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ABSTRACT

The spatio-textual spreadsheet is a conventional spreadsheet where
spatial attribute values are specified textually. Techniques are pre-
sented to automatically find the textually-specified spatial attributes
that are present in spreadsheets. Once the spatial attributes have
been identified, an accurate translation of the values of the spatial
attributes to their actual geographic locations is needed (known as
geotagging). The key observation is that spreadsheets with spatial
data exhibit spatial coherence — that is, cells with spatial data that
are nearby in the spreadsheet contain data that share spatial char-
acteristics in the real world. These techniques also allow richer
search engine results by returning actual tuples from spreadsheets
instead of simply links to the spreadsheets. Moreover, when the
search key is a particular location, results in proximity to the query
can be provided rather than just exact matches.
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1. INTRODUCTION
Spreadsheets can be viewed as embodying both direct manip-

ulation and abstraction, where columns and rows are transformed
to create new information. There is no restriction on the type of
data that can be stored in the spreadsheet. In the case of spatial at-
tributes, there is an additional possible dimension of manipulation,
namely through the use of a map and queries on it. In addition, the
presence of spatial attributes means that we are no longer restricted
to viewing the data using a table.

We use the term spatial spreadsheet to characterize spreadsheets
that have spatial attributes and which also include operations to vi-
sualize the data. The concept of a spatial spreadsheet is quite broad
and includes examples such as the spreadsheet for images proposed
by Levoy [11]. In this case, the cells of the spreadsheet contain
graphical objects such as images, volumes, or movies, as well as
widgets such as sliders and buttons. The cells can be manipulated
by a large class of operations such as filters and quantizers. A more
limited interpretation is provided by the spatial spreadsheet of Iw-
erks and Samet [9, 10] where the cells are maps or spatial relations
and the operations include unions, intersections, joins, and so on.
The SAND Internet Browser [5, 14] is an even more limited variant
of a spatial spreadsheet where the important feature is the ability to
create new relations (with corresponding indexes, as appropriate)
from existing ones by operations such as selection and spatial join.

In this paper we focus on the interpretation of a conventional
spreadsheet as a spatial spreadsheet. In such a spreadsheet, the
spatial attributes are specified textually, and we term this a spatio-

textual spreadsheet. Our aim is to automatically determine the
textually-specified spatial attributes that are present in a spread-
sheet, with no user intervention. Our task is two-pronged. First,
we must identify the spatial attributes, as well as their types (e.g.,
some strings correspond to names of cities or states, some numbers
correspond to ZIP codes, etc.). Second, we must provide an accu-
rate translation of the values of the spatial attributes to their actual
geographic locations. In particular, at its narrowest interpretation,
when the spatial entity is a point object such as a gas station or a
city at a low zoom level, we seek to assign a pair of geographic
coordinate values to each spreadsheet row, assuming that the ge-
ographic location can be appropriately described by the lat/long
pair of some point within it. For data with spatial extent, such as
line segments and regions (e.g., roads and counties), the situation is
more complex, but we can make use of methods adopted for spatial
databases (e.g., SAND [3, 4]) where pointers to spatial data struc-
tures are used that capture the spatial features. In the rest of this
discussion, unless otherwise noted, we assume locations for ease
of exposition.

The ability to deal with spatial data of arbitrary type (i.e., with
extent rather than just points) and, most importantly, the existence



of a fully automated algorithm to infer spatial attributes in spread-
sheets is what enables us to have a scalable method to process the
very large, heterogeneous collections of spatio-textual spreadsheets
that are prevalent on the Web, and distinguishes our system from
existing products and tools that aid the mapping of spreadsheets
such as Spreadsheet-To-Map1, Map A List2, Excel To KML3, and
ExpertGPS4. In particular, these tools all require users to provide
geographic coordinate values with each row, or at least to manually
specify which column corresponds to a spatial data type (usually
street address) which is then geocoded to lat/long coordinate val-
ues. As a result, these semi-automated tools require, at a minimum,
manual interaction for each different spreadsheet schema, of which
there are many on the Web. Moreover, they are primarily designed
to facilitate the construction of mashups where the spatial data is
usually constrained to be points rather than have extent.

The process of interpreting words as geographic locations and
providing the coordinate values of the locations is known as geo-

tagging [2]. Geotagging in general is difficult because recogniz-
ing references to locations is hampered by ambiguity in natural
language (e.g., is “Jordan” a surname or a location?) and deter-
mining the correct interpretation of a given location name can be
challenging (e.g., deciding which of over 140 interpretations of
“Paris” is the correct one). The STEWARD system [12] is an ex-
ample of the application of geotagging to a collection of unrelated
documents such as those comprising the hidden Web. The News-
Stand system [15] is another example of this approach where the
data consists of dynamically changing RSS news feeds. In this pa-
per we expand on our work in this area by devising an automated
method of geotagging spatio-textual spreadsheets, which is further
complicated by the fact that data and metadata are mixed, i.e., col-
umn headers are simply data values in spreadsheet cells, and so are
harder to identify. Also, spreadsheets commonly suffer from errors
such as missing, incomplete, or erroneous data [13].

Despite these challenges, we can take advantage of spatial data
placement conventions used by human creators to effect correct
geotagging. Our key observation is that spreadsheets with spatial
data exhibit what we call spatial coherence. That is, spatial cells
(i.e., cells with spatial data) that are nearby in the spreadsheet con-
tain data that share spatial characteristics in the real world. In par-
ticular, spatial data in the same column are usually of the same spa-
tial type (e.g., columns for “State”, “County”, and “City”), while
spatial data in the same row usually exhibit a containment relation-
ship (e.g., “Maryland”, “Prince George’s County”, ”College Park”,
and “20742”), termed column coherence and row coherence, re-
spectively. Furthermore, spatial data in adjacent or nearby rows
usually share containers. For example, a natural way to organize
data for multiple cities in Maryland is to group city rows by county,
which also reflects a sorting process where a primary-secondary
key interpretation is imposed on the columns. It is important to
note that existing work on automatic spreadsheet processing, such
as header inference [1] and error detection [7, 8], has not consid-
ered spatial coherence as a source of evidence.

The rest of this paper is organized as follows. Section 2 presents
some challenges in geotagging spreadsheets and our geotagging
methods. Section 3 presents a visualization of one spreadsheet
tagged with our methods. Finally, Section 4 offers future avenues
of research and draws concluding remarks.

1http://gmb.bz/
2http://mapalist.com/
3http://earthpoint.us/ExcelToKml.aspx
4http://expertgps.com/

2. GEOTAGGING SPREADSHEETS

2.1 Spatial Cell Recognition
The first step in geotagging spreadsheets is recognizing spatial

information within the spreadsheet’s cells, essentially classifying
certain cells as spatial and others as nonspatial. Our goal is cre-
ating a location-augmented spreadsheet from our input spreadsheet
by associating spatial information in the form of geographic coordi-
nates with each spatial cell. Note that these initial cell assignments
are independent of values in other cells. In later steps we resolve
inconsistencies among the cells by relying on the spatial coherence
of spreadsheets. The spatial data types that we seek to recognize
in spreadsheet cells include country, state, county, city, ZIP code,
ZIP+4, street intersection, and street address.

Recognizing spatial data in spreadsheets involves many chal-
lenges. In addition to human errors such as missing, incomplete,
and erroneous data, textual geographic data suffers from various
forms of ambiguity and inconsistency. A given text phrase in a
spreadsheet cell might be the name of many geographic places, or
might not be a geographic reference at all. For example, “Wash-
ington” is the name of many cities, counties, and other geographic
entities in the USA, but is also a very common surname. Further-
more, place names may be underspecified if their geographic con-
text is assumed implicitly. That is, a spreadsheet containing a men-
tion of “Prince George’s County” may not be qualified with “Mary-
land”, its container, if the entire spreadsheet consists of data about
counties in Maryland. In addition, geographic cue words such as
“County” may be omitted from place names if the spreadsheet is
understood by readers to contain county data. Finally, spreadsheets
vary in the number of columns used to store components of each
row’s spatial data. For example, a street address may be stored in
a single column, or the spreadsheet may contain several columns,
one for each part of the address.

Our basic strategy in recognizing spatial cells is to search each
subphrase of each cell’s data for potential spatial data, employ-
ing several heuristic methods modeled after place recognition tech-
niques for natural language text. To aid this search, we use a gazet-

teer, or geographic database of locations and their associated meta-
data, as an external source of geographic knowledge. We use the
GeoNames5 gazetteer, which contains over 7 million entries of lo-
cations around the world and their geographic coordinates. In addi-
tion to a lookup in the gazetteer, we search for explicit geographic
cue words (e.g., “State of”, “City of”), and append cue words for an
additional lookup, since they may be absent in some spreadsheets
(e.g., appending “County” to “Prince George’s”). We also look
for prominent places, such as large cities and political regions, as
well as textually-specified hierarchies (e.g., “College Park, Mary-
land”). To recognize addresses, we use the Yahoo! address geocod-
ing API6. For addresses broken across multiple columns, only the
partial address will be available in a single cell, so we leave all
possible address interpretations and defer resolution until later.

This process results in a set of spreadsheet cells with spatial in-
formation tagged to each cell, in the form of either gazetteer records
or lat/long points. Note that our battery of recognition rules ensure
that spatial cells are not missed, rather than being overly precise
in marking spatial cells. That is, it is better to err on the side of
generosity rather than caution when recognizing spatial data. Clas-
sifying nonspatial cells as spatial is not catastrophic, as we next use
the spatial coherence properties of spreadsheet rows and columns
to filter these errors.

5http://geonames.org/
6http://developer.yahoo.com/
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2.2 Column Resolution
After assigning gazetteer records to each spatial cell, we now

consider how to resolve the ambiguity introduced from having mul-
tiple gazetteer records or other types of spatial data assigned to a
single cell. To see how, we note that most spreadsheet authors or-
ganize their data so that each data record corresponds to a row in
the spreadsheet, and each data attribute corresponds to a column.
In this way, data records (rows) all share the same attribute types
(columns), including spatial attributes, if present. Furthermore, for
spreadsheets with multiple spatial attributes, authors usually segre-
gate different spatial data types into different columns, since this is
a natural way to organize spatial information. For example, many
spreadsheets contain multiple separate columns for different geo-
graphic hierarchy levels. Therefore, the first step toward assigning
locations to rows, which we call column resolution, is first to clas-
sify each column in the spreadsheet as spatial or nonspatial, and
second, for each spatial column, to assign the proper spatial data
type. These spatial types serve as evidence for filtering the gazet-
teer records assigned to the cells in each column to only those that
are consistent with the column’s type, thereby ensuring column co-

herence for all gazetteer records assigned to cells in the column.
We note that over all cells in a single spatial column, there will

usually be gazetteer records of a single spatial type that all cells
have in common, which is the same spatial type used to construct
the column. Likewise, for nonspatial columns, some cells might
have been assigned gazetteer records, but the majority will not. In
other words, we can loosely view the column’s spatiality as a ran-
dom variable, with each cell representing a sample. Thus, we may
determine whether the column is spatial or not, and its spatial data
type, by taking advantage of an averaging effect across all cells in
the column. Also note that this averaging effect is robust to one
or a few erroneous data cells in the column. Using these facts for
column resolution, we classify a given column j as nonspatial if
its cells contain relatively few gazetteer records, and remove all
gazetteer records from its cells. Also, for each cell c in a spatial
column j, we assign a spatial type to j by filtering out the gazetteer
records assigned to c that do not share a spatial type with most of
the other cells in j. This results in a column-coherent copy of the
input spreadsheet, but does not necessarily mean that each spatial
cell has been fully resolved.

2.3 Row Resolution
After producing a column-coherent spreadsheet, we next enforce

row coherence among the remaining spatial data in the spreadsheet
by removing conflicting gazetteer records from the cells in each
row. To do so, we note that if the spreadsheet contains multiple
spatial columns, they usually all aid a human viewer in ground-
ing the row’s location, and further that the spatial columns tend to
exhibit a containment relationship. For example, a typical spread-
sheet might include three spatial columns corresponding to State,
County, and City, with a row such as Maryland, Prince George’s
County, and College Park. This row’s location is actually College
Park, with Maryland and Prince George’s County serving as geo-
graphic context.

For spreadsheets with multiple spatial columns, the above ob-
servation can be used to achieve row coherence by checking for
containment among the gazetteer records in spatial cells in a sin-
gle row. However, many spreadsheets only have a single spatial
column, which precludes the use of containers within a single row.
Furthermore, if a spatial cell’s data is not recognized as a location,
a needed container might be missed, which will prevent the row
from being assigned a location. To overcome this limitation, we
exploit another common property of spatial spreadsheets, namely

that adjacent rows with locations usually (but not always) exhibit
geographic proximity in terms of a hierarchy or geographic dis-
tance. This organization, while not required of spreadsheet data,
is natural as it makes intuitive sense for human viewers, and hence
spreadsheet authors use this organization frequently.

Our strategy to achieve row coherence follows from the above
spatial coherence observations. We begin with the coarsest possible
resolution for each row, and successively refine the location to ever
finer resolutions based on additional spatial columns, as long as the
finer resolutions are consistent (in the sense of containment) with
our current notion of the row’s location. In addition, where even a
coarse location is unavailable to test containment for a given spatial
cell c, we gather potential containers from nearby cells above and
below c in the spreadsheet, to take advantage of the row grouping
usually imposed by human creators and described above. Aside
from resulting in row-coherent spatial data, this approach has the
added benefit that even if no consistent finer resolutions are dis-
covered, we can fall back to a coarser, approximate resolution of
the row’s location, which can aid in determining the spreadsheet’s
overall geographic focus. Like our column resolution method, it is
also robust to possibly missing spatial data.

3. EXAMPLE
We now present an example of spreadsheet data with geographic

attributes, tagged using our methods. Figure 1 shows project fund-
ing requests received by the Washington State Department of Ecol-
ogy Water Quality Program7 for 2010. This display was gener-
ated from a spreadsheet containing columns for the project title
and amount requested, and a single spatial column with textual data
values consisting of geographic cue words along with each spatial
entity (e.g., “Spokane, City of”, “Seattle, City of”, “Spangle, Town
of”). Prior to mapping the data, we aggregated requests by geo-
graphic entity and summed the amounts requested. Each data point
thus represents a set of projects proposed by a single geographic
entity (i.e., county, city, or town), with the point’s size indicating
the total monetary amount requested for all projects. In the figure,
the largest amounts stand out clearly and correspond to the largest
cities in Washington, such as Spokane ($52 million), Snohomish
($31 million), and Everett ($27.5 million). Also, most projects
requested fall in the Seattle-Tacoma geographic area. Somewhat
more surprising are the multitude of relatively small cities request-
ing large amounts, such as Soos Creek ($13.5 million), Vancouver
($13 million), and Yakima ($12.5 million), which might be indica-
tive of major improvements to those areas and warrant further in-
vestigation. Clearly, mapping the spreadsheet affords users an in-
tuitive geographic display for spatially-relevant information.

4. DISCUSSION
Automated geotagging of spreadsheets offers potent opportuni-

ties for geospatial exploration and retrieval applications. How-
ever, even better exploration could be accomplished with a robust
method of inferring spreadsheet headers. Doing so creates asso-
ciations between spatial data and its meaning, which can allow a
search engine to return actual tuples from the spreadsheet rather
than simply a link to the spreadsheet, thereby serving as a geo-
graphic “fact-finding” engine. For example, a search for “Amer-
ican Recovery and Reinvestment Act” near “College Park, Mary-
land” could return relevant rows from the appropriate spreadsheet,
rather than forcing users to manually examine the spreadsheet to
find the relevant information. Existing work [1, 6] on automatic
header inference does not make use of spatial data.

7http://ecy.wa.gov/programs/wq/
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Figure 1: Washington State Department of Ecology Water Quality Program funding requests for 2010, aggregated by location. Data point
size indicates the total size of all requests from the geographic area.

In addition, further investigation is warranted toward appropri-
ate user interface controls that allow simple exploration of mapped
geospatial spreadsheet data. Many spreadsheets contain a large
number of columns, most of which might not be of interest to any
particular user. Therefore, it is important to settle on appropriate
interface choices that allow for filtering or expansion of particular
attributes. Other controls might allow the filtering of spreadsheet
rows from the map, or sorting rows by a given attribute and chang-
ing each row’s corresponding map marker according to its rank.
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