shi� is a clustering algorithm that assigns circular regions of
data points to clusters by iteratively shi�ing towards themodes. �e
mode can be understood as a local maxima of the density function
upon the samples of data points. Formally, let zt be the estimation
of mode at iteration t , zt+1 can be de�ned as:

zt+1 =

∑
p∈Nb (zt )

K (p−z
t

b )p∑
p∈Nb (zt )

K (p−z
t

b )
(1)

whereNb (zt ) represents a set of points falling inside the circular
region centered at zt with a radius of b (also called the bandwidth
in the mean shi�); K (p−z

t

b ) is a kernel function that determines the
weight of nearby points on the basis of their distance to the mode

estimation. In this paper, we use a �at kernel as follows:
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�e mean shi� continues to iterate until zt converges to a small
variance, e.g., ‖zt+1−zt ‖ goes below a small threshold, and thereby
yields a location of interest.

3.1.2 Temporal and Textual Entity Extraction. Comparing to ex-
tracting locations of interest from tweets, it is quite intuitive and
straightforward to extract temporal and textual entities. For exam-
ple, we can directly calculate the local hour-of-day and day-of-week
from the UNIX timestamp in a tweet’s publication time. As for es-
sential words in tweets, we exploit the o�-the-shelf tool [25, 26] 1
to a�ain entities and noun phrases as textual entities [15].

3.2 Co-occurrence Graph Construction

Up to now, we have 4 types of entities: location, hour-of-day (hour),
day-of-week (wday) and word as illustrated in Figure 2. �ese enti-
ties function as the vertices in the co-occurrence graph G = (V ,E).
When building the co-occurrence graph G, an edge ei j between
node vi and node vj establishes and its weight is added by 1 if vi
and vj co-exist in the tweet d . Note that the nodes of “word” have
additional edges within themselves to capture the co-occurrence
between words in tweets, which is di�erent from the other 3 types
of entities.

Figure 2: Illustration of basic co-occurrence graph.

3.3 Cross-Modal Search

�e objective of cross-modal search is to answer this question:
given an entity from one modal, which entities in other modals
are most likely to be associated with it? Formally, given a source
entity vmi from modalm and a target entity vnj from modal n, what
is possibility of observing vnj from vmi ? In the following, we try
to approach this possibility from two perspectives: co-occurrence
graph and vectorized embeddings, and then utilize their relationship
to guide the embedding learning process.

3.3.1 From the Perspective of Co-occurrence Graph. On the co-
occurrence graph G, we resort to modifying personalized graph
random walk procedures [27–30] to approach the above probability,
which is actually equivalent to the possibility of the random surfer
residing at vertex vnj if he initially starts at vmi . For convenience,
let us denote this probability by p(vmi → vnj ).

Suppose that we now have the converged residing probabilities
� =

[
rv1 rv1 · · · rvN

]
, instead of directly using the resid-

ing probability of vertex vnj (i.e., rvnj ), we calculate its normalized

1h�ps://github.com/ari�er/twi�er nlp

https://github.com/aritter/twitter_nlp
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variant as the p(vmi → vnj ):

p(vmi → vnj ) =
rvnj∑

vk ∈V n
rvk

(3)

where V n denotes the set of vertices from the modal n.

3.3.2 From the Perspective of Vectorized Embeddings. Remember
that our goal is to approach the possibility of generating the entity
vnj from the entityvmi which is from a di�erent modal. Suppose that
we have the vectorized embeddings of the entities, it is relatively
easy to model the objective probability using the embeddings com-
pared to co-occurrence graph. For example, we may use p(vnj |v

m
i )

as the objective probability, which is de�ned as:

p(vnj |v
m
i ) = ev

m
i ·v

n
j∑

vk ∈V n
ev

m
i ·vk

(4)

where v is the vectorized embedding of entity v and V n similarly
denotes the set of entities from the modal n.

3.3.3 Learning Embeddings. Given the probability of p(vmi →
vnj ) from the co-occurrence graph and the probability of p(vnj |v

m
i )

from the initial embeddings, the goal of learning embeddings is to
iteratively update values in embeddings so that p(vnj |v

m
i ) becomes

closer and closer to p(vmi → vnj ). In doing so, eventually the com-
puted vectorized embeddings will be able to preserve the structure
information of the co-occurrence graph. We use the Kullback-
Leibler divergence KL(·) to measure the di�erence between two
probability distributions. Subsequently, we de�ne the loss function
between any two modals of entities as:

L(m,n) =
∑

vmi ∈V
m
KL(p(vmi → ·)‖p(·|v

m
i ))

+
∑

vnj ∈V
n
KL(p(vnj → ·)‖p(·|v

n
j ))

(5)

Such a loss function basically means to minimize both of the
distribution di�erences to generate one modal of entities from enti-
ties in another modal and conversely to generate another modal of
entities from entities in this modal. At last, the total loss function is
the sum of di�erent L(m,n) with respect to all di�erent edges types
in Figure 2. Note that the computation of such loss functions can
be solved e�ciently using stochastic gradient descent and negative
sampling [18, 23].

4 EVALUATION

4.1 Experimental Settings

4.1.1 Datasets. �e evaluation is performed on two sets of geo-
tagged tweets collected from 2014-08-01 to 2014-11-30 in two cor-
responding cities: New York City (NYC) and Los Angeles, CA
(LA) [24]. �e total number of tweets, is about 1.5 million in NYC
and 1.2 million in LA, respectively. We randomly take 10, 000 tweets
for testing and the rest for learning the embeddings of location,
words, hours-of-day and days-of-week.

4.1.2 Baseline Approaches. We comparewith the following base-
line approaches: TF-IDF, SVD, Doc2Vec [31], ReAct [24], and
CrossMap [23].

By default, TF-IDF, SVD and Doc2Vec handle data of only two
dimensions. We perform the following preprocessing in these meth-
ods in order to incorporate all the entities of location, words, hours-
of-day and days-of-week. We treat each location as a document
and its sentences comprise the tweets falling inside the location.
�e hour-of-day and day-of-week values extracted from posting
time of each tweet are parsed as special words and appended to
that tweet’s bag of words.

4.1.3 Parameter Se�ings. �e major parameters in LeGo-CM
are set as follows. For embedding dimension length, we set Ndim =
200. For time in tweets, we extract its natural integral hours-of-day
and days-of-week, i.e., hour = {0, 1, 2, · · · , 21, 22, 23} and wday =
{Mon,Tue,Wed,Thu, Fri, Sat , Sun}, in order to re�ect pa�erns of
people’s daily life in urban areas. We set the bandwidth b of mean
shi�2 for clustering tweet locations to 160m, which yields around
18, 000 location clusters in NYC and 17, 000 location clusters in LA.
As for the random walk procedure to calculate stationary residing
probabilities between vertices in the co-occurrence graph, we use a
default damping factor h = 0.8 and run 20 iterations in all cases. In
the embedding learning process, we set the number of epochs for
training Nepoch = 256 and the learning rate αlearn = 0.02.

For comparison, all methods are tested using the same Ndim
except for TF-IDF. Also note that TF-IDF, SVD and Doc2Vec use the
same representations of location and time as LeGo-CM. Although
ReAct is also fed with the same form of locations, it uses natural
integral hours and time hotspots for time representations as in their
implementation, respectively.

4.2 �antitative Analysis

4.2.1 E�ectiveness. We evaluate the e�ectiveness of di�erent
embedding methods by performing the tasks of ranking tweets with
negative a�ributes. To quantify the ranking orders of testing tweets,
we adopt the metric of Mean Reciprocal Rank (MRR) [23, 24], which
is de�ned as:

MRR =

∑
d ∈DT est

1
Rd

|DT est |
(6)

where DT est represents the testing dataset of tweets. It is easy to
see that higher-quality embeddings will yield larger MRR values.
In our se�ings, we set |DT est |= 10, 000 and then compute such an
MRR for each of the a�ributes in 〈locd ,hourd ,wdayd ,wordd 〉.

Table 1: Comparison results using Mean Reciprocal Rank.

Method NYC LA
Loc Word Hour WDay Loc Word Hour WDay

TF-IDF 0.275 0.274 0.279 0.280 0.277 0.279 0.283 0.286
SVD 0.402 0.321 0.321 0.321 0.350 0.317 0.341 0.342
Doc2Vec 0.448 0.491 0.342 0.345 0.469 0.523 0.338 0.336
ReAct 0.470 0.459 0.167 N/A 0.560 0.561 0.167 N/A
CrossMap 0.516 0.619 N/A N/A 0.514 0.642 N/A N/A
LeGo-CM 0.589 0.598 0.348 0.348 0.616 0.612 0.339 0.339
�e results of LeGo-CM for cross-modal search are listed in

Table 1, and the MRR value in our method is bold if it is the high-
est value in the comparison results. It shows that LeGo-CM out-
performs almost all baseline approaches including TF-IDF, SVD

2h�ps://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShi�.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
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and Doc2Vec and achieves be�er results than the state-of-the-art
methods in most cases. In particular, a signi�cant improvement is
observed over ReAct with respect to the MRR values of locations.
Note that the MRR values with respect to day-of-week are not re-
ported for ReAct because this method does not use this feature.
Similarly, CrossMap uses the hotspots in the temporal dimension
to represent time and thus does not report the MRR values for the
integral features of hour-of-day and day-of-week. In general, TF-
IDF has the worst performance in most cases due to its direct use
of sparse row/column vectors extracted from the document-term
matrix. SVD improves over TF-IDF by performing dimentionality
reduction and thereby only preserves the most essential informa-
tion in the compacted row/column vectors in the document-term
matrix. In comparison, Doc2Vec gets much be�er results on loca-
tion and word by encoding them in the same latent space. ReAct is
not as good as we expected. �is is probably resulted from its online
learning process which only addresses the most recent information
happening at a location and chooses to forget the past information
in an exponential time-decay manner. �is also explains its low
MRR values of hour-of-day. Although CrossMap achieves slightly
be�er MRR values than our method LeGo-CMwith respect to word,
it has signi�cant lower MRR values with respect to location.

4.2.2 E�iciency. To fairly investigate the e�ciency of learning
process, we omit all the data preparation operations and only ad-
dress the step of model training. �e experiments are conducted
on an AWS EC2 instance with 240GB memory and an Intel Xeon
CPU (E5-2686 2.30GHz). In each method, we record the time spent
in processing the training tweets. �e results are reported on the
NYC dataset as it contains relatively more tweets.

Figure 3: Model training time consumption.

Figure 3 presents the training time of di�erent methods in sec-
onds. It shows that TF-IDF runs the fastest because of its simplicity.
Our method LeGo-CM achieves moderate e�ciency comparing
to CrossMap considering that we address 4 types of nodes in the
graph while ReAct addresses 3 types of nodes. �e method Re-
Act runs the slowest because of its small batch size which leads to
frequent weight updating in its online training procedure.

5 CONCLUSIONS

In this paper, we presented LeGo-CM for learning embeddings of
spatial, textual and temporal entities in geotagged tweets. Prior to
the learning process, amean shi�-based spatial clustering procedure
is performed to detect locations of interest. For the time dimension,
we extract hour-of-day and day-of-week as temporal entities which
are consistent with people’s daily-life habits and pa�erns. We
then utilize the co-occurrence between locations, words, hours-
of-day and days-of-week to build graphs for LeGo-CM. LeGo-CM
learns the embeddings of graph nodes by approximating the stable

residing probabilities between nodes. �e evaluation results on
two selected cities show that LeGo-CM outperforms competitive
baselines in most cases, thereby showing the e�ectiveness of the
proposed method. For future work, we plan to extending the co-
occurrence graph by adding edges between locations to re�ect their
spatial proximity and topical closeness and thus conduct location
similarity searches.
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