
Translation Validation: Automatically Proving the
Correctness of Translations Involving Optimized Code

Hanan Samet

http://www.cs.umd.edu/˜hjs

hjs@cs.umd.edu

Department of Computer Science

University of Maryland

College Park, MD 20742, USA

http://www.cs.umd.edu/˜hjs/pubs/compilers/CS-TR-75- 498.pdf

http://www.cs.umd.edu/˜hjs/slides/dagstuhl05.pdf

The assistance of Jagan Sankaranarayanan in making the slides is appreciated.

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://www.cs.umd.edu/~hjs/slides/dagstuhl05.pdf


Compiler Testing (also now known as Translation Validation)

Definition: a means for proving for a given compiler (or any program
translation procedure) for a high level language H and a low level language
L that a program written in H is successfully translated to L

Motivation is desire to prove that optimizations performed during the
translation process are correct
1. Often, optimizations are heuristics
2. Optimizations could be performed by simply peering over the code

Proof procedure should be independent of the translation process (e.g.,
compiler)

Notion of correctness must be defined carefully

Need a representation that reflects properties of both the high and low
level language programs
1. Critical semantic properties of high level language must be identified
2. Identify their interrelationship to instruction set of computer executing

the resulting translation

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Relation to Other Work

Interested in proving that programs are correctly translated

Different from proving that programs are correct

Historically, attempts have been based on use of assertions about the
intent of the program which are then proved to hold (Floyd,King)

Difficulties include:
1. Specification of the assertions
2. How to allow for possibility that assertions are inadequate to specify all

the effects of the program in question

No need for any knowledge about the purpose of the program to be
translated
1. Many possible algorithms for sorting (e.g., Quicksort, shellsort,

insertion sort, etc.)
2. To prove equivalence of any two of these algorithms, we must

demonstrate that they have identical input/output pairs
3. Conventional proof systems attempt to show that the algorithms yield

identical results for all possible inputs
4. Proving equivalence of different algorithms is known to be generally

impossible by use of halting problem-like arguments

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Our Approach

In order to avoid unsolvability problem, need to be more precise on the
definition of equivalence

By equivalence we mean that two programs must be capable of being
proved to be structurally equivalent

In other words, they have identical execution sequences

Therefore, they must test the same conditions except for certain valid
rearrangements of computations

We prove correctness of the translation

Historical roots:
Originated by Samet in Ph.D. thesis in 1975
Proof Carrying Code of Necula and Lee in 1996 is closely related

Rediscovered by Pnueli, Siegel, and Singerman in 1998 and termed it
Translation Validation and followed by Barrett, Fang, Hu, Goldberg,
and Zuck
Acknowledgment of relationship to Samet’s work includes Blech,
Gawkowski, Kundu, Lerner, Leroi, Rideau, Stepp, Tate, Tatloc, Tristan,
and Zimmerman

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Alternative Approaches

One method is to prove that there does not exist a program which is
incorrectly translated by the compiler
1. Instead, we prove that for each program input to the translation

process, the translated version is equivalent to the original version
2. A proof must be generated for each input to the translation process
3. Advantage is that as long as compiler performs its job for each

program input to it, its correctness is of a secondary nature
4. Proof system can run as a postprocessing step to compilation
5. We have bootstrapped ourselves so that we can attribute an “effective

correctness to the compiler”
6. The proof process is independent of the compiler and thus proof

system also holds for other compilers from the same source and target
languages as well as some manual translations and optimizations

7. Identifies proof as belonging to the semantics of the high and low level
languages of the input and output rather than the translation process

A method that would prove a particular compiler correct is limited with
respect to the types of optimizations that it could handle as it would rely on
the identification of all possible optimizations a priori (e.g., LCOM0 and
LCOM4 of McCarthy)

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Compiler Testing System Architecture

high level
language
program

representation
intermediate

symbolic
interpretation

pinpoint
errors

syntatic
transformations

language
program

representation
intermediate

low level

proof of
equivalence

end

TRUE

errors
correct

FALSE

Equivalence proof applies equivalence preserving transformations in an
attempt to reduce them to a common representation termed a normal form

Symbolic interpretation is different from:
1. symbolic execution where various cases of a high level language

program are tested by use of symbolic values for the parameters
2. decompilation as don’t return source high level program

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Example

High level language: LISP 1.6

Low level language: LAP (variant of DECsystem-10 assembly language)

Example function: intersection of two lists U,V

procedure INTERSECTION(U,V)

1 if NULL(U) then NIL
2 elseif MEMBER(CAR(U),V) then
3 CONS(CAR(U),INTERSECTION(CDR(U),V)
4 else INTERSECTION(CDR(U),V)
5 endif

Sample input/output: INTERSECTION(’(A B C),’(D C B)) = ’(B C)

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Flowchart of Conventional LAP Encoding

ENTER: R1=U
                R2=V

STACK <==R1
STACK <==R2

R1 CAR(R1)

R2 STACK(0)
R1 CDR(STACK(−1))
R1 INTERSECTION(R1,R2)

R1 CAR(STACK(−1))
R2 STACK(0)

R1 CDR(STACK(−1))
R1 INTERSECTION(R1,R2)

R1 XCONS(R1,R2)

STACK <== R1

STACK ==> R2

EQ(U, NIL)?

R1 MEMBER(R1, R2)

MEMBER( CAR(U), V)?
NO

YES

undo the first two stack operations
RETURN(R1)

YES

NO

END

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Example Optimized LAP Encoding

Obtained by hand optimization process

(CALL 2 (E INTERSECTION)) COMPUTE INTERSECTION(CDR(U),V)
(MOVE 2 0 12) LOAD ACC.2 WITH V
(MOVEM 1 0 12) SAVE INTERSECTION(CDR(U),V)
(HLRZ@ 1 −1 12) LOAD ACC.1 WITH CAR(U)
(CALL 2(E MEMBER)) COMPUTE MEMBER(CAR(U),V)
(EXCH 1 0 12) SAVE MEMBER(CAR(U),V)
 AND LOAD ACC.1 WITH
 INTERSECTION(CDR(U),V)
(HLRZ@ 2 −1 12) LOAD ACC.2 WITH CAR(U)
(SKIPE 0 0 12)	 SKIP IF MEMBER(CAR(U),V)
 IS NOT TRUE
(CALL 2(E XCONS)) COMPUTE CONS(CAR(U)),
 INTERSECTION(CDR(U),V)
(SUB 12(C 0 0 2 2)) UNDO THE FIRST TWO PUSH OPERATIONS

TAG1 (POPJ 12) RETURN

INTERSECTION (JUMPE 1 TAG 1) JUMP TO TAG1 IF U IS NIL

(PUSH 12 1) SAVE U ON THE STACK

(PUSH 12 2) SAVE V ON THE STACK

(HRRZ 1 0 1) LOAD ACC.1 WITH CDR(U)

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Flowchart of Optimized LAP Encoding

ENTER: R1=U
                R2=V

R1 XCONS(R1,R2)

R1 CAR(STACK(−1))
R1 MEMBER(R1,R2)

R1 CDR(R1)
R1 INTERSECTION(R1,R2)

R1 STACK(0)
R2 CAR(STACK(−1))

R2 STACK(0)
STACK(0) R1

EQ(U, NIL)?

YES

NO

END

MEMBER( CAR(U), V)?
NO

YES

STACK <==R1
STACK <==R2

undo the first two stack operations

RETURN(R1)

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Another Example

REVERSE function that reverses a list L

Sample input/output: REVERSE(’(A B C)) = ’(C B A )

Conventional version is recursive and slow due to use of APPEND

Use iterative (tail recursive) version REVERS1 with two arguments and
vary slightly so that the result is accumulated in the first argument which
enables some interesting optimizations

Initially invoked with REVERS1(NIL,L)

procedure REVERS1(RL,L)

1 if NULL(L) then RL
2 else REVERS1(CONS(CAR(L),RL),CDR(L))
3 endif

A number of possible encodings
1. Generated by compiler
2. Generated by hand optimization

Uses loop shortcutting
Exploits semantics of instructions that accomplish several tasks
simultaneously (e.g., SKIPN)

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Conventional LAP Encoding

undo the first two stack operations
RETURN(R1)

END

ENTER: R1=RL
             R2=L

STACK <==R1
STACK <==R2

R2 STACK(−1)
R1 CAR(STACK(0))
R1 CONS(R1,R2)
R2 CDR(STACK(0))
R1 REVERS1(R1,R2)

YES

NO
EQ(L, NIL)? PCI        (PUSH 12 I) 

PC2       (PUSH 12 2) 
PC3       (JUMPN 2 TAG2)
PC4       (JRST 0 TAGI) 
TAG2    (MOVE 2 -I 12) 
PC6       (HLRZ@ I 0 12)  
              (CALL 2 (E CONS))
              (HRRZ@ 2 0 12) 
PC9       (CALL 2 (E REVERS1))
TAG1    (SUB 12 (C 0 0 2 2))
PC11     (POPJ 12) 

save RL on the stack
save L on the stack
jump to TAG2 if L is not NIL
jump to TAG I
load accumulator 2 with RL
load accumulator 1 with CAR(L)
compute CONS(CAR(L),RL)
load accumulator 2 with CDR(L)
compute REVERSI(CONS(CAR(L),RL),CDR(L))
undo the first two push operations
return

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Hand-optimized LAP Encoding

ENTER: R1=RL
             R2=L

R2 CAR(R3)
R1 XCONS(R1,R2)
R3 CDR(R3)

END

R3=R2

YES

NO
EQ(L, NIL)?

YES

EQ(CDR(L), NIL)?
NO

RETURN(R1)

load accumulator 3 with L and skip if not NIL
return NIL
load accumulator 2 with CAR(L)
compute CONS (CAR(L),RL)
load accumulator 3 with CDR(L)
if CDR(L) is not NIL then compute
REVERS I (CONS (CAR (L), RL), CDR (L))
return

(SKIPN 3 2)
(POPJ 12)
(HLRZ 2 0 3)
(CALL 2 (E XCONS))
(HRRZ 3 0 3}
(JUMPN 3 REV)

(POPJ 12)

REV

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Intermediate Representation (INTERSECTION)

Use a prefix function representation

(EQ U NIL)

(EQ (MEMBER (CAR U) V) NIL)

(INTERSECTION (CDR U) V) (CONS (CAR U) (INTERSECTION (CDR U) V))

U

Source program

(EQ U NIL)

NIL (EQ (MEMBER (CAR U) V) NIL)

(INTERSECTION (CDR U) V) (CONS (CAR U) (INTERSECTION (CDR U) V))

Object program

Object program: obtained by symbolic interpretation

Differences
1. U and NIL may be used interchangeably
2. The symbolic intermediate representation does not indicate other

differences that are present
INTERSECTION(CDR(U),V) is only calculated once in the object
program while the source program calls for calculating it twice
INTERSECTION(CDR(U),V) is calculated before
MEMBER(CAR(U),V) in the object program while the source
program calls for its computation after MEMBER(CAR(U),V)

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Example Instruction Descriptions

FEXPR HLRZ(ARGS);
LOADSTORE(ACFIELD(ARGS),

EXTEXDZERO(

LEFTCONTENTS(
EFFECTADDRESS(ARGS)));

HLRZ

    

POPJ

BEGIN
NEW LAB;
LAB RIGHTCONTENTS(

END

UNCONDITIONALJUMP(LAB);
SUBX(<ACFIELD(ARGS),X11>);
DEALLOCATESTACKENTRY(ACFIELD(ARGS));

RIGHTCONTENTS(ACFIELD(ARGS)));

FEXR POPJ(ARGS);

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Example Instruction Descriptions

TST CHECKTEST(CONTENTS(ACFIELD(ARGS)),ZEROCNST);

    

JUMPE
FEXPR JUMPE(ARGS);
BEGIN

NEW TST;

IF TST THEN RETURN(
IF CDR (TST) THEN

UNCONDITIONALJUMP(EFFECTADDRESS(ARGS))

ELSE NEXTINSTRUCTION());

TRUEPREDICATE():
CONDITIONALJUMP(ARGS,FUNCTION JUMPTRUE);
CONDITIONALJUMP(ARGS,FUNCTION JUMPFALSE);
END;

FEXPR JUMPTRUE(ARGS);
UNCONDITIONALJUMP(EFFECTADDRESS(ARGS));

FEXPR JUMPFALSE(ARGS);
NEXTINSTRUCTION();

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Proof Process

Must prove that no side-effect computations (e.g., an operation having the
effect of a RPLACA or RPLACD in LISP) can occur between the instance
of computation of INTERSECTION(CDR(U),V) and the time at which it is
instantiated

May need to perform flow analysis

Some conflicts are resolved through the use of an additional intermediate
representation that captures the instances of time at which the various
computations were performed

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Normal Form

Normal form in terms of a tree

CONCLUSION ALTERNATIVE

PREDICATE

Obtained through use of following axioms:
1. (P→A,A)⇐⇒wA
2. (T→A,B)⇐⇒A
3. (NIL→A,B)⇐⇒B
4. (P→T,NIL)⇐⇒P
5. (P→(P→A,B),C)⇐⇒(P→A,C)
6. (P→A,(P→B,C))⇐⇒(P→A,C)
7. ((P→Q,R)→A,B)⇐⇒(P→(Q→A,B),(R→A,B))
8. (P→(Q→A,B),(Q→C,D))⇐⇒(Q→(P→A,C),(P→B,D))

Based on McCarthy63 and shown by SametInfoPL78 to hold for both weak
and strong equivalence thereby not needing an additional pair of axioms

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/cannonical-form.pdf


Distributive Law for Functions

Example:
procedure UNION(U,V)
if NULL(U) then NIL
else UNION(CDR(U),

if MEMBER(CAR(U),V) then V
else CONS(CAR(U),V))
endif

endif

(EQ U NIL)

V

(UNION (CDR U) V) (UNION (CDR U) (CONS (CAR U) V))

(EQ (MEMBER (CAR U) V) NIL)

Intermediate representation reflects factoring of MEMBER test

MEMBER is encountered at a higher level in the tree than CDR(U)

Make use of an additional intermediate representation which assigns
numbers to the original function representation so that as the distributive
law is applied, the relative order in which the various computations are
performed is not overlooked

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (44 (20 5)(42 (24 5) 6)) 

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Normal Form Algorithm

Algorithm has two phases:
1. Apply axioms 2, 3, and 7 along with the distributive law for functions,

and also bind variables to their proper values
2. (T→A,B)⇐⇒A
3. (NIL→A,B)⇐⇒B
7. ((P→Q,R)→A,B)⇐⇒(P→(Q→A,B),(R→A,B))

2. Apply axioms 2, 3, 5 and 6 to get rid of duplicate occurrences of
predicates as well as redundant computations

2. (T→A,B)⇐⇒A
3. (NIL→A,B)⇐⇒B
5. (P→(P→A,B),C)⇐⇒(P→A,C)
6. (P→A,(P→B,C))⇐⇒(P→A,C)

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Renumbering

Step 2 means that whenever two functions have identical computation
numbers, then they must have been computed simultaneously (i.e., with
the same input conditions and identical parameter bindings)

Useful for common subexpression elimination

Example

(EQ U NIL)

V

(UNION (CDR U) V) (UNION (CDR U) (CONS (CAR U) V))

(EQ (MEMBER (CAR U) V) NIL)

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (44 (20 5)(42 (24 5) 6)) 

44 is associated with two instances of UNION which yield different results
as the second argument is bound to V in the first case and to ’(CONS
(CAR U) V)’ in the second case
Solution is to renumber and in the process
also preserve the property that each compu-
tation has a number greater than the num-
bers associated with its predecessors and
less than those associated with its successors

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (48 (20 5) (46 (24 5) 6)) 

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Proof

Process:
1. Transform each of the intermediate representations into the other
2. Prove that each computation appearing in one of the representations

appears in the other representation and vice versa

Method:
1. Uniformly assign the computation numbers in one representation, say

B, to be higher than all of the numbers in the other representation, say
A, and then in increasing order, search B for matching instances of
computations appearing in A

2. Reverse the above process
3. Make liberal use of axioms 1, 2, 3, 5, and 6 as well as substitution of

equals for equals
4. Axiom 8 allows rearranging of condition tests if necessary
5. Make use of sophisticated algorithm for proving equalities and

inequalities of instances of formulas with function application rather
than just constant symbols

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/efficient-online.pdf


Example Proof

INTERSECTION

(10 5 0)

(16 (14 (12 5) 6) 0)0

(20 (18 5) 6) (26 (12 5) (24 (22 5) 6)) 

source program

(28 5 0)

5 (38 (36 (34 5) 6) 0)

(32 (30 5) 6) (40 (34 5)(32 (30 5) 6)) 

object program

Must prove that (INTERSECTION (CDR U) V) can be computed
simultaneously and before the test (MEMBER (CAR U) V)

In other words, (20 (18 5) 6) and (24 (22 5) 6) will be shown to be matched
by (32 (30 5) 6)

Therefore, we prove that the act of computing (MEMBER (CAR U) V) can
be postponed to a point after computing (INTERSECTION (CDR U) V)

Same proof process is repeated with all computations in the object
program having computation numbers less than those in the source
program so that there are no computations performed in the object
program that do not appear in the source program

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Applications

1. Postoptimization component of a compiler

2. Interactive optimization process where a user applies transformations

3. Correctness of bootstrapping process
Suppose have a LISP interpreter available and want a compiler
Write a compiler C in LISP and let the compiler translate itself yielding
C

′ written in assembly language

Proof system can be used to prove that C and C
′ are equivalent and

that they generate equivalent code
Same process can be used if C runs on machine A generating code
for machine B and now compilers on A and B are equivalent

4. Bootstrapping correctness must be treated with caution as different
machine architectures can cause problems with respect to different word
sizes, character formats, input-output primitives, etc.

5. Found use in verifying optimizations that result in
improvements in runtime behavior by reducing number of active pointers
thereby increasing the amount of storage that is garbage collected

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/code-optimization.pdf


Concluding Remarks

1. Challenge was handling EQ(A,B) implies EQ(F(A),F(B))
Uniform word problem

2. Adapt to other high level languages and architectures

3. Recursion is the only control flow mechanism
Interpret recursion as having taken place whenever symbolic interpre-
tation process encounters an instruction which has been encountered
previously along the same path (termed loop shortcutting)

4. Could handle GO in LISP by breaking up program into modules of intervals
having one entry point and several exit points

Branches which jump back anywhere within the interval other than the
entry point are interpreted as instances of loop shortcutting
Branches to points other than entry nodes in other intervals are also
interpreted as instances of loop shortcutting
Need a proof for each interval

5. Potential drawback is that intermediate representation in the form of a tree
with N conditions could grow as big as 2

N execution paths
But COND (if-then-else) of N conditions only has N + 1 execution paths

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/efficient-online.pdf


References

1. H. Samet, Automatically Proving the Correctness of Translations
Involving Optimized Code, Ph.D. thesis, Stanford University, CA, May 1975
(Also Technical Report - CS-TR-75-498, Department of Computer
Science, Stanford University, CA) (Warning pdf size-58MB).

2. H.Samet, Increasing the Reliability of Code Generation, Proceedings of
the Fourth International Conference on the Implementation Design of
Algorithmic Languages, New York, June 1976, pages 193-203.

3. H.Samet, Compiler Testing via Symbolic Interpretation, Proceedings of the
ACM 29th Annual Conference, Houston, TX, October 1976, pages
492-497.

4. H.Samet, Towards Code Optimization in LISP, Proceedings of the 5th
International Conference on the Implementation and Design of Algorithmic
Languages, Rennes, France, May 1977, pages 362-374.

5. H.Samet, A Normal Form for Compiler Testing, Proceedings of the
SIGART SIGPLAN Symposium on Artificial Intelligence and Programming
Languages, Rochester, NY, August 1977, pages 155-162, (also in
SIGPLAN NOTICES, August 1977 and in SIGART NEWSLETTER, August
1977).

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/increasing.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/compiler-testing.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/imp_design.PDF
http://www.cs.umd.edu/~hjs/pubs/compilers/normal-form.pdf


References (Continued)

6. H.Samet, Toward Automatic Debugging of Compilers, Proceedings of the
5th International Joint Conference on Artificial Intelligence, Cambridge,
MA, August 1977, page 379.

7. H.Samet, A Machine Description Facility for Compiler Testing, IEEE
Transactions on Software Engineering 3, 5(September 1977), pages
343-351 (also in Computing Reviews 19, 3(March 1978), pages 113-114,
entry 32738).

8. H.Samet, A New Approach to Evaluating Code Generation in a
Student Environment, Information Processing 77, (B. Gilchrist, Ed.), North
Holland Publishing Company, 1977, pages 661-665.

9. P.J. Downey, H.Samet and R. Sethi, Off-line and On-line Algorithms for
Deducing Equalities, Proceedings of the 5th Annual ACM Symposium on
Principles of Programming Languages, Tucson, AZ, January 1978, pages
158-170 (also in Computing Reviews 20, 4(April 1979), page 157, entry
34427).

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/towards-automatic-debugging.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/towards-automatic-debugging.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/new-approach.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/new-approach.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/downey78.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/downey78.pdf


References (Continued)

10. H.Samet, A Canonical Form Algorithm for Proving Equivalences
of Conditional Forms, Information Processing Letters 7, 2(February
1978), pages 103-106.

11. H.Samet, Proving Correctness of Heuristically Optimized Code,
Communications of the ACM 21, 7(July 1978), pages 570-582.

12. H.Samet,
Efficient On-line Proofs of Equalities and Inequalities of Formulas, IEEE
Transactions on Computers 29, 1(January 1980), pages 28-32.

13. H.Samet and L.Marcus, Purging in an Equality Data Base, Information
Processing Letters 10, 3(March 1980), pages 89-95 (also University of
Maryland TR 741).

14. H.Samet, Experience with Software Conversion, Software Practice and
Experience 11, 10(1981), pages 1053-1069.

15. H. Samet, Code Optimization Considerations in List Processing Systems,
IEEE Transactions in Software Engineering 8, 2(March 1982), pages
107-112.

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/cannonical-form.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/cannonical-form.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/proving-correctness.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/efficient-online.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/efficient-online.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/purging.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/experience-software.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/code-optimization.pdf

	Compiler Testing scriptsize {(also now known as Translation Validation)}
	Relation to Other Work
	Our Approach
	Alternative Approaches
	Compiler Testing System Architecture
	Example
	Flowchart of Conventional LAP Encoding
	Example Optimized LAP Encoding
	Flowchart of Optimized LAP Encoding
	Another Example
	Conventional LAP Encoding
	Hand-optimized LAP Encoding
	Intermediate Representation (INTERSECTION)
	Example Instruction Descriptions
	Example Instruction Descriptions
	Proof Process
	Normal Form
	Distributive Law for Functions
	Normal Form Algorithm
	Renumbering
	Proof
	Example Proof
	Applications
	Concluding Remarks
	References
	References (Continued)
	References (Continued)

