
59

Querying Recurrent Convoys over Trajectory Data

MUNKH-ERDENE YADAMJAV and ZHIFENG BAO, RMIT University, Australia

BAIHUA ZHENG, Singapore Management University, Singapore

FARHANA M. CHOUDHURY, The University of Melbourne, Australia

HANAN SAMET, University of Maryland, USA

Moving objects equipped with location-positioning devices continuously generate a large amount of spatio-

temporal trajectory data. An interesting finding over a trajectory stream is a group of objects that are travel-

ling together for a certain period of time.We observe that existing studies onmining co-moving objects do not

consider an important correlation between co-moving objects, which is the reoccurrence of the co-moving

pattern. In this study, we propose the problem of finding recurrent co-moving patterns from streaming tra-

jectories, enabling us to discover recent co-moving patterns that are repeated within a given time period.

Experimental results on real-life trajectory data verify the efficiency and effectiveness of our method.

CCS Concepts: • Theory of computation → Data structures and algorithms for data management; •

Information systems → Data stream mining;

Additional Key Words and Phrases: Recurrent convoy query, co-moving pattern, spatio-temporal index

ACM Reference format:

Munkh-Erdene Yadamjav, Zhifeng Bao, Baihua Zheng, Farhana M. Choudhury, and Hanan Samet. 2020.

Querying Recurrent Convoys over Trajectory Data. ACM Trans. Intell. Syst. Technol. 11, 5, Article 59 (Au-

gust 2020), 24 pages.

https://doi.org/10.1145/3400730

1 INTRODUCTION

With the prevalence of location-positioning devices, a vast amount of spatio-temporal data of
moving objects is being generated. Systematically analyzing trajectory data of moving objects
enables us to extract a variety of interesting patterns and knowledge that can lead to many real-
life applications such as facility deployment [32] and urban computing [35].

This work was partially supported by ARC under Grants DP180102050, and DP200102611, a Google Faculty Research

Award, the NSFC grant 91646204, the National Research Foundation, Prime Minister’s Office, Singapore under its Inter-

national Research Centres in Singapore Funding Initiative, and the National Science Foundation of the US under grant

IIS-1816889. Any opinions, findings and conclusions, or recommendations expressed in this material are those of the au-

thors and do not reflect the views of National Research Foundation, Singapore.

Authors’ addresses: M.-E. Yadamjav and Z. Bao (corresponding author), RMITUniversity, Australia; emails: {munkh-erdene.

yadamjav, zhifeng.bao}@rmit.edu.au; B. Zheng, Singapore Management University, Singapore; email: bhzheng@smu.

edu.sg; F. M. Choudhury, The University of Melbourne, Australia; email: farhana.choudhury@unimelb.edu.au; H. Samet,

University of Maryland; email: hjs@cs.umd.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2157-6904/2020/08-ART59 $15.00

https://doi.org/10.1145/3400730

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

https://doi.org/10.1145/3400730
mailto:permissions@acm.org
https://doi.org/10.1145/3400730

59:2 M.-E. Yadamjav et al.

Fig. 1. A motivating example.

One interesting finding in trajectory databases is the exploration of convoys [9]. Informally, a
convoy refers to a group of spatially close-by objects moving together for a specific period of time.
In essence, a convoy of interest is defined by the number of objects (τ) and the time duration of
moving together (k), where τ and k are user-specified parameters.
A number of variations of the convoy have been proposed in the literature, which consider ei-

ther offline [6, 7, 11, 15, 16, 29, 33] or online [2, 12, 14, 27, 34] trajectory data processing. The
definitions and techniques to mine patterns of co-moving objects vary depending on the parame-
ters and scenarios of consideration. However, existing literature on mining patterns of co-moving
objects usually treats each mined pattern independently while ignoring the possible correlation
between them. Taking the correlations between convoys into consideration enables us to evaluate
the importance of each convoy effectively. Moreover, in many real-life applications, an in-time
analysis is required for incoming trajectory data [34]. Thus, it is critical to mine convoys that oc-
cur in the recent time window and take corresponding measures based on the historic occurrences
of them. Figure 1 illustrates an example in transportation management application. The scenario
shows data of traffic congestion occurring in a road segment during a weekday (i.e., occurrence of
a convoy with more than a threshold number of vehicles in close-by distance) and similar conges-
tion patterns being repeated during the other weekdays. These patterns are found to be instances
of a pattern that reoccurs daily in terms of timespan, group size, and spatial closeness. Our aim
is to find such recurrent convoys. A number of applications can benefit from exploring convoys
with historic occurrences in a sliding window. To name a few:

• Scenario 1: Transport management system. A transportation application can distin-
guish abnormal traffic congestions caused by accidents from recurrent regular traffic con-
gestions during rush hours.

• Scenario 2: Military surveillance. A real-time military surveillance system can detect a
co-moving pattern of suspicious groups with repeated occurrences.

• Scenario 3: Parades and protests. An occasional gathering of a larger number of people
needs to be differentiated from common crowd of commuters.

Informally, a sequence of similar convoys forms a recurrent convoy. The significance of a re-
current convoy varies w.r.t. the parameters, such as the number of objects that form the convoy
(prominence), the duration of the convoy (timespan), and the time interval between two succes-
sive convoy occurrences (recurrence). The values of the parameters that define the interestingness
of the convoy may change over time or domains/contexts. Therefore, the exploration of recurrent
convoys of interest is an iterative process, as the distribution of the parameters’ values is not uni-
form across the whole search space. Setting appropriate values as a query input gives us a new
insightful explanation about the dataset.
In this article, given a sliding time window and thresholds for prominence, timespan, and re-

currence, we study the problem of finding the recurrent convoys in the sliding window that satisfy
the given thresholds. Our main focus is to propose a general approach to compute the similarity

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:3

between convoys and to store them in a structure that facilitates the mining effort, since the min-
ing task that has a one-off parameter setting might not achieve the goal of extracting all interesting
convoys.
The main challenges in identifying recurrent convoys in a trajectory database are three-fold.

First, a convoy might not repeat itself at a regular pace, i.e., at the same timestamp with the same
objects. The features that form the convoy may vary from time to time. As a result, the similarity
metric that uses common objects to find the co-moving pattern in most of the related work [2, 6,
7, 11, 12, 14–16, 27, 29, 33, 34] is not suitable to find the correlation between convoys. Second, we
can find a number of convoys in a sliding window that satisfy the query parameters. However,
the number of times each result convoy is repeated w.r.t. the recurrence threshold is not known.
Thus, the search for previous occurrences of each convoy within the recurrence threshold varies
among the resulted convoys. An effective algorithm that only retrieves potential candidate convoys
is required to speed up the mining task. Third, users might not know the proper value for each
threshold to find the convoys of interest; it is an iterative process of exploration rather than a task
of one-off parameter settings. Thus, we need an efficient indexing structure that facilitates the
mining effort to explore the recurrent convoys of interest.
Recurrent convoy query was first proposed in a short paper [30]. In this article, we extend it and

make the following contributions:

• We propose an indexing structure that organizes clusters effectively and efficiently [30] and
develop an enhanced algorithm tomine convoys in a slidingwindow by using an in-memory
lookup table (Section 4.2).

• We implement two similarity metrics to measure the cluster similarity and to evaluate
their effectiveness on mining recurrent convoys (Section 5.3) and accelerate the similar-
ity computation between convoys using the corresponding minimum bounding rectangles
(Section 4.4.1).

• We conduct comprehensive experiments using real-life trajectory datasets to evaluate the
efficiency and the effectiveness of our method (Section 5).

2 RELATEDWORK

A number of approaches have been proposed to mine patterns of moving objects in a spatio-
temporal database. Depending on the definition of a pattern, these approaches fall into two cat-
egories: co-moving pattern [6, 7, 9, 11, 15, 16, 29, 33] and periodic pattern [3, 10, 17–20, 36]. The
studies of co-moving patterns generally differ in the way they compute the relationship between
clusters of objects in a pattern. In addition, the co-moving pattern studies are not applicable to
finding recurrent co-moving patterns, because they consider each pattern as independent. More
details on the co-moving pattern mining and their differences with our work are presented in Sec-
tion 2.1. In contrast, periodic pattern mining techniques define a pattern as a sequence of regions
that are visited by objects within regular time intervals (details in Section 2.2).

2.1 Co-moving Pattern Mining

A set of objects thatmove close-by for a certain period of time is considered as a co-moving pattern.
Twomain parameters that define the pattern are (i) the timespan of a pattern and (ii) the number of
objects that constitute a pattern. As we focus on both online and offline processing of the problem,
we present the literature on co-movement pattern as: (i) offline co-moving pattern mining over
historical trajectory data and (ii) online co-moving pattern mining over steaming trajectory data.

2.1.1 Offline Co-moving Pattern Mining. Many studies [7, 9, 15, 16, 23, 29] propose additional
constraints on top of those two parameters, such as different spatial clustering techniques, local

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:4 M.-E. Yadamjav et al.

temporal consecutiveness, and temporal gap. Objects at each timestamp of a co-moving pattern
are contained in a circle of a pre-defined radius in [7, 29], whereas a density-based clustering is
used in other works. Timestamps in swarm [16] are not necessarily consecutive. A local temporal
consecutiveness threshold is introduced to allow a temporal gap in a co-moving pattern [6, 15,
29]. In contrast to our problem, these works require objects in a co-moving pattern to be observed
at all timestamps during database timespan. Orakzai et al. [23] proposed a sequential algorithm
that clusters only convoy members corresponding to certain timestamps by pruning objects that
are not part of the convoys. A moving cluster [11] does not often contain the same objects dur-
ing its timespan. Thereby, a threshold for the percentage of common objects of two consecutive
clusters is used to mine moving clusters. A gathering pattern is proposed in [33] where a set of
objects called dedicated members travel for at least a certain period of time to be considered as a
gathering.
The similarity of these works lies in the goal of discovering a set of objects moving together

over a certain period, regardless of the parameters that have been considered. Co-moving patterns
proposed in [7, 9, 11, 23, 33] discover patterns that occur at consecutive timestamps without any
temporal gap between two consecutive clusters.

2.1.2 Online Co-moving Pattern Mining. The streaming case of finding co-moving patterns in a
trajectory database has been considered in [2, 12, 14, 25, 27, 34]. However, all these works consider
different definitions of the co-moving patterns. Thus, each work designs its mining algorithms
based on its specific definition of a co-moving pattern. Objects are required to record their locations
at every timestamp throughout the database timespan in [27, 34]. However, we consider an object
to record its location at every timestamp during its timespan.

2.2 Periodic Pattern Mining

A pattern is defined as a sequence of locations that are frequently visited by moving objects (e.g.,
taxis). It is noteworthy that each location in the sequence is represented as a region rather than an
individual point. This representation is called a dense region [20], spatial region [3], or reference
spot [17, 18]. Such a relaxation helps in finding patterns in a spatio-temporal database, because an
object is not likely to be at exactly the same location at different occasions due to the limitations
of GPS-equipped devices and other interferences that may affect the data collection process. A
periodicity parameter is given as an input to segment the database to facilitate the mining process.
In [3, 20], the authors defined a periodic pattern as a sequence of spatial regions within T ,

where T is a time interval (e.g., day, week). The support of a pattern is defined by the number of
periodic sequences in an object trajectory. In addition, a sequence of locations is divided into T
spatial datasets and frequent patterns are mined. Finally, there is no time constraint between two
consecutive occurrences of a periodic pattern. In contrast, we mine recurrent co-moving patterns
that repeat themselves within periods of length T .
An object, visiting reference spots repeatedly, forms a periodic behavior in [17, 18]. Reference

spots are generated using a kernel method. Periodicity detection for each reference spot is per-
formed by transforming a sequence of locations into a binary sequence. A periodic pattern is
defined in [10] as a set of speed camera stations that are spatially close-by and exhibit the same
periodic behaviors in terms of vehicle speed. Speed data are transformed into four discretized
levels. Periodic behaviors for each station are detected by transforming discretized speed data
into a binary sequence for each speed range. However, the occurrence of each convoy in a re-
current convoy differs, depending on the parameters of interest. Thus, it is time-consuming to
apply methods proposed in [10, 17] for every query input over the filtered dataset to solve our
problem.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:5

Generally, a trajectory periodic pattern mines a sequence of locations that are periodically vis-
ited by a number of trajectories. In contrast, our problem defines a convoy to be generated by a set
of objects that are spatially close-by at each of the k consecutive timestamps. Thus, our problem
considers a densely populated area over time as a convoy, whereas previously mentioned stud-
ies consider the correlation between different regions that are frequently visited by objects in the
same order.

2.3 Other Related Areas

In addition to the literature, there are other research areas that are weakly related to our work,
such as distributed pattern mining [4, 6, 22, 24] and trajectory clustering [1, 13, 28]. Distributed
co-moving pattern mining algorithms were proposed in [6, 22, 24] by using the MapReduce frame-
work to increase the efficiency and scalability of the mining process. Chen et al. [4] proposed a
framework to mine co-movement patterns using Apache Flink that is designed to process data
efficiently in a distributed manner. The trajectory clustering methods emphasize the spatial close-
ness of moving objects [28] and hence, the result cluster might contain moving objects that are
not aligned w.r.t. the time dimension.

Remark. To the best of our knowledge, none of the existing work finds recurrent convoys, since
querying recurrent convoys over a sliding window considers both online and historic convoy gen-
erations simultaneously w.r.t. given thresholds.

3 PROBLEM FORMULATION

In this section, we first present the necessary preliminaries and then give the formal problem
definitions.
Given a set of moving objects O = {o1,o2, . . . ,o |O | } in a trajectory database with time domain
T = {t1, t2, . . . , t∞}, a trajectory of moving object o ∈ O is represented as a finite sequence of
location samples within time interval [ti , tj] ⊆ T , i.e., o = {loci , loci+1, . . . , loc j }, where loca is a
recorded position of o in a two-dimensional space at timestamp ta . We assume that the trajectory
of object o is recorded at every timestamp during its lifetime [ti , tj]. Trajectories of different objects
may have varying lengths.
Let C = {Ct1 ,Ct2 , . . . ,Ct |C| } be the set of clusters generated by applying a chosen clustering

algorithm over the trajectory database at different timestamps. Here, Ct (∈ C) = {ct1, ct2, . . . , ct|C t | }
represents the set of clusters obtained at timestamp t , where ct ∈ Ct is a non-empty cluster of
objects in O that satisfies the clustering conditions. Since we assume that each trajectory of an
object only corresponds to a finite time interval [ti , tj], it is possible that there is no cluster for
some timestamps. Table 1 summarizes the frequently used symbols throughout the article.

A time-based query sliding windowWI of length I shifts at a time. A running example shown
in Figure 2 is used to explain the definitions used in our problem formulation.

Example 1. Let the timespan of a trajectory database be [1, 11], as shown in Figure 2(a). Assume
we find a total of eight clusters C = {C1{c1, c2},C2{c3, c4},C10{c5, c6},C11{c7, c8}} in the database at
four different timestamps {t = 1, t = 2, t = 10, t = 11} and no cluster is found from t = 3 to t = 9.

The goal of our approach is to find the recurrent convoys that satisfy the thresholds given by
the user. We adopt a well-recognized definition of convoy, originally defined by Jeung et al. [9], in
our work.

Definition 1 (Convoy). Given a set of clusters C and thresholds for prominence (τ) and times-
pan (k), a convoy д = {cti , cti+1 , . . . , ctj } is defined as a sequence of clusters at the consecu-
tive timestamps that satisfy the following constraints: (i) ∀cta ∈ д, ∃Cta ∈ C such that cta ∈ Cta ;

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:6 M.-E. Yadamjav et al.

Table 1. Summary of Notations

Notation Definition

Ot Set of objects whose locations are recorded at timestamp t
Ct Set of clusters generated over Ot

cti Cluster with identifier i that is generated at timestamp t
WI Sliding window of length I
τ Prominence threshold
k Timespan threshold
ρ Recurrence threshold
д Convoy
G Set of convoys

SIM () Similarity measure to compare convoys
p Recurrent convoy
P Set of recurrent convoys

Fig. 2. A running example.

(ii) the number of common objects shared by all clusters, denoted as д.τ , is no less than τ , i.e.,
д.τ = |cti ∩ cti+1 ∩ · · · ∩ ctj | ≥ τ ; and (iii) the time duration, denoted as д.k , is no less than k , e.g.,
д.k = |tj − ti + 1| ≥ k , where k > 1.

Example 2. Let τ = 4 and k = 2. Assume we generate the convoys that satisfy the given thresh-
olds by using the clusters found in Example 1. We find four convoys, as shown in Figure 2(b):
G = {д1{c11, c23 }, д2{c12, c24 }, д3{c115 , c127 }, д4{c116 , c128 }} that satisfy the thresholds. Note, we purposely
include the timestamp t in each cluster ci in the form of cti to denote the timestamp that the cluster
was formed.

Next, we define similar convoys w.r.t. the thresholds of interest in Definition 2. The Boolean
function SIM(c1, c2, δ) returns 1 if the similarity between two object clusters c1 and c2 meets
the minimum similarity threshold δ . There are multiple similarity metrics available to quantify

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:7

the similarity between two object clusters and the selection of the similarity metric is application-
dependent. For illustration purposes, we adopt the Hausdorff distance [21] to compute the
similarity between clusters in convoys, similar to the trajectory pattern mining work by [33].
Nonetheless, the problem definition and our approach could be easily adjusted to other similarity
metrics.

Definition 2 (Similar Convoys). Given thresholds τ , k, and δ and two convoys дa = {cti , cti+1 ,
. . . , cti+u−1 } and дb = {ctj , ctj+1 , . . . , ctj+v−1 }, convoy дa is similar to convoy дb w.r.t. τ and k iff
(i) MIN(дa .τ , дb .τ) ≥ τ ; (ii) MIN(дa .k , дb .k) ≥ k ; and (iii) ∃д′a = {cta , cta+1, . . . , cta+k−1} ⊆ дa , ∃д′b =

{ctb , ctb+1, . . . , ctb+k−1} ⊆ дb such that ∀l ∈ [0,k − 1], SIM(д′a .c
ta+l , д′

b
.ctb+l , δ) = 1.

As presented in Definition 2, two similar convoys contain at least τ objects and last at least k
timestamps. Moreover, the corresponding clusters in two k-length subsequences of similar con-
voys satisfy the given similarity metrics. Now, we are ready to introduce a recurrent convoy in
Definition 3.

Definition 3 (ρ-Recurrent Convoy). Given a sequence of convoys pi, j = {дi , . . . ,дj } where each
convoy satisfies thresholds τ and k (by Definition 1) and a recurrence threshold ρ, pi, j is a ρ-
recurrent convoy iff ∀a ∈ [i, j − 1], two successive convoys дa ,дa+1 ∈ pi, j are similar (by Defini-
tion 2) and the difference between their starting timestamps is no larger than ρ, i.e., |дa .ts −
дa+1.ts | ≤ ρ where д.ts denotes the starting timestamp of convoy д.

Example 3. Assume that we search for recurrent convoysw.r.t. τ = 5,k = 2, and ρ = 10 (shown in
Figure 2(b)). We found two convoys that satisfy the given thresholds, i.e., д1{c1, c3} and д3{c5, c7}. If
we assume that convoyд1 is similar to convoyд3, then they form a ρ-recurrent convoyp1 = {д1,д3},
as д1 and д3 start at timestamps t = 1 and t = 10, respectively, and д3.ts − д1.ts = 10 − 1 = 9 ≤ ρ.

Mining recurrent convoys is a one-off task from the data-mining perspective. However, as we
accumulate more data, the parameters that define the interestingness (timespan, prominence, re-
currence) of the convoy might change over time. Thus, we present the recurrent convoy query
over a sliding window in Definition 4 that takes varying parameters as input and only considers
convoys in the sliding window (note, we skip parameter δ in Definition 4).

Definition 4 (Recurrent Convoy Query(RCQ)). Given a trajectory database that is continuously
updated and a current sliding window of length I , the RCQ〈k,τ , ρ〉 finds a set of ρ-recurrent con-
voys P, where ∀pi = {дa , . . . ,дb } ∈ P satisfies the recurrence constraint ρ (by Definition 3), ∀дb
is within the sliding window I , and ∀дj ∈ pi is a valid convoy w.r.t. τ and k .

4 METHODOLOGY

In this section, we first outline the baseline steps to answer the recurrent convoy query and then
present three enhancements to further improve the search performance.

4.1 Baseline

A general approach to answer the recurrent convoy query consists of three phases: (i) cluster gener-
ation, which generates clusters using object locations at the current timestamp; (ii) convoy genera-
tion, which extends existing convoy candidates in a sliding window using newly identified clusters
or generates new convoy candidates from newly identified clusters; and (iii) historic convoy gen-
eration, which searches for the historical occurrences of each convoy in a sliding window that
satisfies the given thresholds. In the following, we explain these three steps in detail.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:8 M.-E. Yadamjav et al.

Fig. 3. Clusters observed during timespan [t1 : t3].

Cluster generation. Once we receive a set of objects whose locations are recorded at the cur-
rent timestamp, we apply the chosen clustering algorithm on the object set to generate the object
clusters. As we consider the streaming case of trajectory database where we need to process lo-
cation updates immediately, we could not apply the proposed methods in the literature [9, 27]
for convoy generation over historical data. However, the clustering step does not account for a
substantial amount of the total query execution time compared with other parts of the recurrent
convoy query. Thus, we leave the choice of the clustering algorithm to the user. For example, if
we use DBSCAN [5], the clustering parametersminPts and ϵ are configured differently depending
on the application requirement. Clusters that are obtained after the clustering step vary in the
number of objects. Since τ is user-specified and unknown a priori, we define a parameter τmin ≤ τ
that serves as a lower bound of τ to accelerate the query processing. Clusters with at least τmin

objects are indexed using a traditional R-tree [8] structure in a two-dimensional space, with each
cluster ci represented as a point of (t , |ci |). Here, t refers to the timestamp of the cluster and |ci |
refers to the number of objects in the cluster (|ci | ≥ τmin). The parameter τmin is set once for each
application.

Example 4. Given a clustering algorithm, assumewe find two clustersCt1 = {c1, c2} at timestamp
t1, as shown in Figure 3 . If we set the value τmin to 3 in our problem setting, both c1 and c2 are
stored in the index, as the clusters contain at least τmin objects.

Convoy generation. Since the convoy clusters are consecutive in time, the incoming clusters
at timestamp t are only compared to the candidate convoys that include clusters generated at
timestamp t − 1. We are only interested in a convoy that contains τ number of common objects
throughout its timespan. Thus, the incoming clusters are filtered by the number of objects and
only the clusters that satisfy τ threshold are checked against the candidate convoys. In this way,
the candidates are gradually refined and the ones that do not contain τ common objects are re-
moved from the candidate set and added to the result set if the time-consecutiveness threshold k is
satisfied. Note that all incoming clusters containing at least τmin objects are passed to the indexing
step to support the discovery of recurrent convoys required by future queries.

Example 5. Assume we generate convoys w.r.t. thresholds τ = 4 and k = 3 using the clusters
obtained during the timespan of [t1 : t3] in Figure 3. At timestamp t1, we identify two clusters c1 and
c2 and both clusters satisfy threshold τ . Accordingly, we form two convoy candidates д1 = {c1} and
д2 = {c2}. At timestamp t2, we generate a new cluster c3 that could extend the candidate convoy д1
(i.e., д1 = {c1, c3} at t2) but not д2. Accordingly, candidate convoy д2 is removed from the candidate
set. At timestamp t3, with the newly identified clusters c4 and c5, д1 is further extended by cluster

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:9

c4 (i.e., д1 = {c1, c3, c4} at t3) and satisfies the timespan threshold k = 3. Consequently, д1 becomes
a result convoy. However, the newly identified cluster c5 forms a new candidate convoy д3 = {c5}.

Historic convoy generation. Once we find the convoys of interest that fall inside the sliding win-
dow, we search for the previous occurrences of each convoy by checking historical clusters stored
in the indexw.r.t. the given thresholds. Aswe search for historic occurrences of each convoywithin
ρ time period, we load clusters within the time interval of length ρ at each iteration. Convoys are
created using the same procedure that we described previously in the step of convoy generation
based on the clusters w.r.t. the thresholds. The similarities between historical convoys and convoys
in a sliding window are computed using the given similarity function and thresholds. Convoys in a
sliding window that are extended by historic convoys retrieved within the time interval of length
ρ are sent to the next iteration to check for another occurrence.

Discussion. We use the Coherent Moving Cluster (CMC) algorithm proposed in the original
definition of the convoy [9] as a baseline algorithm. This algorithm is applicable in our problem
setting, which considers streaming trajectory data. However, further optimizations proposed in [9]
to reduce the clustering effort are not applicable in our problem setting, as the trajectory database is
continuously being updated. In addition, the effort to generate the clustering based on the location
updates reported by objects at timestamp t is not expensive as compared with the cost of the other
two steps.
The computational overhead of the baseline to generate convoys is substantially high, as the

clusters at the current timestamp need to be checked against all candidate convoys that end at the
previous timestamp. The historic convoy generation takes even more time if we set the recurrence
threshold (ρ) to a higher value. To address the efficiency issue, we propose three enhancements
with corresponding index structures over the baseline to accelerate the recurrent convoy query
processing. To be more specific, we propose an in-memory lookup table to significantly accelerate
the convoy generation, and two index structures, namely, intersection index and convoy index, to
speed up the historic convoy generation. These three enhancements are detailed below.

4.2 Lookup Table

The computation cost of the convoy generation in a sliding window is significantly lower than
the historic convoy generation over the clusters that fall within the specified time interval
w.r.t. the given recurrence threshold. It onlymatches incoming clusters against the existing convoy
candidates that end at the previous timestamp. However, we can improve the performance of the
convoy generation algorithm by avoiding checking every incoming cluster against each candidate
convoy.
Objects that are moving close-by are likely to be observed in the same cluster for a few consec-

utive timestamps rather than scattered into different clusters abruptly at the next timestamp [27].
Thus, we optimize the convoy generation algorithm by considering the overlaps between clusters
at the consecutive timestamps.
We create an in-memory lookup table that stores objects as a key and the corresponding cluster

identifier as a value for incoming clusters at timestamp t , as shown in Figure 4. By using the tem-
porary lookup table at each timestamp, we compute the number of objects from each candidate
convoy that are still observed in one cluster. If the number is no smaller than threshold τ , the cor-
responding convoy is extended by the cluster. Clusters that do not extend any candidate convoys
form new candidate convoys and hence are added into the candidate convoy set.

Example 6. Assume we generate convoys w.r.t. thresholds τ = 4 and k = 3 using the clusters
obtained during the timespan of [t1 : t3] in Figure 3. Figure 4 shows the state of the lookup table for

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:10 M.-E. Yadamjav et al.

Fig. 4. Lookup table states for timestamps t1, t2, and t3 of Figure 3.

each timestamp. At timestamp t1, we find two convoy candidates д1{c1 : [o1,o2,o3,o4,o5]}, д2{c2 :
[o6,o7,o8,o9]} in a sliding window. Note, we do not use the lookup table at timestamp t1, as there
is no convoy in its previous timestamp. At timestamp t2, we find out that four objects of c1 still
appear in the same cluster (i.e., c3) based on the lookup table. Accordingly,д1 is extended by cluster
c3 and becomes д1{c1, c3 : [o1,o2,o3,o4]}.

After four objects in c3 are used to extend д1, there are only three objects from cluster c3 left for
possible extension of candidate convoy д2. However, there is no need to perform the intersection,
as the number of objects is smaller than τ = 4. At timestamp t3, д1 is further extended by cluster
c4 using the lookup table. In addition, a new convoy candidate д3{c5 : [o8,o9,o10,o11]} is created.
As д1 satisfies thresholds τ and k , the historic occurrences of that convoy are checked using the
proposed index, as to be detailed next.

4.3 Intersection Index

As soon as we find a convoy at the current timestamp that satisfies thresholds τ and k , we check
for historic occurrences of that convoy in the past within the recurrence threshold ρ. We can
accelerate this process using an index on historical data.
We use a traditional R-tree [8] for the baseline algorithm to index each cluster, using its times-

tamp and the number of objects inside as the dimensions of the Minimum Bounding Rectangle
(MBR).
The index enables us to filter clusters within a time interval of length ρ that contain at least τ

number of objects in one operation for each query input. Retrieved clusters are fed into a convoy
generation stage. However, a cluster with at least τ objects is not guaranteed to share at least τ
common objects with any cluster at the next timestamp. To avoid checking each cluster against
all candidate convoys, we propose an intersection index that considers the object overlaps between
clusters at the consecutive timestamps. To be more specific, a cluster ci in the index stores all the
clusters C ′ at the previous timestamp that share at least τmin common objects with the cluster
(shown in Figure 5 where τmin = 3) as data embedded in the node. One cluster might share τ ob-
jects with multiple clusters at the previous timestamp. Thus, we capture the maximum number of
common objects between ci and any cluster in C ′ using column “# of objects” in the intersection
index. For our example in Figure 3, c3 has four common objects with c1, and three common objects
with c2, so 4 is captured by “# of objects” in the intersection index. This index has two advantages
over the baseline index that stores clusters independently using R-tree only. First, it eliminates the
extra check of two clusters at the consecutive timestamps with τ number of objects if they do not
share τ common objects. Second, each retrieved cluster is only checked against the convoys that
end with a cluster in an embedded set of the previous timestamp. Figure 5 shows the information

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:11

Fig. 5. Intersection index (τmin = 3) entries for clusters of Figure 3.

about embeddings in the intersection index for clusters in Figure 3. The intersection index is essen-
tially an R-tree, hence the update process and the update costs are the same as that of the R-tree.
Each cluster is inserted to the intersection index as soon as it becomes available.

Example 7. Assume five clusters (c1 to c5) observed from t1 to t3 are given in Figure 3 and τmin =

3. The intersection index contains two entries for clusters c3 and c4. Clusters c1 and c2 are not
indexed, as they correspond to t1 without any previous timestamp, and cluster c5, identified at
timestamp t3, is not indexed, as it does not share at least τmin = 3 objects with any cluster identified
at timestamp t2 (e.g., it only shares two common objects with c3, which is less than τmin). For index
entry of c3, clusters c1 and c2 are embedded, as each of them shares at least τmin = 3 objects with
cluster c3; for index entry of c4, cluster c3 is embedded, as it shares five common objects with c4,
as shown in Figure 5. Assume we search for convoys w.r.t. τ = 4 and k = 3. At timestamp t2, we
find a candidate convoy д1 = {c1, c3}; at timestamp t3, incoming cluster c4 further extends д1 to
{c1, c3, c4}, which satisfies the given thresholds.

4.4 Convoy Index

The embedding in the intersection index structure that we proposed previously avoids certain
checking between the candidate convoys at timestamp t − 1 and clusters identified at timestamp
t . However, we still need to intersect the clusters k − 2 times to generate a convoy with a length
of k . If we search for convoys that contain a large number of objects, the intersection of clusters
at the consecutive timestamps still leads to poor performance. Moreover, the number of historical
convoys that satisfy the query thresholds is likely to increase substantially when the recurrence
threshold is set to a larger value. Thus, we propose another index structure to tackle this problem
and to improve the efficiency of the historic convoy generation.
The two common scenarios of convoys are converging and diverging. As shown in Figure 3,

objects in clusters c1 and c2 converge into cluster c3 from t1 to t2, whereas objects in cluster c3
diverge into two clusters from t2 to t3.

Based on this observation, we propose a convoy index, which groups incoming clusters into a
set of distinctive convoys where each cluster is only assigned to one convoy. For each convoy,
we compute and capture the number of consecutive appearances of each object in a cluster that
belongs to the convoy. Each cluster is indexed with the embedded information about the corre-
sponding convoy identifier and object timespans that appear in the convoy. The index convoys are
generated w.r.t. the parameter τmin . Thus, the convoys, generated for indexing purposes, contain
at least τmin objects. The timespan value for each object in a convoy indicates the consecutive
time duration the object is observed in the convoy clusters. Splitting convoys at the diverging
and converging timestamps enables us to assign a cluster to only one convoy, which leads to less
information storage.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:12 M.-E. Yadamjav et al.

Fig. 6. Convoy index (τmin = 3) entries for clusters of Figure 3.

The convoy index enables a retrieval of clusters that satisfy both the time interval and number
of common objects requirements similar to the intersection index. A sequence of retrieved clusters
with the same convoy identifier is merged without performing actual intersections between clus-
ters based on the objects’ timespan information. The candidate convoy length is determined by
the pre-computed timespan of objects w.r.t. threshold τ , as shown in Figure 6.

Example 8. Let us generate convoys to be indexed that contain at least τmin = 3 common objects
during their timespans using the clusters shown in Figure 3. Timestamp t1 is a splitting point, as
clusters c1 and c2 converge into cluster c3. However, there is no previous timestamp for timestamp
t1 in the example. Thus, clusters c1 and c2 are embedded into the index entry of cluster c3 w.r.t.
τmin , same as the intersection index. Although cluster c3 diverges into two clusters c4 and c5 at
the next timestamp, we only generate one convoy that contains at least τmin = 3 objects, that is,
д1[o1,o2,o3,o4,o6] = {c3, c4}. This is because clusters c3 and c5 only share two common objects,
which is smaller than τmin = 3.

Once a convoy could not be extended by any incoming clusters, we compute the objects’ con-
secutive appearances in the corresponding clusters and embed that information in the index, as
shown in Figure 6. We store objects in a cluster without timespan information if the cluster does
not share enough common objects with any subsequent clusters w.r.t. threshold τmin .

Example 9. Assume we search for convoys w.r.t. τ = 4 and k = 3. At timestamp t2, we find can-
didate convoy д = {c1, c3} with objects o1,o2,o3, and o4. At timestamp t3, we check the timespan
value for each object and find out that the candidate convoy can be extended by one more cluster
(i.e., c4) that has the same convoy identifier in the index. We then add c4 to the current candidate
convoy д = {c1, c3, c4} satisfying the given thresholds without actually performing the intersection
between convoy д and cluster c4.

4.4.1 Similarity Computation. In case a threshold-based similarity metric is used for recurrent
convoy query, we can accelerate the process of checking the similarity between two convoys by
using theMinimumBounding Rectangles (MBRs) of the convoys. If the distance between theMBRs
of two convoys that are being compared is greater than the given threshold δ , we can safely skip
the similarity computation between the corresponding clusters in the convoys. No cluster in one
convoy is within the distance threshold from any cluster in another convoy.

4.4.2 Index Update. The convoy index is updated continuously with convoys generated by in-
coming clusters w.r.t. threshold τmin for indexing purpose. Here, threshold τmin represents the
minimum number of objects that can be given as a query parameter. These convoys, namely, index
convoys, are different from the convoys generated w.r.t. the query parameters. At every timestamp,
a set of index convoys stored in the main memory is checked against the newly generated clusters
at the current timestamp w.r.t. τmin . To assign a cluster to only one index convoy, we check the

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:13

following conditions: (i) If cluster ci extends more than one convoy, we do not extend the corre-
sponding index convoys by cluster ci and generate a new index convoy with that cluster ci ; (ii) If
an index convoy is extended by multiple clustersC ′, we do not extend that convoy by any cluster
in C ′ as well and generate new index convoys with the corresponding clusters in C ′. The index
convoys that are not extended by any cluster at the current timestamp are inserted to the convoy
index with the necessary timespan information for each object inside any cluster of the convoys.
The extended or newly generated convoys at the current timestamp are stored in themainmemory
to check for possible extensions using the incoming clusters at the next timestamp. That means we
run two different convoy generation algorithms, with one being query convoy generation w.r.t. the
given threshold and the other for indexing purpose w.r.t. τmin . The convoy index is only updated
when we find an index convoy that is not extended at the current timestamp.

4.5 Algorithm

In the following, we present the RCQ processing algorithm over the streaming trajectory data using
the convoy index. The query processing (i.e., Algorithm 3) includes two stages: (i) Existing convoy
candidates that satisfy the prominence threshold are checked against the clusters generated at the
current timestamp. Convoys that are extended and satisfy the timespan threshold (i.e., Algorithm 1)
are passed to the second stage. (ii) Each result convoy received from the first stage is checked
for its historic occurrences w.r.t. given time interval and thresholds using the convoy index (i.e.,
Algorithm 2). Thus, the historic convoy generation is executed only if we find convoys that satisfy
τ and k in the sliding window.

ALGORITHM 1: Convoy generation using a lookup table

Input: set of convoys Gt−1 at timestamp t − 1, clusters Ct identified at timestamp t , and prominence

threshold τ
Output: set of convoys Gt extended at timestamp t

1.1 Gt ← ∅, Cext ← ∅
1.2 lookupTable ← mapObjectsToCluster(Ct)

1.3 foreach д ∈ Gt−1 do
1.4 clusterMap ← ∅
1.5 O ← дetConvoyObjects (д)

1.6 foreach object o ∈ O do

1.7 c ← getObjectCluster(lookupTable)

1.8 clusterMap.push(c, clusterMap.дet (c) + 1)

1.9 foreach pair (c, count) ∈ clusterMap do

1.10 if count ≥ τ then

1.11 Update objects of д with O ∩Ct .дet (c)

1.12 Add c to Cext
1.13 Push pair (д, c) to Gt

1.14 Add Ct \Cext to Gt as new convoys

1.15 return Gt

Algorithm 1 outlines the process of the convoy generation in a sliding window using the lookup
table w.r.t. the given thresholds of τ and k .Cext is declared to store the clusters fromCt that extend
the candidate convoys inGt−1 (Line 1.1). First, a lookup table is created to store objects as a key and
the corresponding cluster identifier as a value using clusters obtained at timestamp t (Line 1.2).
Objects in each candidate convoy are grouped by the cluster identifiers obtained at timestamp t and
stored in clusterMap. Note that there is no cluster identifier for the object that is not recorded at
the current timestamp t (Lines 1.3–1.8). clusterMap for each candidate convoy contains the cluster

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:14 M.-E. Yadamjav et al.

ALGORITHM 2: Historic convoy generation using the convoy index

Input: R-tree index tree , prominence threshold τ , timespan threshold k , recurrence threshold ρ, time

interval offset tend
Output: set of historic convoys S

2.1 skip ← ∅, G ← ∅
2.2 ∪(Ct , t) ← retrieveClusters (tree, ρ, tend ,τ)

2.3 foreach Ct ← each cluster set is accessed in ascending order of timestamp t do
2.4 newSkip ← ∅, Gt ← ∅
2.5 foreach ct ∈ Ct do

2.6 foreach convoy д ∈ G that intersects ct do
2.7 if skip contains д then

2.8 push ct to д, push д to Gt

2.9 newSkip.put (д, skip.дet (д) − 1)
2.10 if ct extends nothing then

2.11 foreach previous cluster c of ct do
2.12 дnew ← generate a convoy using clusters c and ct if it satisfies τ

2.13 push дnew to Gt

2.14 count ← derive the value using the embedding of ct

2.15 newSkip.put (дnew , count)

2.16 S ← S ∪ {д ∈ (G \Gt) |timespan(д) ≥ k }
2.17 G ← Gt , skip ← newSkip

2.18 return S

information of its objects at timestamp t . As the convoy can be diverged into multiple convoys,
we check each cluster c in the clusterMap that satisfies threshold τ and add a pair of candidate
convoy д and cluster c to Gt (Lines 1.9–1.13). Clusters that do not extend any candidate convoy
are added as new convoys in the candidate set (Line 1.14).
Algorithm 2 presents the pseudo-code to generate historic convoys w.r.t. the given thresholds

within time interval [tend − ρ + 1, tend], using the convoy index. Lookup table skip in Line 2.1 keeps
track of convoy timespans that are currently under evaluation. The key in the lookup table indi-
cates the convoy identifier, while the value denotes the number of timestamps that convoy lasts.
We retrieve sets of clusters ordered by the timestamp within the given time interval in Line 2.2.
Each cluster set for a specific timestamp retrieved from the index contains a set of preceding clus-
ters, objects in common, and timespans of objects. We then generate the convoys from the clusters
by evaluating the clusters according to ascending order of their timestamps (Line 2.3). Assume
we are currently evaluating cluster set Ct corresponding to timestamp t . For each cluster ct ∈ Ct ,
we evaluate whether ct could extend any candidate convoy д (preserved by G) under evaluation
(Lines 2.5–2.6). For each retrieved convoy д that intersects ct , if it is indexed by the lookup table
skip, we know the common objects of д and their timespans with the help of convoy index and,
hence, we can skip the detailed intersection operation between ct and д. Without performing the
intersection, we can expand the convoy д by ct and preserve the expanded convoy д as one of
the candidate convoys for the next iteration at t + 1 in Gt (Lines 2.7–2.8). In addition, we insert
expanded convoy д as a new entry in newSkip, the lookup table to be used in the next iteration
at timestamp t + 1 (Line 2.9). Note, the count value of д is decreased by one to reflect the fact that
д has been expanded by cluster ct corresponding to timestamp t and hence the remaining times-
pan of unretrieved clusters is reduced. If cluster ct does not expand any of the candidate convoys,
we add that cluster with its previous clusters as new candidate convoys if they satisfy thresh-
old τ (Lines 2.10–2.15). Note that count value denotes the number of timestamps where at least τ

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:15

ALGORITHM 3: Recurrent convoy query in a sliding window

Input: sliding windowWI of length I , R-tree index tree , convoys Gt−1 at timestamp t − 1, objects Ot

recorded at timestamp t , prominence threshold τ , timespan threshold k , recurrence
threshold ρ

Output: set of recurrent convoys P
3.1 Ct ← дetClusters (Ot ,τ)

3.2 Gt ← дenerateConvoys (Gt−1,Ct ,τ) using Algorithm 1

3.3 G ← f ilterConvoys (Gt ,k)

3.4 tend ← t − k , P ← ∅
3.5 whileG is not empty do

3.6 Gr emove ← ∅
3.7 Gpast ← дetHistoricConvoys (tree, ρ, tend ,τ ,k) using Algorithm 2

3.8 foreach д ∈ G do

3.9 boolean found← f alse

3.10 foreach дpast ∈ Gpast do

3.11 if isSimilar (д,дpast ,τ ,k) then
3.12 push (д,дpast) to P , f ound ← true

3.13 if found = f alse then
3.14 push д to Gr emove

3.15 G ← G \Gr emove

3.16 tend ← tend − ρ
3.17 return P

objects of cluster ct are observed in the same cluster during subsequent timestamps (Line 2.14).
Those convoys not extended at timestamp t are added to the result set if satisfying k (Line 2.16),
while convoys extended/generated by any cluster at timestamp t are passed to the next iteration
at timestamp t + 1 (Line 2.17).
Algorithm 3 outlines the full process of the recurrent convoy query as the sliding window shifts

at a time and a set of objects’ location updates arrive. Location updates of the objects at the cur-
rent timestamp t are clustered by a chosen clustering algorithm (Line 3.1). The generated clus-
ters are filtered by threshold τ . Existing candidate convoys Gt−1 that end at timestamp t − 1 are
checked against the filtered cluster set Ct for a possible extension using the idea proposed in
Section 4.2 (Line 3.2). Candidate convoys that satisfy threshold k are added to result convoy set
G (Line 3.3). Variable tend in Line 3.4 defines the upper bound of the time interval to search for
historic convoys. Thereafter, we evaluate whether any convoy in result convoy set G is actually
a recurrent convoy satisfying the requirements specified (Lines 3.6–3.16). To be more specific, it
initializesGr emove , a temporal set that stores the result convoys that no longer require any search-
ing for reoccurrences in the next time interval (Line 3.6). It next retrieves historic convoys within
time interval [tend − ρ + 1, tend] using Algorithm 2 over the convoy index (Line 3.7). It then eval-
uates the similarity between historic convoys and the result convoys in G (Lines 3.8–3.11) and
adds historic occurrences of each result convoy to the corresponding list (Line 3.12). If a result
convoy is not extended by any historic convoys within the time interval of search, it is added
to Gr emove so it is not evaluated in the next iteration (Lines 3.13–3.14). Thereafter, the result
convoy set G is updated by removing those in Gr emove , and the next time interval for historic
convoy search is also updated by shifting another ρ timestamps (Lines 3.15–3.16). The process
repeats until result convoy set G becomes empty. Finally, P is returned to terminate the query
(Line 3.17).

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:16 M.-E. Yadamjav et al.

Table 2. Cluster Parameters & Statistics

T-drive Beijing

Cluster densityminPts 4 4
Cluster radius ϵ 100 m 100 m
of cluster points 2,048,088 25,882,012
of clusters 455,891 2,788,174
τmin 4 5
Hausdorff distance threshold (δHD) 100 m 100 m

Table 3. Experimental Parameters

Parameter Description Dataset Values

τ # of objects
T-drive 4, 5, 6, 7
Beijing 6, 7, 8, 9

k Timespan (sec)
T-drive 2 4, 6, 8
Beijing 6, 7, 8, 9

ρ Recurrence (hr) Both 1, 2, 4, 12, 24

5 EXPERIMENTS

In this section, we compare our proposed algorithm with the baseline approach (presented in
Section 4.1) through an experimental evaluation using real datasets. Further, we conduct a case
study to show the effectiveness of our approach.

5.1 Experimental Settings

All algorithms are implemented in JAVA. Experiments were run on a 24-core Intel Xeon E5-2630
2.3 GHz using 256 GB RAM, and 1 TB 6 G SAS 7.2 K rpm SFF (2.5-inch) SC Midline disk drives
running Red Hat Enterprise Linux Server release 7.5. We test the following methods to answer the
recurrent convoy queries on real-life datasets: (1) CMC: The baseline RCQ algorithm consists of
two Coherent Moving Cluster [9] algorithms, where CMC-S and CMC-H are used to generate
convoys in a sliding window and historic convoys on top of an R-tree index, respectively; (2)CLT:
Convoy generation algorithm over a sliding window using an in-memory lookup table; (3) RCI:
RCQ algorithm based on the intersection index; (4)RCC: RCQ algorithm based on the convoy index;
and (5) RCC+: RCQ algorithm based on the convoy index with the optimized convoy similarity
computation proposed in Section 4.4.1. Note that RCI, RCC, and RCC++ algorithms use CLT to
discover convoys in a sliding window.
Datasets. All experiments were conducted using two real datasets, (i) T-drive dataset [31] and

(ii) Beijing dataset [26]. The T-drive dataset contains the raw trajectories of 10,357 taxis in Beijing,
China, collected for a week in February 2008. The Beijing dataset contains 28,162 raw trajectories
in Beijing, collected for a month in March 2009. Each trajectory in the dataset is a sequence of
GPS locations (latitude and longitude) and the corresponding timestamps. We obtained clusters
by running DBSCAN [5] with the parameter settings listed in Table 2.
Query Generation. To ensure that at least one recurrent convoy is obtained as a result of

the query, we generate all recurrent convoys that satisfy the maximum values of τ and k and
the minimum value of ρ defined in Table 3. As we find multiple convoys that satisfy the query
parameters, we randomly choose 100 of such queries for each dataset.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:17

Fig. 7. Effect of varying parameters on the T-drive dataset.

Evaluation and Parameterization. We compared the performance of the baseline and our
proposed approaches by varying the query input parameters as shown in Table 3, where the values
in bold represent the default values. The fanout of the R-tree index is set to 100. For all experiments,
a single parameter is varied while other parameters are set to their default values.

5.2 Efficiency Study

In this section, we conducted an experiment to evaluate the efficiency of our proposed algorithms
against the baseline. We study the impact of each parameter by running 100 queries and report the
average query execution time and the average number of intersections between convoy candidates
and clusters evaluated, denoted as texe and nint , respectively. The performance for multiple runs
is shown in boxplots, where the bounding box shows the first and third quartiles; the whiskers
show the range, up to 1.5× of the interquartile range; and the outliers beyond this value are shown
as separate points. The average values are shown as connecting lines.
Effect of τ . The effect of parameter τ that controls the number of objects in a convoy on the

query performance is presented in Figure 7(a) and Figure 8(a), for the T-drive dataset and the Bei-
jing dataset, respectively. As we search for larger convoys by increasing threshold τ , the overall
query execution time decreases due to the distribution of objects in the clusters. Both RCI and RCC
perform up to three times faster than the baseline. The performance gap between RCI and RCC
shows a small margin, as shown in Figures 7(d) and 8(d). RCC computes up to one order of mag-
nitude fewer intersections than RCI. However, there is no substantial difference in the query per-
formance, which is likely due to the distribution of the convoy sizes and lengths. RCC+ computes
the similarity between convoys faster than other algorithms, resulting in shorter query execution

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:18 M.-E. Yadamjav et al.

Fig. 8. Effect of varying parameters on the Beijing dataset.

time. However, RCC and RCC+ share the same number of intersections, so we use one line when
reporting the number of intersections for them.
Effect ofk . The effect of parameter k that controls the duration of convoys on the query perfor-

mance is presented in Figures 7(b) and 8(b). As we increase threshold k for the convoy, the number
of historic convoys that satisfy the threshold declines, resulting in a smaller number of clusters to
be retrieved from the convoy index. RCI and RCC perform up to five times faster than the baseline
when varying the timespan thresholds. The margin between RCI and RCC increases with the in-
crease of k , leading to fewer intersections, as shown in Figures 7(e) and 8(e). Longer convoys have
a higher chance of using information in the convoy index instead of performing intersections. This
confirms that the convoy index works better for searching convoys that last for longer timespans.
Effect of ρ. The effect of parameter ρ that controls the recurrence of convoys on the query per-

formance is presented in Figures 7(c) and 8(c). As we increase threshold ρ, the number of clusters
that fall in the time interval of search increases, leading to longer time to generate convoys based
on retrieved clusters. The number of historical convoys that satisfy the thresholds also increases,
leading to longer query execution time. RCC performs up to four times faster than the baseline
for varying settings of threshold ρ. The increase in the number of historical clusters leads to more
intersections to be performed for historic convoy generation, as shown in Figures 7(f) and 8(f).
Online convoy generation.We report the query performance of CMC-S and CLT algorithms

for convoy generation in a sliding window using the Beijing dataset in Figure 9. The Beijing dataset
has more clusters per timestamp than the T-drive dataset, and the clusters are dense in terms of
the number of points inside. Thus, it clearly shows the efficiency of our proposed algorithms over
the baseline.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:19

Fig. 9. Convoy generation in a sliding window on the Beijing dataset.

Fig. 10. Query performance breakdown on the T-drive dataset.

Table 4. Index Sizes (Unit: MB)

Dataset Baseline index Intersection index Convoy index

T-drive 55 41 42
Beijing 339 342 339

Performance breakdown. We further present the performance breakdown of algorithms for
varying τ and ρ on the T-drive dataset in Figures 10(a) and 10(b). Each group of bars reports
the performance of one algorithm (i.e., CMC, RCI, and RCC+) when answering recurrent convoy
queries. Each bar is split into three parts, namely, IO, ALG, and SIM, which represent I/O time
to retrieve the clusters from the index, the execution time of the recurrent convoy query, and
similarity computation between historic convoys and convoys in a slidingwindow, respectively. As
soon as we find convoys that satisfy the given query thresholds, we search for historic occurrences
of each convoy within ρ time interval. This historic convoy search occupies most of the query
execution time compared to the cluster and convoy generations of objects at the current timestamp.
As shown in Figure 10(a), our approach uses less time in all stages of the algorithm (i.e., retrieve
clusters from the index, generate historic convoys, and compute similarity between convoys).
Index. The sizes of the indexes built on top of the R-tree structure are reported in Table 4. The

baseline index uses the timestamp of the cluster and the number of objects in a cluster as two
dimensions of the MBR. Objects in a cluster are embedded as data into the node. Thus, the index
size is directly proportional to the number of clusters to be indexed.
The intersection index contains clusters that have at least τmin number of common objects with

preceding clusters. Thus, the objects not observed in the previous clusters are not stored in the
node. However, we embed extra information about the preceding clusters that share common
objects with the current cluster. The size of the intersection index is smaller than the baseline index

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:20 M.-E. Yadamjav et al.

Fig. 11. Convoy index update performance on the T-drive dataset.

(as shown in Table 4) for T-drive dataset. This could be due to a large number of single clusters
that cannot form convoys. In contrast, the size of the intersection index is larger than that of the
baseline index for the Beijing dataset, which indicates that the clusters in this dataset are highly
inter-related w.r.t. the common objects.
The convoy index contains clusters with embedded information about the timespan of each ob-

ject in the corresponding convoy. It can be seen from Table 4 that the sizes of intersection index
and convoy index are almost similar for the T-drive dataset. This implies that most of the convoys
have a length of two timestamps. In contrast, intersection index accounts for 342 MB in the Beijing
dataset; whereas convoy index accounts for 339 MB. Longer convoys require more information
about timespans of the objects in the convoys, which accelerates the intersection in the query
processing.
Next, we study the convoy index update time for convoys of varying timespans of occurrence.

Figure 11(a) shows the length distribution of indexed convoys’ timespans in the T-drive dataset.
A majority of convoys generated for indexing purpose last less than five timestamps, as shown

in Figure 11(a). One of the reasons to find index convoys that last shorter timespans is the com-
mon occurrence of convergence and divergence between clusters at the consecutive timestamps.
Convoys occuring for longer timespans take more time to be inserted in the convoy index as the
number of clusters grows. Nonetheless, the update time is still much faster as compared to the
execution of the recurrent convoy query.

5.3 Effectiveness Study

We choose the T-drive dataset to study the effectiveness of our method for mining recurrent con-
voys. DBSCAN [5] with parameter settings shown in Table 2 is applied to generate clusters at each
timestamp. The generated clusters have their sizes varied from 4 to 18 objects. However, almost
70% of the clusters contain only 4 objects. We generate convoys based on different parameters
settings listed in Table 3 over the T-drive dataset. “Total convoys” row in Table 5 shows the number
of convoys mined for each pair of (τ ,k). For example, we find 109,818 convoys that contain at least
τ = 4 common objects and last at least k = 2 timestamps. In contrast, the number of convoys for
thresholds τ = 7 and k = 4 is the smallest.
Cluster similarity metric. As mentioned in Section 3, the similarity between convoys de-

pends on the similarity between matching clusters. Thus, a proper choice of the metric to evaluate
the similarity between clusters is crucial for mining recurrent convoys of interest. However, the
choice of metric highly depends on the application scenario, which is out of the scope of this ar-
ticle. In this article, we adopt the commonly used similarity metrics that could be applied to point
sets: Hausdorff distance (HD) [21]. HD measures the distance of two clusters by computing the
max-min distance of containing points. Clusters are considered similar if the computed distance

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:21

Table 5. Convoys in the T-drive Dataset for Varying Parameter Settings

Parameters Metric
τ = 4 τ = 5 τ = 6 τ = 7 τ = 4

k = 4 k = 2 k = 6 k = 8

Total convoys 18,216 5,703 2,095 778 109,818 5,181 2,941
Recurrent convoys

HD
2,265 869 365 138 4,205 926 589

Historic occurrences 14,185 3,992 1,253 343 103,773 3,031 1,390
Unique convoys 1,766 842 477 297 1,840 1,224 962

Recurrent convoys
τ -HD

1,772 612 272 130 3,694 818 543
Historic occurrences 15,202 4,579 1,583 501 104,481 3,520 1,783
Unique convoys 1,242 512 240 147 1,643 843 615

is within threshold δ . Further, we use a tailored HD measure, namely, τ -HD, that considers the
query threshold τ to compute the cluster similarity. The original HD considers all points in two
clusters while τ -HD computes the similarity between τ points from two clusters. The clusters are
considered similar if τ points from each cluster are within δ Euclidean distance. Both δHD and
δτ−HD are set to 100 meters.

Recurrent convoys.Next, we search for recurrent convoys over themined convoys from the T-
drive dataset without specifying the recurrence threshold ρ. Table 5 shows the number of recurrent
convoys and unique convoys w.r.t. two cluster similarity metrics and different convoy thresholds.
Here, historic occurrences represent the set of convoys that are similar to recurrent convoys w.r.t.
thresholds τ and k . In contrast, a unique convoy does not have any previous occurrence w.r.t. the
thresholds. As can be seen from the table, we find a small number of unique or recurrent convoys.
A majority of the convoys in the dataset are historic occurrences of the recurrent convoys. For
example, we find 5,181 convoys w.r.t. thresholds τ = 4 and k = 6. However, ≈ 59% and ≈ 68% of
the mined convoys are historic occurrences of other convoys for HD and τ -HD, respectively. As we
increase the prominence and timespan thresholds, the total number of convoys also decreases by
eliminating convoys with less objects or shorter timespans. We observe that we find more similar
clusters by using the tailored τ -HD than HD. The reason is that HD considers all points to compute
the similarity, whereas the tailored τ -HD only considers τ similar points from each cluster.
Case study. The effectiveness of recurrent convoys can be demonstrated from the sample query

result visualized using Google Maps API.1 We run a recurrent convoy query with the following
parameters: τ = 6,k = 25, ρ = 24hr and a sliding window of 30-minute length. Two recurrent con-
voys that satisfy thresholds τ = 6 andk = 25 are found at timestamp 04 Feb 2008 18:08:55, as shown
in Figure 12(a). We then search for historic occurrences of those two convoys w.r.t. the recurrence
threshold ρ.
Convoy #2, which occurs at the timestamp 04 Feb 2008 18:08:31 lasting 25 seconds, as shown

in Figure 12(b), has two historic occurrences. The first one started at 03 Feb 2008 18:09:15, lasting
35 seconds (as shown in Figure 12(c)); and the second one started at 02 Feb 2008 19:48:55, lasting
50 seconds (as shown in Figure 12(d)). Convoy #2 and its previous occurrences are observed in
Sanlitun area that is located in Chaoyang District, Beijing, as shown in Figure 12. This area is a
popular destination for locals and foreigners, containing many bars, restaurants, and shopping
malls.2 Thus, Convoy #2 is likely to be a convoy of taxis picking up or dropping off passengers
along the street based on the location and time interval of occurrences. Since we use the Hausdorff

1http://maps.googleapis.com.
2https://en.wikipedia.org/wiki/Sanlitun.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

http://maps.googleapis.com
https://en.wikipedia.org/wiki/Sanlitun

59:22 M.-E. Yadamjav et al.

Fig. 12. Recurrent convoy query result in a sliding window (04 Feb 2008 18:00:00–18:30:00).

distance to compute the similarity between convoys, it can be seen that the shapes of convoys are
similar w.r.t. the given similarity threshold.
In case we do not find any result for certain values of thresholds, it is possible to further search

for convoys by changing the thresholds (incrementally). That is why we need efficient index struc-
tures that can facilitate the mining effort to query recurrent convoys, as we expect the users to
frequently tune the parameters to explore convoys of interest.

6 CONCLUSION

In this article, we studied the problem of finding a pattern of co-moving objects that repeats itself
within a given time interval. We formally defined the problem of finding recurrent convoys in a
sliding window and proposed algorithms and data structures that improve the efficiency in the
mining process. Experimental study on real-life datasets shows the efficiency and effectiveness
of our approach. Considering the correlations between convoys enables us to distinguish unique
patterns from recurring patterns. In the future, we plan to extend this work by giving safe ranges
of values (τ ,k, ρ) where the current query result does not change. This facilitates the mining effort
by guiding the user to the next value of interest to find different results.

REFERENCES

[1] Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei Pan, and Erin Taylor. 2018. Subtrajec-

tory clustering: Models and algorithms. In Proceedings of the PODS. ACM, 75–87.

[2] Alka Bhushan, Umesh Bellur, Kuldeep Sharma, Srijay Deshpande, and Nandlal L. Sarda. 2017. Mining swarm patterns

in sliding windows over moving object data streams. In Proceedings of the SIGSPATIAL. ACM, 60:1–60:4.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

Querying Recurrent Convoys over Trajectory Data 59:23

[3] Huiping Cao, Nikos Mamoulis, and David W. Cheung. 2007. Discovery of periodic patterns in spatiotemporal se-

quences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007), 453–467.

[4] Lu Chen, Yunjun Gao, Ziquan Fang, Xiaoye Miao, Christian S. Jensen, and Chenjuan Guo. 2019. Real-time distributed

co-movement pattern detection on streaming trajectories. VLDB J. 12, 10 (2019), 1208–1220.

[5] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering

clusters in large spatial databases with noise. In Proceedings of the SIGKDD. AAAI Press, 226–231.

[6] Qi Fan, Dongxiang Zhang, Huayu Wu, and Kian-Lee Tan. 2016. A general and parallel platform for mining co-

movement patterns over large-scale trajectories. VLDB J. 10, 4 (2016), 313–324.

[7] Joachim Gudmundsson and Marc van Kreveld. 2006. Computing longest duration flocks in trajectory data. In Pro-

ceedings of the SIGSPATIAL. ACM, 35–42.

[8] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching. In Proceedings of the SIGMOD. ACM,

47–57.

[9] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and Heng Tao Shen. 2008. Discovery of convoys

in trajectory databases. VLDB J. 1, 1 (2008), 1068–1080.

[10] Tanvi Jindal, Prasanna Giridhar, Lu An Tang, Jun Li, and Jiawei Han. 2013. Spatiotemporal periodical pattern mining

in traffic data. In Proceedings of the SIGKDD International Workshop on Urban Computing. ACM, 11:1–11:8.

[11] Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. 2005. On discovering moving clusters in spatio-temporal data.

In Proceedings of the SSTD. Springer, 364–381.

[12] Ruoshan Lan, Yanwei Yu, Lei Cao, Peng Song, and Yingjie Wang. 2017. Discovering evolving moving object groups

from massive-scale trajectory streams. In Proceedings of the MDM. IEEE Computer Society, 256–265.

[13] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. 2007. Trajectory clustering: A partition-and-group framework. In

Proceedings of the SIGMOD. ACM, 593–604.

[14] Xiaohui Li, Vaida Ceikute, Christian S. Jensen, and Kian-Lee Tan. 2013. Effective online group discovery in trajectory

databases. IEEE Trans. Knowl. Data Eng. 25, 12 (2013), 2752–2766.

[15] Yuxuan Li, James Bailey, and Lars Kulik. 2015. Efficient mining of platoon patterns in trajectory databases. Data

Knowl. Eng. 100 (2015), 167–187.

[16] Zhenhui Li, Bolin Ding, Jiawei Han, and Roland Kays. 2010. Swarm: Mining relaxed temporal moving object clusters.

VLDB J. 3, 1 (2010), 723–734.

[17] Zhenhui Li, Bolin Ding, Jiawei Han, Roland Kays, and Peter Nye. 2010. Mining periodic behaviors for moving objects.

In Proceedings of the SIGKDD. ACM, 1099–1108.

[18] Zhenhui Li, Jiawei Han, Bolin Ding, and Roland Kays. 2012. Mining periodic behaviors of object movements for

animal and biological sustainability studies. Data Min. Knowl. Discov. 24, 2 (2012), 355–386.

[19] Zhenhui Li, Jiawei Han, Ming Ji, Lu-An Tang, Yintao Yu, Bolin Ding, Jae-Gil Lee, and Roland Kays. 2011. Movemine:

Mining moving object data for discovery of animal movement patterns. ACM Trans. Intell. Syst. Technol. 2, 4 (2011),

37:1–37:32.

[20] Nikos Mamoulis, Huiping Cao, George Kollios, Marios Hadjieleftheriou, Yufei Tao, and David W. Cheung. 2004.

Mining, indexing, and querying historical spatiotemporal data. In Proceedings of the SIGKDD. ACM, 236–245.

[21] Sarana Nutanong, Edwin H. Jacox, and Hanan Samet. 2011. An incremental Hausdorff distance calculation algorithm.

VLDB J. 4, 8 (2011), 506–517.

[22] Faisal Orakzai, Toon Calders, and Torben Bach Pedersen. 2016. Distributed convoy pattern mining. In Proceedings of

the MDM. IEEE Computer Society, 122–131.

[23] Faisal Orakzai, Toon Calders, and Torben Bach Pedersen. 2019. k/2-hop: Fast mining of convoy patterns with effective

pruning. VLDB J. 12, 9 (2019), 948–960.

[24] Faisal Orakzai, Thomas Devogele, and Toon Calders. 2015. Towards distributed convoy pattern mining. In Proceedings

of the SIGSPATIAL. ACM, 50:1–50:4.

[25] Sutheera Puntheeranurak, Thi Thi Shein, and Makoto Imamura. 2018. Efficient discovery of traveling companion

from evolving trajectory data stream. In Proceedings of the COMPSAC. IEEE Computer Society, 448–453.

[26] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: Distributed in-memory trajectory analytics. In Proceedings

of the SIGMOD. ACM, 725–740.

[27] Lu-An Tang, Yu Zheng, Jing Yuan, Jiawei Han, Alice Leung, Chih-Chieh Hung, andWen-Chih Peng. 2012. On discov-

ery of traveling companions from streaming trajectories. In Proceedings of the ICDE. IEEE Computer Society, 186–197.

[28] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, Timos Sellis, and Xiaolin Qin. 2019. Fast large-scale trajectory clus-

tering. VLDB J. 13, 1 (2019), 29–42.

[29] Yida Wang, Ee-Peng Lim, and San-Yih Hwang. 2006. Efficient mining of group patterns from user movement data.

Data Knowl. Eng. 57, 3 (2006), 240–282.

[30] Munkh-Erdene Yadamjav, Zhifeng Bao, Farhana M. Choudhury, Hanan Samet, and Baihua Zheng. 2019. Querying

continuous recurrent convoys of interest. In Proceedings of the SIGSPATIAL. ACM, 436–439.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

59:24 M.-E. Yadamjav et al.

[31] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan Huang. 2010. T-drive:

Driving directions based on taxi trajectories. In Proceedings of the SIGSPATIAL. ACM, 99–108.

[32] Yipeng Zhang, Yuchen Li, Zhifeng Bao, Songsong Mo, and Ping Zhang. 2019. Optimizing impression counts for

outdoor advertising. In Proceedings of the SIGKDD. ACM, 1205–1215.

[33] Kai Zheng, Yu Zheng, Nicholas Jing Yuan, and Shuo Shang. 2013. On discovery of gathering patterns from trajectories.

In Proceedings of the ICDE. IEEE Computer Society, 242–253.

[34] Kai Zheng, Yu Zheng, Nicholas J. Yuan, Shuo Shang, and Xiaofang Zhou. 2014. Online discovery of gathering patterns

over trajectories. IEEE Trans. Knowl. Data Eng. 26, 8 (2014), 1974–1988.

[35] Yu Zheng. 2015. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 6, 3 (2015), 29.

[36] Kaichun Zhou, Zongshun Tian, and Yuanwei Yang. 2019. Periodic pattern detection algorithms for personal trajectory

data based on spatiotemporal multi-granularity. IEEE Access 7 (2019), 99683–99693.

Received December 2019; revised April 2020; accepted May 2020

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 59. Publication date: August 2020.

