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Compiler Testing (also now known as Translation Validation)

Definition: a means for proving for a given compiler (or any program
translation procedure) for a high level language H and a low level language
L that a program written in H is successfully translated to L

Motivation is desire to prove that optimizations performed during the
translation process are correct
1. Often, optimizations are heuristics
2. Optimizations could be performed by simply peering over the code

Proof procedure should be independent of the translation process (e.g.,
compiler)

Notion of correctness must be defined carefully

Need a representation that reflects properties of both the high and low
level language programs
1. Critical semantic properties of high level language must be identified
2. Identify their interrelationship to instruction set of computer executing

the resulting translation
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Relation to Other Work

Interested in proving that programs are correctly translated

Different from proving that programs are correct

Historically, attempts have been based on use of assertions about the
intent of the program which are then proved to hold (Floyd,King)

Difficulties include:
1. Specification of the assertions
2. How to allow for possibility that assertions are inadequate to specify all

the effects of the program in question

No need for any knowledge about the purpose of the program to be
translated
1. Many possible algorithms for sorting (e.g., Quicksort, shellsort,

insertion sort, etc.)
2. To prove equivalence of any two of these algorithms, we must

demonstrate that they have identical input/output pairs
3. Conventional proof systems attempt to show that the algorithms yield

identical results for all possible inputs
4. Proving equivalence of different algorithms is known to be generally

impossible by use of halting problem-like arguments

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Our Approach

In order to avoid unsolvability problem, need to be more precise on the
definition of equivalence

By equivalence we mean that two programs must be capable of being
proved to be structurally equivalent

In other words, they have identical execution sequences

Therefore, they must test the same conditions except for certain valid
rearrangements of computations

We prove correctness of the translation

Historical roots:
Originated by Samet in Ph.D. thesis in 1975
Proof Carrying Code of Necula and Lee in 1996 is closely related

Rediscovered by Pnueli, Siegel, and Singerman in 1998 and termed it
Translation Validation and followed by Barrett, Fang, Hu, Goldberg,
and Zuck
Acknowledgment of relationship to Samet’s work includes Blech,
Gawkowski, Kundu, Lerner, Leroi, Rideau, Stepp, Tate, Tatloc, Tristan,
and Zimmerman
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Alternative Approaches

One method is to prove that there does not exist a program which is
incorrectly translated by the compiler
1. Instead, we prove that for each program input to the translation

process, the translated version is equivalent to the original version
2. A proof must be generated for each input to the translation process
3. Advantage is that as long as compiler performs its job for each

program input to it, its correctness is of a secondary nature
4. Proof system can run as a postprocessing step to compilation
5. We have bootstrapped ourselves so that we can attribute an “effective

correctness to the compiler”
6. The proof process is independent of the compiler and thus proof

system also holds for other compilers from the same source and target
languages as well as some manual translations and optimizations

7. Identifies proof as belonging to the semantics of the high and low level
languages of the input and output rather than the translation process

A method that would prove a particular compiler correct is limited with
respect to the types of optimizations that it could handle as it would rely on
the identification of all possible optimizations a priori (e.g., LCOM0 and
LCOM4 of McCarthy)
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Compiler Testing System Architecture

high level
language
program

representation
intermediate

symbolic
interpretation

pinpoint
errors

syntatic
transformations

language
program

representation
intermediate

low level

proof of
equivalence

end

TRUE

errors
correct

FALSE

Equivalence proof applies equivalence preserving transformations in an
attempt to reduce them to a common representation termed a normal form

Symbolic interpretation is different from:
1. symbolic execution where various cases of a high level language

program are tested by use of symbolic values for the parameters
2. decompilation as don’t return source high level program
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Example

High level language: LISP 1.6

Low level language: LAP (variant of DECsystem-10 assembly language)

Example function: intersection of two lists U,V

procedure INTERSECTION(U,V)

1 if NULL(U) then NIL
2 elseif MEMBER(CAR(U),V) then
3 CONS(CAR(U),INTERSECTION(CDR(U),V)
4 else INTERSECTION(CDR(U),V)
5 endif

Sample input/output: INTERSECTION(’(A B C),’(D C B)) = ’(B C)
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Flowchart of Conventional LAP Encoding

ENTER: R1=U
                R2=V

STACK <==R1
STACK <==R2

R1 CAR(R1)

R2 STACK(0)
R1 CDR(STACK(−1))
R1 INTERSECTION(R1,R2)

R1 CAR(STACK(−1))
R2 STACK(0)

R1 CDR(STACK(−1))
R1 INTERSECTION(R1,R2)

R1 XCONS(R1,R2)

STACK <== R1

STACK ==> R2

EQ(U, NIL)?

R1 MEMBER(R1, R2)

MEMBER( CAR(U), V)?
NO

YES

undo the first two stack operations
RETURN(R1)

YES

NO

END
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Example Optimized LAP Encoding

Obtained by hand optimization process

(CALL 2 (E INTERSECTION)) COMPUTE INTERSECTION(CDR(U),V)
(MOVE 2 0 12) LOAD ACC.2 WITH V
(MOVEM 1 0 12) SAVE INTERSECTION(CDR(U),V)
(HLRZ@ 1 −1 12) LOAD ACC.1 WITH CAR(U)
(CALL 2(E MEMBER)) COMPUTE MEMBER(CAR(U),V)
(EXCH 1 0 12) SAVE MEMBER(CAR(U),V)
 AND LOAD ACC.1 WITH
 INTERSECTION(CDR(U),V)
(HLRZ@ 2 −1 12) LOAD ACC.2 WITH CAR(U)
(SKIPE 0 0 12)	 SKIP IF MEMBER(CAR(U),V)
 IS NOT TRUE
(CALL 2(E XCONS)) COMPUTE CONS(CAR(U)),
 INTERSECTION(CDR(U),V)
(SUB 12(C 0 0 2 2)) UNDO THE FIRST TWO PUSH OPERATIONS

TAG1 (POPJ 12) RETURN

INTERSECTION (JUMPE 1 TAG 1) JUMP TO TAG1 IF U IS NIL

(PUSH 12 1) SAVE U ON THE STACK

(PUSH 12 2) SAVE V ON THE STACK

(HRRZ 1 0 1) LOAD ACC.1 WITH CDR(U)
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Flowchart of Optimized LAP Encoding

ENTER: R1=U
                R2=V

R1 XCONS(R1,R2)

R1 CAR(STACK(−1))
R1 MEMBER(R1,R2)

R1 CDR(R1)
R1 INTERSECTION(R1,R2)

R1 STACK(0)
R2 CAR(STACK(−1))

R2 STACK(0)
STACK(0) R1

EQ(U, NIL)?

YES

NO

END

MEMBER( CAR(U), V)?
NO

YES

STACK <==R1
STACK <==R2

undo the first two stack operations

RETURN(R1)
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Another Example

REVERSE function that reverses a list L

Sample input/output: REVERSE(’(A B C)) = ’(C B A )

Conventional version is recursive and slow due to use of APPEND

Use iterative (tail recursive) version REVERS1 with two arguments and
vary slightly so that the result is accumulated in the first argument which
enables some interesting optimizations

Initially invoked with REVERS1(NIL,L)

procedure REVERS1(RL,L)

1 if NULL(L) then RL
2 else REVERS1(CONS(CAR(L),RL),CDR(L))
3 endif

A number of possible encodings
1. Generated by compiler
2. Generated by hand optimization

Uses loop shortcutting
Exploits semantics of instructions that accomplish several tasks
simultaneously (e.g., SKIPN)
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Conventional LAP Encoding

undo the first two stack operations
RETURN(R1)

END

ENTER: R1=RL
             R2=L

STACK <==R1
STACK <==R2

R2 STACK(−1)
R1 CAR(STACK(0))
R1 CONS(R1,R2)
R2 CDR(STACK(0))
R1 REVERS1(R1,R2)

YES

NO
EQ(L, NIL)? PCI        (PUSH 12 I) 

PC2       (PUSH 12 2) 
PC3       (JUMPN 2 TAG2)
PC4       (JRST 0 TAGI) 
TAG2    (MOVE 2 -I 12) 
PC6       (HLRZ@ I 0 12)  
              (CALL 2 (E CONS))
              (HRRZ@ 2 0 12) 
PC9       (CALL 2 (E REVERS1))
TAG1    (SUB 12 (C 0 0 2 2))
PC11     (POPJ 12) 

save RL on the stack
save L on the stack
jump to TAG2 if L is not NIL
jump to TAG I
load accumulator 2 with RL
load accumulator 1 with CAR(L)
compute CONS(CAR(L),RL)
load accumulator 2 with CDR(L)
compute REVERSI(CONS(CAR(L),RL),CDR(L))
undo the first two push operations
return
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Hand-optimized LAP Encoding

ENTER: R1=RL
             R2=L

R2 CAR(R3)
R1 XCONS(R1,R2)
R3 CDR(R3)

END

R3=R2

YES

NO
EQ(L, NIL)?

YES

EQ(CDR(L), NIL)?
NO

RETURN(R1)

load accumulator 3 with L and skip if not NIL
return NIL
load accumulator 2 with CAR(L)
compute CONS (CAR(L),RL)
load accumulator 3 with CDR(L)
if CDR(L) is not NIL then compute
REVERS I (CONS (CAR (L), RL), CDR (L))
return

(SKIPN 3 2)
(POPJ 12)
(HLRZ 2 0 3)
(CALL 2 (E XCONS))
(HRRZ 3 0 3}
(JUMPN 3 REV)

(POPJ 12)

REV
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Intermediate Representation (INTERSECTION)

Use a prefix function representation

(EQ U NIL)

(EQ (MEMBER (CAR U) V) NIL)

(INTERSECTION (CDR U) V) (CONS (CAR U) (INTERSECTION (CDR U) V))

U

Source program

(EQ U NIL)

NIL (EQ (MEMBER (CAR U) V) NIL)

(INTERSECTION (CDR U) V) (CONS (CAR U) (INTERSECTION (CDR U) V))

Object program

Object program: obtained by symbolic interpretation

Differences
1. U and NIL may be used interchangeably
2. The symbolic intermediate representation does not indicate other

differences that are present
INTERSECTION(CDR(U),V) is only calculated once in the object
program while the source program calls for calculating it twice
INTERSECTION(CDR(U),V) is calculated before
MEMBER(CAR(U),V) in the object program while the source
program calls for its computation after MEMBER(CAR(U),V)

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Example Instruction Descriptions

FEXPR HLRZ(ARGS);
LOADSTORE(ACFIELD(ARGS),

EXTEXDZERO(

LEFTCONTENTS(
EFFECTADDRESS(ARGS)));

HLRZ

    

POPJ

BEGIN
NEW LAB;
LAB RIGHTCONTENTS(

END

UNCONDITIONALJUMP(LAB);
SUBX(<ACFIELD(ARGS),X11>);
DEALLOCATESTACKENTRY(ACFIELD(ARGS));

RIGHTCONTENTS(ACFIELD(ARGS)));

FEXR POPJ(ARGS);
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Example Instruction Descriptions

TST CHECKTEST(CONTENTS(ACFIELD(ARGS)),ZEROCNST);

    

JUMPE
FEXPR JUMPE(ARGS);
BEGIN

NEW TST;

IF TST THEN RETURN(
IF CDR (TST) THEN

UNCONDITIONALJUMP(EFFECTADDRESS(ARGS))

ELSE NEXTINSTRUCTION());

TRUEPREDICATE():
CONDITIONALJUMP(ARGS,FUNCTION JUMPTRUE);
CONDITIONALJUMP(ARGS,FUNCTION JUMPFALSE);
END;

FEXPR JUMPTRUE(ARGS);
UNCONDITIONALJUMP(EFFECTADDRESS(ARGS));

FEXPR JUMPFALSE(ARGS);
NEXTINSTRUCTION();
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Proof Process

Must prove that no side-effect computations (e.g., an operation having the
effect of a RPLACA or RPLACD in LISP) can occur between the instance
of computation of INTERSECTION(CDR(U),V) and the time at which it is
instantiated

May need to perform flow analysis

Some conflicts are resolved through the use of an additional intermediate
representation that captures the instances of time at which the various
computations were performed

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code



Normal Form

Normal form in terms of a tree

CONCLUSION ALTERNATIVE

PREDICATE

Obtained through use of following axioms:
1. (P→A,A)⇐⇒wA
2. (T→A,B)⇐⇒A
3. (NIL→A,B)⇐⇒B
4. (P→T,NIL)⇐⇒P
5. (P→(P→A,B),C)⇐⇒(P→A,C)
6. (P→A,(P→B,C))⇐⇒(P→A,C)
7. ((P→Q,R)→A,B)⇐⇒(P→(Q→A,B),(R→A,B))
8. (P→(Q→A,B),(Q→C,D))⇐⇒(Q→(P→A,C),(P→B,D))

Based on McCarthy63 and shown by SametInfoPL78 to hold for both weak
and strong equivalence thereby not needing an additional pair of axioms
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Distributive Law for Functions

Example:
procedure UNION(U,V)
if NULL(U) then NIL
else UNION(CDR(U),

if MEMBER(CAR(U),V) then V
else CONS(CAR(U),V))
endif

endif

(EQ U NIL)

V

(UNION (CDR U) V) (UNION (CDR U) (CONS (CAR U) V))

(EQ (MEMBER (CAR U) V) NIL)

Intermediate representation reflects factoring of MEMBER test

MEMBER is encountered at a higher level in the tree than CDR(U)

Make use of an additional intermediate representation which assigns
numbers to the original function representation so that as the distributive
law is applied, the relative order in which the various computations are
performed is not overlooked

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (44 (20 5)(42 (24 5) 6)) 
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Normal Form Algorithm

Algorithm has two phases:
1. Apply axioms 2, 3, and 7 along with the distributive law for functions,

and also bind variables to their proper values
2. (T→A,B)⇐⇒A
3. (NIL→A,B)⇐⇒B
7. ((P→Q,R)→A,B)⇐⇒(P→(Q→A,B),(R→A,B))

2. Apply axioms 2, 3, 5 and 6 to get rid of duplicate occurrences of
predicates as well as redundant computations

2. (T→A,B)⇐⇒A
3. (NIL→A,B)⇐⇒B
5. (P→(P→A,B),C)⇐⇒(P→A,C)
6. (P→A,(P→B,C))⇐⇒(P→A,C)
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Renumbering

Step 2 means that whenever two functions have identical computation
numbers, then they must have been computed simultaneously (i.e., with
the same input conditions and identical parameter bindings)

Useful for common subexpression elimination

Example

(EQ U NIL)

V

(UNION (CDR U) V) (UNION (CDR U) (CONS (CAR U) V))

(EQ (MEMBER (CAR U) V) NIL)

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (44 (20 5)(42 (24 5) 6)) 

44 is associated with two instances of UNION which yield different results
as the second argument is bound to V in the first case and to ’(CONS
(CAR U) V)’ in the second case
Solution is to renumber and in the process
also preserve the property that each compu-
tation has a number greater than the num-
bers associated with its predecessors and
less than those associated with its successors

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (48 (20 5) (46 (24 5) 6)) 
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Proof

Process:
1. Transform each of the intermediate representations into the other
2. Prove that each computation appearing in one of the representations

appears in the other representation and vice versa

Method:
1. Uniformly assign the computation numbers in one representation, say

B, to be higher than all of the numbers in the other representation, say
A, and then in increasing order, search B for matching instances of
computations appearing in A

2. Reverse the above process
3. Make liberal use of axioms 1, 2, 3, 5, and 6 as well as substitution of

equals for equals
4. Axiom 8 allows rearranging of condition tests if necessary
5. Make use of sophisticated algorithm for proving equalities and

inequalities of instances of formulas with function application rather
than just constant symbols
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Example Proof

INTERSECTION

(10 5 0)

(16 (14 (12 5) 6) 0)0

(20 (18 5) 6) (26 (12 5) (24 (22 5) 6)) 

source program

(28 5 0)

5 (38 (36 (34 5) 6) 0)

(32 (30 5) 6) (40 (34 5)(32 (30 5) 6)) 

object program

Must prove that (INTERSECTION (CDR U) V) can be computed
simultaneously and before the test (MEMBER (CAR U) V)

In other words, (20 (18 5) 6) and (24 (22 5) 6) will be shown to be matched
by (32 (30 5) 6)

Therefore, we prove that the act of computing (MEMBER (CAR U) V) can
be postponed to a point after computing (INTERSECTION (CDR U) V)

Same proof process is repeated with all computations in the object
program having computation numbers less than those in the source
program so that there are no computations performed in the object
program that do not appear in the source program
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Applications

1. Postoptimization component of a compiler

2. Interactive optimization process where a user applies transformations

3. Correctness of bootstrapping process
Suppose have a LISP interpreter available and want a compiler
Write a compiler C in LISP and let the compiler translate itself yielding
C

′ written in assembly language

Proof system can be used to prove that C and C
′ are equivalent and

that they generate equivalent code
Same process can be used if C runs on machine A generating code
for machine B and now compilers on A and B are equivalent

4. Bootstrapping correctness must be treated with caution as different
machine architectures can cause problems with respect to different word
sizes, character formats, input-output primitives, etc.

5. Found use in verifying optimizations that result in
improvements in runtime behavior by reducing number of active pointers
thereby increasing the amount of storage that is garbage collected

Copyright 2012: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/code-optimization.pdf


Concluding Remarks

1. Challenge was handling EQ(A,B) implies EQ(F(A),F(B))
Uniform word problem

2. Adapt to other high level languages and architectures

3. Recursion is the only control flow mechanism
Interpret recursion as having taken place whenever symbolic interpre-
tation process encounters an instruction which has been encountered
previously along the same path (termed loop shortcutting)

4. Could handle GO in LISP by breaking up program into modules of intervals
having one entry point and several exit points

Branches which jump back anywhere within the interval other than the
entry point are interpreted as instances of loop shortcutting
Branches to points other than entry nodes in other intervals are also
interpreted as instances of loop shortcutting
Need a proof for each interval

5. Potential drawback is that intermediate representation in the form of a tree
with N conditions could grow as big as 2

N execution paths
But COND (if-then-else) of N conditions only has N + 1 execution paths
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