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Similarity Searching

Important task when trying to find patterns in applications involving mining
different types of data such as images, video, time series, text documents,
DNA sequences, etc.

Similarity searching module is a central component of content-based
retrieval in multimedia databases

Problem: finding objects in a data set S that are similar to a query object q
based on some distance measure d which is usually a distance metric

Sample queries:
1. point: objects having particular feature values
2. range: objects whose feature values fall within a given range or where

the distance from some query object falls into a certain range
3. nearest neighbor: objects whose features have values similar to those

of a given query object or set of query objects
4. closest pairs: pairs of objects from the same set or different sets which

are sufficiently similar to each other (variant of spatial join)

Responses invariably use some variant of nearest neighbor finding
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Voronoi Diagrams
Apparently straightforward solution:

1. Partition space into regions where all
points in the region are closer to the
region’s data point than to any other
data point

2. Locate the Voronoi region corre-
sponding to the query point

Problem: storage and construction cost for N d-dimensional points is Θ(N d/2)

Impractical unless resort to some high-dimensional approximation of a Voronoi
diagram (e.g., OS-tree) which results in approximate nearest neighbors

Exponential factor corresponding to the dimension d of the underlying space in
the complexity bounds when using approximations of Voronoi diagrams (e.g.,
(t, ε)-AVD) is shifted to be in terms of the error threshold ε rather than in terms
of the number of objects N in the underlying space

1. (1, ε)-AVD: O(N/εd−1) space and O(log(N/εd−1)) time for nearest neigh-
bor query

2. (1/ε(d−1)2, ε)-AVD: O(N) space and O(t + log N) time for nearest neigh-
bor query
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Approximate Voronoi Diagrams (AVD)

Example partitions of space induced by ε neighbor sets

Darkness of shading indicates cardinality of nearest neighbor sets with
white corresponding to 1

(ε = 0.10) (ε = 0.30) (ε = 0.50)
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Approximate Voronoi Diagrams (AVD) Representations
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Partition underlying domain so that
for ε ≥ 0, every block b is asso-
ciated with some element rb in S
such that rb is an ε-nearest neigh-
bor for all of the points in b (e.g.,
AVD or (1,0.25)-AVD)

Allow up to t ≥ 1 elements rib(1 ≤
i ≤ t) of S to be associated with
each block b for a given ε, where
each point in b has one of the rib as
its ε-nearest neighbor (e.g., (3,0)-
AVD)
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Problem: Curse of Dimensionality

Number of samples needed to estimate an arbitrary function with a given
level of accuracy grows exponentially with the number of variables (i.e.,
dimensions) that comprise it (Bellman)

For similarity searching, curse means that the number of points in the data
set that need to be examined in deriving the estimate (≡ nearest neighbor)
grows exponentially with the underlying dimension

Effect on nearest neighbor finding is that the process may not be
meaningful in high dimensions

When ratio of variance of distances and expected distances, between two
random points p and q drawn from the data and query distributions,
converges to zero as dimension d gets very large (Beyer et al.)

limd→∞
Variance[dist(p,q)]
Expected[dist(p,q)]

= 0

1. distance to the nearest neighbor and distance to the farthest neighbor
tend to converge as the dimension increases

2. implies that nearest neighbor searching is inefficient as difficult to
differentiate nearest neighbor from other objects

3. assumes uniformly distributed data

Partly alleviated by fact that real-world data is rarely uniformly-distributed
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Alternative View of Curse of Dimensionality

Probability density function (analogous to histogram) of the distances of
the objects is more concentrated and has a larger mean value

Implies similarity search algorithms need to do more work

Worst case when d(x, x) = 0 and d(x, y) = 1 for all y 6= x

Implies must compare every object with every other object
1. can’t always use triangle inequality to prune objects from consideration
2. triangle inequality (i.e., d(q, p) ≤d(p, x) + d(q, x)) implies that any x

such that |d(q, p)− d(p, x)| > ε cannot be at a distance of ε or less from
q as d(q, x) ≥ d(q, p)− d(p, x) > ε

3. when ε is small while probability density function is large at d(p, q),
then probability of eliminating an object from consideration via use of
triangle inequality is remaining area under curve which is small (see
left) in contrast to case when distances are more uniform (see right)
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Other Problems

Point and range queries are less complex than nearest neighbor queries
1. easy to do with multi-dimensional index as just need comparison tests
2. nearest neighbor require computation of distance

Euclidean distance needs d multiplications and d− 1 additions

Often we don’t know features describing the objects and thus need aid of
domain experts to identify them
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Solutions Based on Indexing

1. Map objects to a low-dimensional vector space which is then indexed
using one of a number of different data structures such as k-d trees,
R-trees, quadtrees, etc.

use dimensionality reduction: representative points, SVD, DFT, etc.

2. Directly index the objects based on distances from a subset of the objects
making use of data structures such as the vp-tree, M-tree, etc.

useful when only have a distance function indicating similarity (or
dis-similarity) between all pairs of N objects
if change distance metric, then need to rebuild index — not so for
multidimensional index

3. If only have distance information available, then embed the data objects in
a vector space so that the distances of the embedded objects as
measured by the distance metric in the embedding space approximate the
actual distances

commonly known embedding methods include multidimensional
scaling (MDS), Lipschitz embeddings, FastMap, etc.
once a satisfactory embedding has been obtained, the actual search
is facilitated by making use of conventional indexing methods, perhaps
coupled with dimensionality reduction
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Outline

1. Indexing low and high dimensional spaces

2. Distance-based indexing

3. Dimensionality reduction

4. Embedding methods

5. Nearest neighbor searching
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Part 1: Indexing Low and High Dimensional Spaces

1. Quadtree variants

2. k-d tree

3. R-tree

4. Bounding sphere methods

5. Hybrid tree

6. Avoiding overlapping all of the leaf blocks

7. Pyramid technique

8. Methods based on a sequential scan
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Simple Non-Hierarchical Data Structures

Sequential list Inverted List

Name X Y
Chicago 35 42
Mobile 52 10
Toronto 62 77
Buffalo 82 65
Denver 5 45
Omaha 27 35
Atlanta 85 15
Miami 90 5

X Y
Denver Miami
Omaha Mobile
Chicago Atlanta
Mobile Omaha
Toronto Chicago
Buffalo Denver
Atlanta Buffalo
Miami Toronto

Inverted lists:
1. 2 sorted lists
2. data is pointers
3. enables pruning the search with respect to one key
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Grid Method

Divide space into squares of width equal to the search region

Each cell contains a list of all points within it

Assume L∞ distance metric (i.e., Chessboard)

Assume C = uniform distribution of points per cell

Average search time for k-dimensional space is O(F · 2k)

F = number of records found = C, since query region has the width of
a cell
2k = number of cells examined

(0,100) (100,100)

(100,0)(0,0)

y

x

(5,45)
Denver (35,42)

Chicago

(27,35)
Omaha

(52,10)
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(85,15)
Atlanta

(90,5)
Miami
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Point Quadtree (Finkel/Bentley)

Marriage between uniform grid and a binary search tree
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PR Quadtree

1. Regular decomposition point representation

2. Decompose whenever a block contains more than one point

3. Maximum level of decomposition depends on minimum point separation
if two points are very close, then decomposition can be very deep
can be overcome by viewing blocks as buckets with capacity c and
only decomposing a block when it contains more than c points

A
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D F
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Region Search

Ex: Find all points within radius r of point A

A

r

1 2 3
9 10

13

1211

4
5

876

Use of quadtree results in pruning the search space

If a quadrant subdivision point p lies in a region l, then search the
quadrants of p specified by l

1. SE 5. SW, NW 9. All but NW 13. All
2. SE, SW 6. NE 10. All but NE
3. SW 7. NE, NW 11. All but SW
4. SE, NE 8. NW 12. All but SE
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Finding Nearest Object

Ex: find the nearest object to P

Assume PR quadtree for points (i.e., at
most one point per block)

Search neighbors of block 1 in
counterclockwise order

Points are sorted with respect to the space
they occupy which enables pruning the
search space

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

new F

Algorithm:
1. start at block 2 and compute distance to P from A
2. ignore block 3, even if nonempty, as A is closer to P than any point in 3
3. examine block 4 as distance to SW corner is shorter than the distance

from P to A; however, reject B as it is further from P than A
4. ignore blocks 6, 7, 8, 9, and 10 as the minimum distance to them from

P is greater than the distance from P to A
5. examine block 11 as the distance from P to the S border of 1 is shorter

than distance from P to A; but, reject F as it is further from P than A
If F was moved, a better order would have started with block 11, the
southern neighbor of 1, as it is closest to the new F
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k-d tree (Bentley)

Test one attribute at a time instead of all simultaneously as in the point
quadtree

Usually cycle through all the attributes

Shape of the tree depends on the order in which the data is encountered

(90,5)
Miami

(27,35)
Omaha

(5,45)
Denver

(82,65)
Buffalo

(62,77)
Toronto

(52,10)
Mobile

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

(85,15)
Atlanta

Atlanta

y test

Omaha

Denver

Buffalo

x test
Toronto

y test
Mobile

x test
Chicago

Miami

Copyright 2009: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.19/114

Adaptive k-d tree

Data is only stored in terminal nodes

An interior node contains the median of the set as the discriminator

The discriminator key is the one for which the spread of the values of the
key is a maximum
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Minimum Bounding Rectangles: R-tree (Guttman)
Objects grouped into hierarchies, stored in a structure similar to a B-tree

Object has single bounding rectangle, yet area that it spans may be
included in several bounding rectangles

Drawback: not a disjoint decomposition of space (e.g., Chicago in R1+R2)

Order (m, M) R-tree
1. between m ≤M/2 and M entries in each node except root
2. at least 2 entries in root unless a leaf node

X-tree (Berchtold/Keim/Kriegel): if split creates too much overlap, then in-
stead of splitting, create a supernode

R0

R0 R1 R2

R3

(0,100) (100,100)

(100,0)(0,0)

y

(5,45)
Denver (35,42)

Chicago(27,35)
Omaha

(52,10)
Mobile

(62,77)
Toronto

(85,15)
Atlanta

(90,5)
Miami

R5 R6

R4
(82,65)
Buffalo

OmahaDenverR3 TorontoBuffaloR4 MobileChicagoR5 Atlanta MiamiR6

x

R2

R3 R4R1 R5 R6R2

R3
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R*-tree (Beckmann et al.)

Goal: minimize overlap for leaf nodes and area increase for nonleaf nodes

Changes from R-tree:
1. insert into leaf node p for which resulting bounding box has minimum

increase in overlap with bounding boxes of p’s brothers
compare with R-tree where insert into leaf node for which increase
in area is a minimum (minimizes coverage)

2. in case of overflow in p, instead of splitting p as in R-tree, reinsert a
fraction of objects in p (e.g., farthest from centroid)

known as ‘forced reinsertion’ and similar to ‘deferred splitting’ or
‘rotation’ in B-trees

3. in case of true overflow, use a two-stage process (goal: low coverage)
determine axis along which the split takes place
a. sort bounding boxes for each axis on low/high edge to get 2d

lists for d-dimensional data
b. choose axis yielding lowest sum of perimeters for splits based on

sorted orders
determine position of split
a. position where overlap between two nodes is minimized
b. resolve ties by minimizing total area of bounding boxes

Works very well but takes time due to forced reinsertion
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Minimum Bounding Hyperspheres
SS-tree (White/Jain)
1. make use of hierarchy of minimum bounding

hyperspheres
2. based on observation that hierarchy of

minimum bounding hyperspheres is more
suitable for hyperspherical query regions

3. specifying a minimum bounding hypersphere
requires slightly over one half the storage for a
minimum bounding hyperrectangle

enables greater fanout at each node
resulting in shallower trees

4. drawback over minimum bounding
hyperrectangles is that it is impossible cover
space with minimum bounding hyperspheres
without some overlap
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SR-tree (Katayama/Satoh)
1. bounding region is intersection of minimum bounding

hyperrectangle and minimum bounding hypersphere
2. motivated by desire to improve performance of SS-tree

by reducing volume of minimum bounding boxes

SR-tree (Katayama/Satoh)
1. bounding region is intersection of minimum bounding

hyperrectangle and minimum bounding hypersphere
2. motivated by desire to improve performance of SS-tree

by reducing volume of minimum bounding boxes

SR-tree (Katayama/Satoh)
1. bounding region is intersection of minimum bounding

hyperrectangle and minimum bounding hypersphere
2. motivated by desire to improve performance of SS-tree

by reducing volume of minimum bounding boxes
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K-D-B-tree (Robinson)

Rectangular embedding space is hierarchically decomposed into disjoint
rectangular regions

No dead space in the sense that at any level of the tree, entire embedding
space is covered by one of the nodes

Aggregate blocks of k-d tree partition of space into nodes of finite capacity

When a node overflows, it is split along one of the axes

Originally developed to store points but may be extended to non-point
objects represented by their minimum bounding boxes

Drawback: to get area covered by object, must retrieve all cells it occupies
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Hybrid tree (Chakrabarti/Mehrotra)

1. Variant of k-d-B-tree that avoids splitting
the region and point pages that intersect
a partition line l along partition axis a with
value v by slightly relaxing the disjointness
requirement

2. Add two partition lines at x = 70 for region
low and x = 50 for region high

a. A, B, C, D, and G with region low

b. E, F, H, I, and J with region high

(0,100) (100,100)

(100,0)(0,0)

y

x

A

B
J

C

D

G
H

I

E

F

x=70x=50

3. Associating two partition lines with each partition region is analogous to
associating a bounding box with each region (also spatial k-d tree)

similar to bounding box in R-tree but not minimum bounding box
store approximation of bounding box by quantizing coordinate value
along each dimension to b bits for a total of 2bd bits for each box
thereby reducing fanout of each node (Henrich)
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Avoiding Overlapping All of the Leaf Blocks
Assume uniformly-distributed data
1. most data points lie near the boundary of the space that is being split

Ex: for d = 20, 98.5% of the points lie within 10% of the surface
Ex: for d = 100, 98.3% of the points lie within 2% of the surface

2. rarely will all of the dimensions be split even once
Ex: assuming at least M/2 points per leaf node blocks, and at least
one split along each dimension, then total number of points N must
be at least 2dM/2

if d = 20 and M = 10, then N must be at least 5 million to split
along all dimensions once

3. if each region is split at most once, and without loss of generality, split
is in half, then query region usually intersects all the leaf node blocks

query selectivity of 0.01% for d = 20 leads to ‘side length of query
region’=0.63 which means that it intersects all the leaf node blocks
implies a range query will visit each leaf node block

One solution: use a 3-way split along each dimension into three parts of
proportion r, 1− 2r, and r

Sequential scan may be cheaper than using an index due to high
dimensions

We assume our data is not of such high dimensionality!
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Pyramid Technique (Berchtold/Böhm/Kriegel)
Subdivide data space as if it is an onion by peeling off hypervolumes that
are close to the boundary

Subdivide hypercube into 2d pyramids having the center of the data space
as the tip of their cones

Each of the pyramids has one of the faces of the hypercube as its base

Each pyramid is decomposed into slices parallel to its base

Useful when query region side length is greater than half the width of the
data space as won’t have to visit all leaf node blocks

q

q

Pyramid containing q is the one corresponding to the coordinate i whose
distance from the center point of the space is greater than all others

Analogous to iMinMax method (Ooi/Tan/Yu/Bressan) with exception that iM-
inMax associates a point with its closest surface but the result is still a de-
composition of the underlying space into 2d pyramids
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Methods Based on a Sequential Scan

1. If neighbor finding in high dimensions must access every disk page at
random, then a linear scan may be more efficient

advantage of sequential scan over hierarchical indexing methods is
that actual I/O cost is reduced by being able to scan the data
sequentially instead of at random as only need one disk seek

2. VA-file (Weber et al.)
use bi bits per feature i to approximate feature

impose a d dimensional grid with b =
Pd

i=1 bi grid cells

sequentially scan all grid cells as a filter step to determine possible
candidates which are then checked in their entirety via a disk access
VA-file is an additional representation in the form of a grid which is
imposed on the original data

3. Other methods apply more intelligent quantization processes
VA+-file (Ferhatosmanoglu et al): decorrelate the data with KLT
yielding new features and vary number of bits as well as use clustering
to determine the region partitions
IQ-tree (Berchtold et al): hierarchical like an R-tree with unordered
minimum bounding rectangles

Copyright 2009: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.28/114

Part 2: Distance-Based Indexing

1. Basic definitions

2. Properties for pruning the search

3. Ball partitioning methods
a. vp-tree
b. mvp-tree

4. General hyperplane partitioning methods
a. gh-tree
b. GNAT
c. Bisector trees and mb-trees

5. M-tree

6. sa-tree

7. Distance matrix methods
a. AESA
b. LAESA
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Basic Definitions

1. Often only information available is a distance function indicating degree of
similarity (or dis-similarity) between all pairs of N data objects

2. Distance metric d: objects must reside in finite metric space (S, d) where
for o1, o2, o3 in S, d must satisfy

d(o1, o2) = d(o2, o1) (symmetry)

d(o1, o2) ≥ 0, d(o1, o2) = 0 iff o1 = o2 (non-negativity)
d(o1, o3) ≤ d(o1, o2) + d(o2, o3) (triangle inequality)

3. Triangle inequality is a key property for pruning search space
Computing distance is expensive

4. Non-negativity property enables ignoring negative values in derivations
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Pivots
Identify a distinguished object or subset of the objects termed pivots or
vantage points
1. sort remaining objects based on

a. distances from the pivots, or
b. which pivot is the closest

2. and build index
3. use index to achieve pruning of other objects during search

Given pivot p ∈ S, for all objects o ∈ S′ ⊆ S, we know:
1. exact value of d(p, o),
2. d(p, o) lies within range [rlo, rhi] of values (ball partitioning) (ball

partitioning) or
drawback is asymmetry of partition as outer shell is usually narrow

3. o is closer to p than to some other object p2 ∈ S (generalized hyperplane
partitioning)(generalized hyperplane partitioning)

Distances from pivots are useful in pruning the search

S1

p r

S2

p 

p2

Copyright 2009: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.31/114

Pruning: Two Distances

Lemma 1: Knowing distance d(p, q) from p to q and distance d(p, o) from p to o

enables bounding the distance d(q, o) from q to o:

|d(q, p)− d(p, o)| ≤ d(q, o) ≤ d(q, p) + d(p, o)

p

o

q
d(q,p)+d(p,o)

d(q,o)
p

o

q
|d(q,p)–d(p,o)|

d(q,o)
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Pruning: One Distance and One Range

Lemma 2: Knowing distance d(p, q) from p to q and that distance d(p, o) from p

to o is in the range [rlo, rhi] enables bounding the distance d(q, o) from q to o:

max{d(q, p)− rhi, rlo − d(q, p), 0} ≤ d(q, o) ≤ d(q, p) + rhi

d(q2,p)+rhi

p

orlorhi

q1

q2

q3
rhi-d(q1,p)

d(q2,p)-rlo
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Pruning: Two Ranges

Lemma 3: Knowing that the distance d(p, q) from p to q is in the range [slo, shi]

and and that distance d(p, o) from p to o is in the range [rlo, rhi] enables
bounding the distance d(q, o) from q to o:

max{slo − rhi, rlo − shi, 0} ≤ d(q, o) ≤ rhi + shi

p o

q

[slo,shi]

qo p

slo-rhi

rhi+shi

[rlo,rhi]
[slo,shi]

[rlo,rhi]
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Pruning: Two Objects and Identity of Closest

Lemma 4: Knowing the distance d(q, p1) and d(q, p2) from q to pivot objects p1

and p2 and that o is closer to p1 than to p2 (or equidistant from both — i.e.,
d(p1, o) ≤ d(p2, o)) enables a lower bound on the distance d(q, o) from q to o:

max



d(q, p1)− d(q, p2)

2
, 0

ff

≤ d(q, o)

p2p1 q

o

(d(q,p1)-d(q,p2))/2

Lower bound is attained when q is anywhere on the line from p1 to p2

Lower bound decreases as q is moved off the line

No upper bound as objects can be arbitrarily far from p1 and p2
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vp-tree (Metric tree; Uhlmann|Yianilos)

Ball partitioning method

Pick p from S and let r be median of distances of other objects from p

Partition S into two sets S1 and S2 where:

S1 = {o ∈ S \ {p} | d(p, o) < r}
S2 = {o ∈ S \ {p} | d(p, o) ≥ r}

Apply recursively, yielding a binary tree with pivot and radius values at
internal nodes

Choosing pivots
1. simplest is to pick at random
2. choose a random sample and then select median

S1

p r

S2
p

S1 S2

<r ≥r
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vp-tree Example
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Range Searching with vp-tree

Find all objects o such that d(q, o) ≤ ε

S1

p r

S2

q
ε

p r

q

ε
must also

visit “inside”

p
r

q

ε

must also
visit “outside”

Use Lemma 2 as know distance from pivot and bounds on the ranges in
the two subtrees

max{d(q, p)− rhi, rlo − d(q, p), 0} ≤ d(q, o) ≤ d(q, p) + rhi

1. visit left subtree iff d(q, p)− r ≤ ε⇒ d(q, p) ≤ r + ε

rlo = 0 and rhi = r

2. visit right subtree iff r − d(q, p) ≤ ε⇒ d(q, p) ≥ r − ε

rlo = r and rhi =∞
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Increasing Fanout in vp-tree

Fanout of a node in vp-tree is low
Options

1. increase fanout by splitting S into m equal-
sized subsets based on m + 1 bounding
values r0, . . . , rm or even let r0 = 0 and
rm =∞

2. mvp-tree

each node is equivalent to collapsing
nodes at several levels of vp-tree
use same pivot for each subtree at a level
although the ball radius values differ
rationale: only need one distance
computation per level to visit all nodes at
the level (useful when search backtracks)
a. first pivot i partitions into ball of

radius r1

b. second pivot p partitions inside of the
ball for i into subsets S1 and S2 , and
outside of the ball for i into subsets
S3 and S4

i

p

S2

r2

S3

S1

r1

i
r1

P r2

S1
 S1 ={a,h,q,t}

S2

r3

S3

S2 ={d,j,s}

S3 ={c,g,k,m,o,t}

S1

r

ah

q d

s j
g

t

k

m

c

p

o r
3

S4
e

u
v

f

n
b

w

S4

S4 ={b,e,f,n,u,v,w}
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gh-tree (Metric tree; Uhlmann)

Generalized hyperplane partitioning method

Pick p1 and p2 from S and partition S into two sets S1 and S2 where:

S1 = {o ∈ S \ {p1, p2} | d(p1, o) ≤ d(p2, o)}
S2 = {o ∈ S \ {p1, p2} | d(p2, o) < d(p1, o)}

Objects in S1 are closer to p1 than to p2 (or equidistant from both), and
objects in S2 are closer to p2 than to p1

hyperplane corresponds to all points o satisfying d(p1, o) = d(p2, o)

can also “move” hyperplane, by using d(p1, o) = d(p2, o) + m

Apply recursively, yielding a binary tree with two pivots at internal nodes

p1

p2

S1 S2

p1 p2
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gh-tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g
m

n

t

u

v

s

r

q
p
o

{o,p} {q} {r} {s} {t} {u} {v}

g h i j k l m n

e fc d

a b
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Range Searching with gh-tree

Find all objects o such that d(q, o) ≤ ε

p1

p2

q

ε

p2p1 q
ε

o

p2p1 qε

o

Lower bound on d(q, o) is distance to hyperplane (or zero)

can only use directly in Euclidean spaces

otherwise, no direct representation of the “generalized hyperplane”

But, can use Lemma 4 with distance from pivots

max



d(q, p1)− d(q, p2)

2
, 0

ff

≤ d(q, o)

1. visit left subtree iff d(q,p1)−d(q,p2)
2 ≤ ε⇒ d(q, p1) ≤ d(q, p2) + 2ε

2. visit right subtree iff d(q,p2)−d(q,p1)
2 ≤ ε⇒ d(q, p2) ≤ d(q, p1) + 2ε
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Increasing Fanout in gh-tree

Fanout of a node in gh-tree is low

Geometric Near-neighbor Access tree (GNAT; Brin)
1. increase fanout by adding m pivots P = {p1, . . . , pm} to split S into

S1, . . . , Sm based on which of the objects in P is the closest
2. for any object o ∈ S \ P , o is a member of Si if d(pi, o) ≤ d(pj , o) for all

j = 1, . . . , m

3. store information about ranges of distances between pivots and
objects in the subtrees to facilitate pruning search

Copyright 2009: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.43/114

Bisector tree (bs-tree) (Kalantari/McDonald)

1. gh-trees with covering balls

2. Drawback: radius of covering ball of a node is sometimes smaller than the
radii of the covering balls of its descendants (termed eccentric)

3. Drawback: radius of covering ball of a node is sometimes smaller than the
radii of the covering balls of its descendants (termed eccentric)

4. Drawback: radius of covering ball of a node is sometimes smaller than the
radii of the covering balls of its descendants (termed eccentric)

5. Bad for pruning as ideally we want radii of covering balls to decrease as
search descends

x

y

-10 10

-10

10

pa

p1
o1

o2

p2
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mb-tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (k) PR k-d tree as split whenever region has k > 1 objects but
region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e b

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

c a

a

c

e
b

o c
c

o

a d
d

a

e u

e
u

b v

v

b

{g,q} {p} {h,i} {j,r,s} {k} {m,t} {n} {f,l}
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Comparison of mb-tree (BSP tree) and PR k-d tree

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

(62,77)
Toronto

(82,65)
Buffalo

Toronto Buffalo
Denver
(5,45) Denver

Omaha
(27,35)

ChicagoOmaha

Atlanta
Mobile

(85,15)
Atlanta

Mobile

-Atlanta

Atlanta

(85,15)
Atlanta

Omaha -
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(27,35)
Omaha BuffaloToronto

-Buffalo

(82,65)
Buffalo

-Denver

Denver Chicago

(5,45)
Denver

(62,77)
Toronto

Toronto

Toronto

Chicago

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x

Partition of
underlying
space
analogous
to that of
BSP tree
for points

PR k-d tree

BSP tree
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PR k-d tree

1. Regular decomposition point representation

2. Decompose whenever a block contains more than one point, while cycling
through attributes

3. Maximum level of decomposition depends on minimum point separation
if two points are very close, then decomposition can be very deep
can be overcome by viewing blocks as buckets with capacity c and
only decomposing a block when it contains more than c points

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

(62,77)
Toronto

(82,65)
Buffalo

Toronto Buffalo
Denver
(5,45) Denver

Omaha
(27,35)

ChicagoOmaha

Atlanta
Mobile

(85,15)
Atlanta
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M-tree (Ciaccia et al.)

Dynamic structure based on R-tree
(actually SS-tree)

All objects in leaf nodes

Balls around “routing” objects (like piv-
ots) play same role as minimum bounding
boxes

p1

p3

p2

o

Pivots play similar role as in GNAT, but:
1. all objects are stored in the leaf nodes and an object may be

referenced several times in the M-tree as it could be a routing object in
more than one nonleaf node

2. for an object o in a subtree of node n, the subtree’s pivot p is not
always the one closest to o among all pivots in n

3. object o can be inserted into subtrees of several pivots: a choice

Each nonleaf node n contains up to c entries of format (p, r, D, T )

1. p is the pivot (i.e., routing object)
2. r is the covering radius

3. D is distance from p to its parent pivot p′

4. T points to the subtree
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Delaunay Graph
Definition
1. each object is a node and two nodes have an edge between them if their

Voronoi cells have a common boundary
2. explicit representation of neighbor relations that are implicitly represented

in a Voronoi diagram

equivalent to an index or access structure for the Voronoi diagram

3. search for a nearest neighbor of q starts with an arbitrary object and then
proceeds to a neighboring object closer to q as long as this is possible

Unfortunately we cannot construct Voronoi cells explicitly if only have
interobject distances

Spatial Approximation tree (sa-tree): approximation of the Delaunay graph
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Point Set Delaunay graph
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sa-tree (Navarro)

Definition:
1. choose arbitrary object a as root of tree
2. find N(a), smallest possible set of neighbors of a, so that any neighbor

is closer to a than to any other object in N(a)
i.e., x is in N(a) iff for all y ∈ N(a)− {x}, d(x, a) < d(x, y)

all objects in S \N(a) are closer to some object in N(a) than to a

3. objects in N(a) become children of a

4. associate remaining objects in S with closest child of a, and
recursively define subtrees for each child of a

b
h

i

j

m

q

v

w

r

f
g

k

l

n

o

s

a

b

c

d

e

f
g

h

i

j

k

l
m

n

o

q

r

s

t u v

w

c

d

e

a

ut

1. a is root
2. N(a)={b,c,d,e}
3. second level
4. h 6∈ N(a) and N(b) as h

closer to F than to b or a
5. fourth level

Use heuristics to construct sa-tree as N(a) is used in the definition which
makes it circular, and thus resulting tree is not necessarily minimal and not
unique
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Range Searching with sa-tree

Search algorithms make use of Lemma 4 which provides a lower bound on
distances
1. know that for c in {a} ∪N(a), b in N(a), and o in tree rooted at b, then o

is closer to b than to c
therefore,(d(q, b)− d(q, c))/2 ≤ d(q, o) from Lemma 4

2. want to avoid visiting as many children of a as possible
must visit any object o for which d(q, o) ≤ ε

must visit any object o in b if lower bound (d(q, b)− d(q, c))/2 ≤ ε

no need to visit any objects o in b for which there exist c in
{a} ∪N(a) so that (d(q, b)− d(q, c))/2 > ε

higher lower bound implies less likely to visit
d(q, o) is maximized when d(q, c) is minimized
c is object in {a} ∪N(a) which is closest to q

3. choose c so that lower bound (d(q, b)− d(q, c))/2 on d(q, o) is
maximized

c is object in {a} ∪N(a) closest to q

Once find c, traverse each child b ∈ N(a) except those for which

(d(q, b)− d(q, c))/2 > ε
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kNN Graphs (Sebastian/Kimia)
1. Each vertex has an edge to each of its k nearest neighbors
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X

Point Set 1NN graph 2NN graph 3NN graph 4NN graph
2. Problems

graph is not necessarily connected
even if increase k so graph is connected, search may halt at object p

which is closer to q than any of the k nearest neighbors of p but not
closer than all of the objects in p’s neighbor set (e.g., the k + 1st

nearest neighbor)
Ex: search for nearest neighbor of X in 4NN graph starting at any
one of {e,f,j,k,l,m,n} will return k instead of r

overcome by extending size of search neighborhood as in approximate
nearest neighbor search
use several starting points for search (i.e., seeds)

3. Does not require triangle inequality and thus works for arbitrary distances
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Alternative Approximations of the Delaunay Graph

1. Other approximation graphs of the Delaunay graph are connected by
virtue of being supersets of the minimal spanning tree (MST) of the vertices

2. Relative neighborhood graph (RNG): an edge between vertices u and v if
for all vertices p, u is closer to v than is p or v is closer to u than is p — that
is, d(u, v) ≤ Max{d(p, u), d(p, v)}

3. Gabriel graph (GG): an edge between vertices u and v if for all other
vertices p we have that d(u, p)2 + d(v, p)2 ≥ d(u, v)2

4. RNG and GG are not restricted to Euclidean plane or Minkowski metrics

5. MST(E) ⊂RNG(E) ⊂GG(E) ⊂DT(E) in Euclidean plane with edges E

6. MST(E) ⊂RNG(E) ⊂GG(E) in any metric space as DT is only defined for
the two-dimensional Euclidean plane
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Use of Delaunay Graph Approximations

1. Unless approximation graph is a superset of Delaunay graph (which it is
not), to be useful in nearest neighbor searching, we need to be able to
force the algorithm to move to other neighbors of current object p even if
they are farther from q than p

2. Examples:
kNN graph: use extended neighborhood
sa-tree: prune search when can show (with aid of triangle inequality)
that it is impossible to reach the nearest neighbor via a transition to
nearest neighbor or set of neighbors
RNG and GG have advantage that are always connected and don’t
need seeds
advantage of kNN graph is that k nearest neighbors are precomputed

Copyright 2009: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.54/114

Spatial Approximation Sample Hierarchy (SASH)(Houle)
Hierarchy of random samples of set of objects S of size S/2, S/4, S/8, . . . , 1

Makes use of approximate nearest neighbors

Has similar properties as the kNN graph

1. both do not require that the triangle inequality be satisfied
2. both are indexes

O(N2) time to build kNN graph as no existing index
SASH is built incrementally level by level starting at root with samples of
increasing size making use of index already built for existing levels
thereby taking O(N log N) time
each level of SASH is a kNN tree with maximum k = c

Key to approximation is to treat the “nearest neighbor relation” as an
“equivalence relation” even though this is not generally true

1. assumption of “equivalence” relation is the analog of ε

2. no symmetry: x being approximate nearest neighbor of x′ does not mean
that x′ must be an approximate nearest neighbor of x

3. no transitivity: x being approximate nearest neighbor of q and x′ being
approximate nearest neighbor of x does not mean that x′ must be an
approximate nearest neighbor of q

4. construction of SASH is analog of UNION operation
5. finding approximate nearest neighbor is analog of FIND operation

Copyright 2009: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.55/114

SASH vis-a-vis Triangle Inequality

Triangle inequality is analogous to transitivity with ≤ corresponding to
“approximate nearest neighbor” relation

Appeal to triangle inequality, d(x′, q) ≤ d(q, x) + d(x′, x), regardless of
whether or not it holds
1. to establish links to objects likely to be neighbors of query object q,

when d(q, x) and d(x′, x) are both very small, then d(q, x′) is also
very small (analogous to “nearest”)
implies if x ∈ S \ S′ is a highly ranked neighbor of both q and
x′ ∈ S′ among objects in S \ S′, then x′ is also likely to be a highly
ranked neighbor of q among objects in S ′

x′ is a highly ranked neighbor of x (symmetry)
AND x is a highly ranked neighbor of q

RESULT: x′ is a highly ranked neighbor of q (transitivity)
2. INSTEAD of to eliminate objects that are guaranteed not to be

neighbors
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Mechanics of SASH
SASH construction (UNION of UNION-FIND)
1. form hierarchy of samples

2. assume SASHi has been built and process sample S ′

know that x in SASHi\SASHi−1 is one of p approximate nearest
neighbors of x′ ∈ S′ and use SASHi to determine x

infer that x′ is one of c > p approximate nearest neighbors in S ′ of x

(symmetry)
3. special handling to ensure that every object at level i + 1 is an

approximate nearest neighbor of at least one object at level i (i.e., no
orphan objects)

Finding k approximate nearest neighbors of q (FIND of UNION-FIND)
1. follow links from level i− 1 of SASH to level i retaining in Ui the ki

approximate nearest neighbors of q at level i of the SASH
2. determine k approximate nearest neighbors of q from the union of Ui

over all levels of the SASH
3. know that x in Ui is an approximate nearest neighbor of q

4. know that x′ in Ui+1 is an approximate nearest neighbor of x in Ui

5. infer that x′ in Ui+1 is an approximate nearest neighbor of q

(transitivity)
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Example of SASH construction

Ex: P=2 C=5

Initially, no choice in the first 3 levels

Find two closest objects at level 4 for each
object at level 5

f:k,m n:k,m
p:k,r l:k,m
c:a,h d:a,h
i:h,k d:h,r
o:k,r

Retain 5 nearest neighbors at level 5 to
each object at level 4

k:{f,n,p,l,i,oX}

m:f,n,l
n:c,d,i,q
a:c,d

Ignore o as k has 5 closer neighbors
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q
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Example SASH Approximate k Nearest Neighbor Finding

Ex: k = 3 and query object c

Let f(k, i) = ki = k1−(h−i)/ log
2

N yielding ki = (1, 1, 2, 2, 3)

U1 = root g of SASH

U2 = objects reachable from U1 which is e

U3 = objects reachable form U2 which is b and j which are retained as
k3 = 2

U4 objects reachable from U3 which is {a,h,k,m,r} and we retain just a and
h in U4 as k4 = 2

U5 = objects reachable form U4 which is {c,d,i,q}, and we retain just c, d,
and q in U5 as k5 = 3

Take union of U1, U2, U3, U4, U5 which is the set {a,b,c,d,e,g,h,i,j,k,m,q,r},
and the closest three neighbors to query object c are a, b, and d
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Drawback of SASH

Assumes that if a at level i is an approximate nearest neighbor of o at level
i + 1, then by symmetry o is likely to be an approximate nearest neighbor
of a, which is not generally true

Ex: objects at level i are not necessarily linked to their nearest neighbors
at level i + 1

P1

C1 C2 C3

P2

C6C5

C4

C7 C8

P3 P4

C9

P1 P2 P3 P4

C1 C2 C3 C4 C5 C6 C7 C8 C9Level  i+1:

Level  i:

P3 and P4 at level i are linked to the sets of three objects {C4,C5, C6} and
{C7,C8, C9}, respectively, at level i+1, instead of to their nearest neighbors
C1, C2, and C3 at level i+1.
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AESA (Vidal Ruiz)

Precomputes O(N2) interobject distances between all N objects in S and
stores them in a distance matrix

Distance matrix is used to provide lower bounds on distances from query
object q to objects whose distances have not yet been computed

Only useful if static set of objects and number of queries� N as otherwise
can use brute force to find nearest neighbor with N distance computations

Algorithm for range search:
Su: objects whose distance from q has not been computed and that
have not been pruned, initially S

dlo(q, o): lower bound on d(q, o) for o ∈ Su, initially zero

1. remove from Su the object p with lowest value dlo(q, p)

terminate if Su is empty or if dlo(q, p) > ε

2. compute d(q, p), adding p to result if d(q, p) ≤ ε

3. for all o ∈ Su, update dlo(q, o) if possible
dlo(q, o)← max{dlo(q, o), |d(q, p)− d(p, o)|}
lower bound property by Lemma 1: |d(q, p)− d(p, o)| ≤ d(q, o)

4. go to step 1

Other heuristic possible for choosing next object: random, highest dlo, etc.
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LAESA (Micó et al.)

AESA is costly as treats all N objects as pivots

Choose a fixed number M of pivots

Similar approach to searching as in AESA but
1. non-pivot objects in Sc do not help in tightening lower bound distances

of the objects in Su

2. eliminating pivot objects in Su may hurt later in tightening the distance
bounds

Differences:
1. selecting a pivot object in Su over any non-pivot object, and
2. eliminating pivot objects from Su only after a certain fraction f of the

pivot objects have been selected into Sc (f can range from 0 to 100%
if f = 100% then pivots are never eliminated from Su
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Classifying Distance-Based Indexing Methods

1. Pivot-based methods:
pivots, assuming k of them, can be viewed as coordinates in a
k-dimensional space and the result of the distance computation for
object x is equivalent to a mapping of x to a point (x0, x1, . . . , xk−1)

where coordinate value xi is the distance d(x, pi) of x from pivot pi

result is similar to embedding methods
also includes distance matrix methods which contain precomputed
distances between some (e.g., LAESA) or all (e.g., AESA) objects

difference from ball partitioning as no hierarchical partitioning of
data set

2. Clustering-based methods:
partition data into spatial-like zones based on proximity to
distinguished object called the cluster center
each object associated with closest cluster center
also includes sa-tree which records subset of Delaunay graph of the
data set which is a graph whose vertices are the Voronoi cells
different from pivot-based methods where an object o is associated
with a pivot p on the basis of o’s distance from p rather than because p
is the closest pivot to o
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Pivot-Based vs: Clustering-Based Indexing Methods

1. Both achieve a partitioning of the underlying data set into spatial-like zones

2. Difference:
pivot-based: boundaries of zones are more well-defined as they can
be expressed explicitly using a small number of objects and a known
distance value
clustering-based methods: boundaries of zones are usually expressed
implicitly in terms of the cluster centers, instead of explicitly, which
may require quite a bit of computation to determine

in fact, very often, the boundaries cannot be expressed explicitly as,
for example, in the case of an arbitrary metric space (in contrast to
a Euclidean space) where we do not have a direct representation of
the ‘generalized hyperplane’ that separates the two partitions
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Distance-Based vs: Multidimension Indexing

1. Distance computations are used to build index in distance-based indexing,
but once index has been built, similarity queries can often be performed
with significantly fewer distance computations than a sequential scan of
entire dataset

2. Drawback is that if we want to use a different distance metric, then need to
build a separate index for each metric in distance-based indexing

not the case for multidimensional indexing methods which can support
arbitrary distance metrics when performing a query, once the index
has been built
however, multidimensional indexing is not very useful if don’t have a
feature value and only know relative interobject distances (e.g., DNA
sequences)
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Part 3: Dimension Reduction

1. Motivation
overcoming curse of dimensionality
want to use traditional indexing methods (e.g., R-tree and quadtree
variants) which lose effectiveness in higher dimensions

2. Searching in a dimensionally-reduced space

3. Using only one dimension

4. Representative point methods

5. Singular value decomposition (SVD, PCA, KLT)

6. Discrete Fourier transform (DFT)
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Searching in a Dimensionally-Reduced Space

Want a mapping f so that d(v, u) ≈ d′(f(v), f(u)) where d′ is the distance
in the transformed space

Range searching
1. reduce query radius

implies more precision as reduce false hits
2. increase query radius

implies more recall as reduce false dismissals

3. d′(f(a), f(b)) ≤ d(a, b) for any pair of objects a and b

mapping f is contractive and 100% recall
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Nearest Neighbors in a Dimensionally-Reduced Space

1. Ideally d(a, b) ≤ d(a, c) implies d′(f(a), f(b)) ≤ d′(f(a), f(c)), for any
objects a, b, and c

proximity preserving property
implies that nearest neighbor queries can be performed directly in the
transformed space
rarely holds
a. holds for translation and scaling with any Minkowski metric
b. holds for rotation when using Euclidean metric in both original and

transformed space

2. Use “filter-and-refine” algorithm with no false dismissals (i.e., 100% recall)
as long as f is contractive

if o is nearest neighbor of q, contractiveness ensures that ‘filter’ step
finds all candidate objects o′ such that d′(f(q), f(o′)) ≤ d(q, o)

‘refine’ step calculates actual distance to determine actual nearest
neighbor
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Using only One Dimension

1. Can keep just one of the features
global: feature f with largest range
local: feature f with largest range of
expected values about the value of
feature f for query object q

always contractive if distance metric for
the single feature is suitably derived
from the distance metric used on all of
the features

2. Combine all features into one feature
concatenate a few bits from each
feature
use bit interleaving or Peano-Hilbert
code
not contractive: points (4,3) and (4,4)
are adjacent, but codes 26 and 48 are
not!
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Representative Points

Often, objects with spatial extent are represented by a representative point
such as a sphere by its radius and the coordinate values of its center

Really a transformation into a point in a higher dimensional space and
thus not a dimensional reduction

Transformation is usually not contractive as distance between the
transformed objects is greater than the distance between the original
objects
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Transformation into a Different and Smaller Feature Set

A D

C

B

A D

C

B

(a) (b)

yy

xx

y’

x’

Rotate x, y axes to obtain x′, y′ axes

x′ is dominant axis and can even drop axis y′
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SVD (KLT, PCA)

Method of finding a linear transformation of n-dimensional feature vectors
that yields good dimensionality reduction
1. after transformation, project feature vectors on “first” k axes, yielding

k-dimensional vectors (k ≤ n)
2. projection minimizes the sum of the squares of the Euclidean

distances between the set of n-dimensional feature vectors and their
corresponding k-dimensional feature vectors

Letting F denote the original feature vectors, calculate V , the SVD
transform matrix, and obtain transformed feature vectors T so that FV = T

F = UΣV T and retain the k most discriminating values in Σ (i.e., the
largest ones and zeroing the remaining ones)

Start with m n-dimensional points

Drawback is the need to know all of the data in advance which means that
need to recompute if any of the data values change

Transformation preserves Euclidean distance and thus projection is
contractive
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Discrete Fourier Transform (DFT)

Drawback of SVD: need to recompute when one feature vector is modified

DFT is a transformation from time domain to frequency domain or vice
versa

DFT of a feature vector has same number of components (termed
coefficients) as original feature vector

DFT results in the replacement of a sequence of values at different
instances of time by a sequence of an equal number of coefficients in the
frequency domain

Analogous to a mapping from a high-dimensional space to another space
of equal dimension

Provides insight into time-varying data by looking into the dependence of
the variation on time as well as its repeatability, rather than just looking at
the strength of the signal (i.e., the amplitude) as can be seen from the
conventional representation of the signal in the time domain
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Invertibility of DFT

Ex: decomposition of real-valued five-dimensional feature vector ~x =
(1.2,1.4,0.65,-0.25,-0.75)
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Cosine basis functions are solid

Sine basis functions are broken

Solid circle shows original feature vector
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Use of DFT for Similarity Searching

Euclidean distance norm of feature vector and its DFT are equal

Can apply a form of dimension reduction by eliminating some of the
Fourier coefficients

Zeroth coefficient is average of components of feature vector

Hard to decide which coefficients to retain
1. choose just the first k coefficients
2. find dominant coefficients (i.e., highest magnitude, mean, variance,

etc.)
requires knowing all of the data and not so dynamic
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Part 4: Embedding Methods

1. Problem statement

2. Lipschitz embeddings

3. SparseMap

4. FastMap

5. MetricMap
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Overview of Embedding Methods

1. Given a finite set of N objects and a distance metric d indicating distance
between them

2. Find function F that maps N objects into a vector space of dimension k

using a distance function d′ in this space
ideally, k is low: k � N

computing F should be fast — O(N) or O(N log N)

avoid examining all O(N2) inter-object distance pairs

fast way of obtaining F (o) given o

3. Problem setting also includes situation where the N original objects are
described by an n-dimensional feature vector

4. Ideally, the distances between the objects are preserved exactly by the
mapping F

exact preservation means that (S, d) and (F (S), d′) are isometric

possible when d and d′ are both Euclidean, in which case it is always
true when k = N − 1

difficult in general for arbitrary combinations of d and d′ regardless of
value of k
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Exact Distance Preservation May Be Impossible

Ex: 4 objects a, b, c, e

1. d(a, b) = d(b, c) = d(a, c) = 2 and d(e, a) = d(e, b) = d(e, c) = 1.1

d satisfies triangle inequality

Cannot embed objects into a 3-d Euclidean space — that is, with d′ as
the Euclidean distance while preserving d

2. Can embed if distance between e and a, b, and c is at least 2/
√

3

place a, b, and c in plane p and place e on line perpendicular to p that
passes through the centroid of the triangle in p formed by a, b, and c

3. Also possible if use City Block distance metric dA (L1)
place a, b, and c at (0,0,0), (2,0,0), and (1,1,0), respectively, and e at
(1,0,0.1)
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Exact Distance Preservation Always Possible with

Chessboard Distance

One dimension for each object

Map object o into vector {d(o, o1), d(o, o2), . . . , d(o, oN )}
For any pair of objects oi and oj ,

d′(F (oi), F (oj)) = dM (F (oi), F (oj)) = max
l
{|d(oi, ol)− d(oj , ol)|}

For any l, |d(oi, ol)− d(oj , ol)| ≤ d(oi, oj) by the triangle inequality

|d(oi, ol)− d(oj , ol)| = d(oi, oj) for l = i and l = j in which case
d′(F (oi), F (oj)) = d(oi, oj)

Therefore, distances are preserved by F when using the Chessboard
metric dM (L∞)

Number of dimensions here is high: k = N

At times, define F in terms of a subset of the objects
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Properties of Embeddings
1. Contractiveness:

d′(F (a), F (b)) ≤ d(a, b)

alternative to exact distance preservation
ensures 100% recall when use the same search radius in both the original
and embedding space as no correct responses are missed
but precision may be less than 100% due to false candidates

2. Distortion: measures how much larger or smaller the distances in the embed-
ding space d′(F (o1), F (o2)) are than the corresponding distances d(o1, o2) in
the original space

defined as c1c2 where 1
c1
· d(o1, o2) ≤ d′(F (o1), F (o2)) ≤ c2 · d(o1, o2) for

all object pairs o1 and o2 where c1, c2 ≥ 1

similar effect to contractiveness

3. SVD is optimal way of linearly transforming n-dimensional points to k-
dimensional points (k ≤ n)

ranks features by importance
drawbacks:
a. can’t be applied if only know distance between objects
b. slow: O(N ·m2) where m is dimension of original space
c. only works if d and d′ are the Euclidean distance
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Lipschitz Embeddings (Linial et al.)

Based on defining a coordinate space where each axis corresponds to a
reference set which is a subset of the objects

Definition
1. set R of subsets of S, R = {A1, A2, . . . , Ak}
2. d(o, A) = minx∈A{d(o, x)} for A ⊂ S

3. F (o) = (d(o, A1), d(o, A2), . . . , d(o, Ak))

coordinate values of o are distances from o to the closest element
in each of Ai

saw one such embedding earlier using L∞ where R is all singleton
subsets of S — that is, R = {{o1}, {o2}, . . . , {oN}}
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Motivation for Lipschitz Embeddings

If x is an arbitrary object, can obtain some information about d(o1, o2) for
arbitrary objects o1 and o2 by comparing d(o1, x) and d(o2, x) — that is,
|d(o1, x)− d(o2, x)|
|d(o1, x)− d(o2, x)| ≤ d(o1, o2) by Lemma 1

Extend to subset A so that |d(o1, A)− d(o2, A)| ≤ d(o1, o2)

Proof:
1. let x1, x2 ∈ A be such that d(o1, A) = d(o1, x1) and d(o2, A) = d(o2, x2)

2. d(o1, x1) ≤ d(o1, x2) and d(o2, x2) ≤ d(o2, x1) implies
|d(o1, A)− d(o2, A)| = |d(o1, x1)− d(o2, x2)|

3. d(o1, x1)− d(o2, x2) can be positive, while a negative value implies
|d(o1, x1)−d(o2, x2)| ≤ max{|d(o1, x1)−d(o2, x1)|, |d(o1, x2)−d(o2, x2)|}

4. from triangle inequality,
max{|d(o1, x2)− d(o2, x2)|, |d(o1, x1)− d(o2, x1)|} ≤ d(o1, o2)

5. therefore, |d(o1, A)− d(o2, A)| ≤ d(o1, o2) as
|d(o1, A)− d(o2, A)| = |d(o1, x1)− d(o2, x2)|

By using R of the subsets, we increase likelihood that d(o1, o2) is captured
by d′(F (o1), F (o2))
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Mechanics of Lipschitz Embeddings

Linial et al. let R be O(log2 N) randomly selected subsets of S

For d′ = Lp, define F so that

F (o) = (d(o, A1)/q, d(o, A2)/q, . . . , d(o, Ak)/q), where q = k1/p

F satisfies c
blog

2
Nc
· d(o1, o2) ≤ d′(F (o1), F (o2)) ≤ d(o1, o2)

Distortion of O(log N) is large and may make F ineffective at preserving
relative distances as want to use distance value in original space

Since sets Ai are chosen at random, proof is probabilistic and c is a
constant with high probability

Embedding is impractical
1. large number and sizes of subsets in R mean that there is a high

probability that all N objects appear in a subset of R
implies need to compute distance between query object q and all
objects in S

2. number of coordinates is blog2 Nc2, which is relatively large
N = 100 yields k = 36 which is too high
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SparseMap (Hristescu/Farach-Colton)

Attempts to overcome high cost of computing Lipschitz embedding of
Linial in terms of number of distance computations and dimensions

Uses regular Lipschitz embedding instead of Linial et al. embedding

1. does not divide the distances d(o, Ai) by k1/p

2. uses Euclidean distance metric

Two heuristics
1. reduce number of distance computations by calculating an upper

bound d̂(o, Ai) instead of the exact value d(o, Ai)

only calculate a fixed number of distance values for each object as
opposed to |Ai| distance values

2. reduce number of dimensions by using a “high quality” subset of R

instead of the entire set
use greedy resampling to reduce number of dimensions by
eliminating poor reference sets

Heuristics do not lead to a contractive embedding but can be made
contractive (Hjaltason and Samet)
1. modify first heuristic to compute actual value d(o, Ai), not upper bound

2. use dM (L∞) as d′ instead of dE (L2)
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FastMap (Faloutsos/Lin)

Inspired by dimension reduction methods for Euclidean space based on
linear transformations such as SVD, KLT, PCA

Claimed to be general but assumes that d is Euclidean as is d′ and only for
these cases is it contractive

Objects are assumed to be points
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Mechanics of FastMap

Obtain coordinate values for points by projecting them on k mutually
orthogonal coordinate axes

Compute projections using the given distance function d

Construct coordinate axes one-by-one
1. choose two objects (pivots) at each iteration
2. draw a line between them that serves as the coordinate axis
3. determine coordinate value along this axis for each object o by

mapping (i.e., projecting) o onto this line

Prepare for next iteration
1. determine the (m− 1)-dimensional hyperplane H perpendicular to the

line that forms the previous coordinate axis
2. project all of the objects onto H

perform projection by defining a new distance function dH

measuring distance between projections of objects on H

dH is derived from original distance function d and coordinate axes
determined so far

3. recur on original problem with m and k reduced by one, and a new
distance function dH

continue process until have enough coordinate axes
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Choosing Pivot Objects

Pivot objects serve to anchor the line that forms the newly-formed
coordinate axis

Ideally want a large spread of the projected values on the line between the
pivot objects
1. greater spread generally means that more distance information can be

extracted from the projected values
for objects a and b, more likely that |xa − xb| is large, thereby
providing more information

2. similar to principle in KLT but different as spread is weaker notion than
variance which is used in KLT

large spread can be caused by a few outliers while large variance
means values are really scattered over a wide range

Use an O(N) heuristic instead of O(N2) process for finding approximation
of farthest pair
1. arbitrarily choose one of the objects a

2. find object r which is farthest from a

3. find object s which is farthest from r

could iterate more times to obtain a better estimate of farthest pair
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Deriving First Coordinate Value

1. Two possible positions for projection of object for first coordinate
a

r s
xa

d(r,s)

d(r,a) d(s,a)

a

s
xa d(r,s)

d(r,a)
d(s,a)

r

xa obtained by solving d(r, a)2 − x2
a = d(s, a)2 − (d(r, s)− xa)2

Expanding and rearranging yields xa =
d(r,a)2+d(r,s)2−d(s,a)2

2d(r,s)

2. Used Pythagorean Theorem which is only applicable to Euclidean space
implicit assumption that d is Euclidean distance
equation is only a heuristic when used for general metric spaces
implies embedding may not be contractive

3. Observations about xa

can show |xa| ≤ d(r, s)

maximum spread between arbitrary a and b is 2d(r, s)

bounds may not hold if d is not Euclidean as then the distance function
used in subsequent iterations may possibly not satisfy triangle
inequality

Copyright 2009: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.88/114



Projected Distance
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Ex: 3-d space and just before determining second coordinate

dH : distance function for the distances between
objects when projected onto the hyperplane H

perpendicular to the first coordinate axis
(through pivots r and s)

Determining dH(t, u) for some objects t and u:

1. let t′ and u′ be their projections on H

dH(t, u) equals distance between t′ and u′

also know: d(t′, u′) = d(C, u)

2. angle at C in triangle tuC is 90◦, so can apply Pythagorean theorem:

d(t, u)2 = d(t, C)2 + d(C, u)2 = (xt − xu)2 + d(t′, u′)2

3. rearranging and dH(t, u) = d(t′, u′) yields

dH(t, u)2 = d(t, u)2 − (xt − xu)2

Implicit assumption that d is Euclidean distance

Copyright 2009: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.89/114

Side-Effects of Non-Euclidean Distance d

1. dH can fail to satisfy triangle inequality
produce coordinate values that lead to non-contractiveness

2. Non-contractiveness may cause negative values of dH(a, b)2

complicates search for pivot objects
problem: square root of negative number is a complex number which
means that a and b (really their projections) cannot serve as pivot
objects
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Subsequent Iterations

Distance function at iteration i is the distance function dH from previous
iteration

Notation:
1. xi

o: ith coordinate value obtained for object o

2. Fi(o) = {x1
o, x2

o, . . . , xi
o}: first i coordinate values of F (o)

3. di: distance function used in iteration i

4. pi
1 and pi

2: two pivot objects chosen in iteration i

pi
2 is the farthest object from pi

1

xi
o =

di(p
i

1
,o)2+di(p

i

1
,pi

2
)2−di(p

i

2
,o)2

2di(pi

1
,pi

2
)

Recursive distance function:

d1(a, b) = d(a, b)

di(a, b)2 = di−1(a, b)2 − (xi−1
a − xi−1

b )2

= d(a, b)2 − dE(Fi−1(a), Fi−1(b))
2
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Computational Complexity

1. O(k ·N) distance computations to map N objects to k-dimensional space
O(N) distance computations at each iteration

2. O(k ·N) space to record the k coordinate values of each of the points
corresponding to the N objects

3. 2× k array to record identities of k pairs of pivot objects, as this
information is needed to process queries

4. Query objects are transformed to k-dimensional points by applying same
algorithm used to construct points corresponding to original objects,
except that we use existing pivot objects

O(k) process as o(k) distance computations

5. Can also record distance between pivot objects so no need to recompute
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Properties of FastMap

1. Contractiveness
yes as long as d and d′ are both Euclidean
a. no if d is Euclidean and d′ is not

Ex: use city block distance dA (L1) for d′ as dA((0, 0), (3, 4)) = 7

while dE((0, 0), (3, 4)) = 5

b. no if d is not Euclidean regardless of d′

Ex: four objects, a through e, with distances d(a, b) = 10,
d(a, c) = 4, d(a, e) = 5, d(b, c) = 8, d(b, e) = 7, and d(c, e) = 1

letting a and b be pivots in the first iterations, results in
xe − xc = 6/5 = 1.2 < 1 = d(c, e)

if d non-Euclidean, then eventually non-contractive if enough iterations

2. With Euclidean distances, distance can preserved given enough iterations
min{m, N − 1} for m-dimensional space and N points

3. Distance expansion can be very large if non-contractive

4. If d is not Euclidean, then dH could violate triangle inequality
Ex: four objects, a through e, with distances d(a, b) = d(c, e) = 6,
d(a, c) = 5, d(a, e) = d(b, e) = 4, and d(b, c) = 3

letting a and b be pivots, yields dH(a, c) + dH(a, e) ≈ 5.141 <

5.850 ≈ dH(c, e), violating triangle inequality
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Implications of Non-Contractiveness of FastMap

1. Not guaranteed to to be able to determine k coordinate axes
limits extent of distance preservation
failure to determine more coordinate axes does not necessarily imply
that relative distances among the objects are effectively preserved

2. Distance distortion can be very large

3. Presence of many non-positive, or very small positive, distance values
(which can cause large distortion) in the intermediate distance functions
(i.e., those used to determine the second and subsequent coordinate
axes) may cause FastMap to no longer satisfy the claimed O(N) bound on
the number of distance computations in each iteration

finding a legal pivot pair may, in the worst case, require examining the
distances between a significant fraction of all possible pairs of objects,
or Ω(N2) distance computations
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MetricMap (Wang et al.)

1. Similar to SVD, FastMap, and a special class of Lipschitz embeddings
in Euclidean spaces, equivalent to applying SVD for dimension
reduction
based on an analogy to rotation and projection in Euclidean spaces

2. Differs from FastMap as embedding space is pseudo-Euclidean
some coordinate axes make a negative contribution to “distances”
between the points

3. Makes use of 2k reference objects which form a coordinate space in a
(2k − 1)-dimensional space

one reference object is mapped to origin and rest are mapped to unit
vectors in the (2k − 1)-dimensional space

forms a matrix that preserves distance between reference objects

4. Mapping each object is less expensive than in FastMap
only need k + 1 distance computations

5. Employs different strategy to handle non-Euclidean metrics
maps into a pseudo-Euclidean space, which may result in less
distortion in the distances
may possibly not be contractive
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Part 5: Nearest Neighbor Finding

1. Classical methods such as branch and bound

2. K nearest neighbors

3. Incremental nearest neighbor finding
a. general method
b. permitting duplicate instances of objects

4. Approximate nearest neighbor finding

5. Probably approximately correct (PAC) nearest neighbor finding
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Branch and Bound Algorithm (Fukunaga/Narendra)

1. Visit elements in hierarchy using a depth-first traversal
maintain a list L of current candidate k nearest neighbors

2. Dk: distance between q and the farthest object in L

Dk = maxo∈L{d(q, o)}), or∞ if L contains fewer than k objects

Dk is monotonically non-increasing over the course of the search
traversal, and eventually reaches the distance of the kth nearest
neighbor of q

3. If element et being visited represents an object o (i.e., t = 0), then insert o

into L, removing farthest if |L| > k

4. Otherwise, et (t ≥ 1) is not an object
construct an active list A(et) of child elements of et, ordered by
“distance” from q

recursively visit the elements in A(et) in order, backtracking when
a. all elements have been visited, or
b. reaching an element et′ ∈ A(et) with dt′(q, et′) > Dk

condition ensures that all objects at distance of kth nearest
neighbor are reported
if sufficient to report k objects, then use dt′(q, et′) ≥ Dk
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Branch and Bound Enhancements

Process elements of active list in an order more closely correlated with
finding the k nearest neighbors
1. process elements that are more likely to contain the k nearest

neighbors before those that are less likely to do so
2. possibly prune elements from further consideration by virtue of being

farther away from the query object than any of the members of list L of
the current candidate k nearest neighbors

in case of distance-based indexes for metric space searching,
prune with aid of triangle inequality

Can use cost estimate functions
1. MinDistObject(q, n) is least possible distance from query object q to

an object in tree rooted at n

2. MaxDistObject(q, n) is greatest possible distance between q and an
object in tree rooted at n

When use a spatial index with bounding box hierarchies, then order on
basis of minimum distance to the bounding box associated with each
element
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Incremental Nearest Neighbors (Hjaltason/Samet)

Motivation
1. often don’t know in advance how many neighbors will need
2. e.g., want nearest city to Chicago with population > 1 million

Several approaches
1. guess some area range around Chicago and check populations of

cities in range
if find a city with population > 1 million, must make sure that there
are no other cities that are closer with population > 1 million
inefficient as have to guess size of area to search
problem with guessing is we may choose too small a region or too
large a region

a. if size too small, area may not contain any cities with right
population and need to expand the search region

b. if size too large, may be examining many cities needlessly

2. sort all the cities by distance from Chicago
impractical as we need to re-sort them each time pose a similar
query with respect to another city
also sorting is overkill when only need first few neighbors

3. find k closest neighbors and check population condition
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Mechanics of Incremental Nearest Neighbor Algorithm

Make use of a search hierarchy (e.g., tree) where
1. objects at lowest level
2. object approximations are at next level (e.g., bounding boxes in an

R-tree)
3. nonleaf nodes in a tree-based index

Traverse search hierarchy in a “best-first” manner similar to A*-algorithm
instead of more traditional depth-first or breadth-first manners
1. at each step, visit element with smallest distance from query object

among all unvisited elements in the search hierarchy
i.e., all unvisited elements whose parents have been visited

2. use a global list of elements, organized by their distance from query
object

use a priority queue as it supports necessary insert and delete
minimum operations
ties in distance: priority to lower type numbers
if still tied, priority to elements deeper in search hierarchy
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Incremental Nearest Neighbor Algorithm

Algorithm:

INCNEAREST(q, S, T )

1 Q← NEWPRIORITYQUEUE()
2 et← root of the search hierarchy induced by q, S, and T
3 ENQUEUE(Q, et, 0)
4 while not ISEMPTY(Q) do
5 et← DEQUEUE(Q)
6 if t = 0 then /* et is an object */
7 Report et as the next nearest object
8 else
9 for each child element et′ of et do

10 ENQUEUE(Q, et′ , dt′(q, et′))

1. Lines 1-3 initialize priority queue with root

2. In main loop take element et closest to q off the queue
report et as next nearest object if et is an object
otherwise, insert child elements of et into priority queue
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Example of INCNEAREST

Initially, algorithm descends tree to leaf node containing q
expand n
expand n1

Start growing search region
expand n3

report e as nearest neighbor
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VASCO Spatial Applet

http://www.cs.umd.edu/ hjs/quadtree/index.html
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Complexity Analysis

Algorithm is I/O optimal
no nodes outside search region are accessed
better pruning than branch and bound algorithm

Observations for finding k nearest neighbors for uniformly-distributed
two-dimensional points

expected # of points on priority queue: c ·
√

k

expected # of leaf nodes intersecting search region: c · (k +
√

k)

In worst case, priority queue will be as large as entire data set
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e.g., when data objects are all nearly
equidistant from query object
probability of worst case very low, as it
depends on a particular configuration of
both the data objects and the query object
(but: curse of dimensionality!)
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http://www.cs.umd.edu/~brabec/quadtree/index.html
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Duplicate Instances of Objects

Objects with extent such as lines, rectangles, regions, etc. are indexed by
methods that associate the objects with the different blocks that they
occupy

Indexes employ a disjoint decomposition of space in contrast to
non-disjoint as is the case for bounding box hierarchies (e.g., R-tree)

Search hierarchies will contain multiple references to some objects

Adapting incremental nearest neighbor algorithm:
1. make sure to detect all duplicate instances that are currently in priority

queue
2. avoid inserting duplicate instances of an object that has already been

reported
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Duplicate Instances Algorithm

INCNEARESTDUP(q, S, T )

1 Q← NEWPRIORITYQUEUE()
2 et← root of the search hierarchy induced by q, S, and T
3 ENQUEUE(Q, et, 0)
4 while not ISEMPTY(Q) do
5 et← DEQUEUE(Q)
6 if t = 0 then /* et is an object */
7 while et = FIRST(Q) do
8 DELETEFIRST(Q)
9 Report et as the next nearest object

10 else /* et is not an object */
11 for each child element et′ of et do

12 if t′ > 0 or dt′(q, et′) ≥ dt(q, et) then

13 ENQUEUE(Q, et′ , dt′(q, et′))
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Differences from INCNEAREST

1. Object o (et′ ) is enqueued only if o has not yet been reported
check if o’s distance from q is less than distance from et to q (line 12)
if yes, then o must have been encountered in an element et′′ which
was closer to q and hence already been reported

2. Check for multiple instances of object o and report only once (lines 7–9)

3. Order objects in queue by identity when at same distance

4. Retrieve all nodes in the queue before objects at same distance
important because an object can have several ancestor nodes of the
same type
interesting as unlike INCNEAREST where want to report neighbors as
soon as possible so break ties by giving priority to elements with lower
type numbers
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VASCO Spatial Applet

http://www.cs.umd.edu/ hjs/quadtree/index.html
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INCNEAREST Extensions

1. Incremental range query

2. Incremental retrieval of k nearest neighbors
need an extra queue to keep track of k neighbors found so far and can
use distance dk from q of the kth candidate nearest neighbor ok to
reduce number of priority queue operations

3. Farthest neighbor

4. Pairs of objects
distance join
distance semi-join
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Approximate Nearest Neighbors

1. Often, obtaining exact results is not critical and willing to trade off accuracy
for improved performance

2. Let ε denote the approximation error tolerance
common criterion is that the distance between q and the resulting
candidate nearest neighbor o′ is within a factor of 1 + ε of the distance
to the actual nearest neighbor o

i.e., d(q, o′) ≤ (1 + ε)d(q, o)
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Approximate Nearest Neighbors with INCNEAREST

1. Modify INCNEAREST by multiplying the key values for non-object elements
on the priority queue by 1 + ε

in a practical sense, non-object element et is enqueued with a larger
distance value — that is, by a factor of (1 + ε)

implies that we delay its processing, thereby allowing objects to be
reported ‘before their time’
e.g., once et is finally processed, all objects o satisfying
d(q, o) ≤ (1 + ε)dt(q, et) (which is greater than dt(q, et) if ε > 0) would
have already been reported
thus an object c in et with a distance d(q, c) ≤ d(q, o) could exist, yet o

is reported before c

algorithm does not necessarily report the resulting objects in strictly
increasing order of their distance from q

2. Different from Arya/Mount algorithm which cannot be incremental as
priority queue only contains non-object elements

shrinks distance r from q to the closest object o by a factor of 1 + ε and
only inserts a non-object element e into the priority queue if the
distance d(b, q) of e’s corresponding block b from q is less than the
shrunken distance
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Probably Approximately Correct (PAC) Nearest

Neighbors (Ciaccia/Patella)
Relax approximate nearest neighbor condition by stipulating a maximum
probability δ for tolerating failure, thereby enabling the decision process to
halt sooner at the risk δ of being wrong

Object o′ is considered a PAC-nearest neighbor of q if the probability that
d(q, o′) ≤ (1 + ε) · d(q, o) is at least 1− δ, where o is actual nearest neighbor

Alternatively, given ε and δ, 1− δ is the minimum probability that o′ is the
(1 + ε)-approximate nearest neighbor of q

Ciaccia and Patella use information about the distances between q and the
data objects to derive an upper bound s on the distance between q and a
PAC-nearest neighbor o′

Distance bound s is used during the actual nearest neighbor search as a
pre-established halting condition — that is, the search can be halted once
locating an object o′ with d(q, o′) ≤ s

Method is analogous to executing a variant of a range query, where the
range is defined by the distance bound s, which halts on the first object in
the range

Difficulty is determining a relationship between δ and the distance bound s
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Concluding Remarks

1. Similarity search is a broad area of research

2. Much relation to geometry; geometric setting is usually missing

3. Progress is heavily influenced by applications

4. Need to look at old literature to be able to evaluate current research results

5. Much is left to do as difficult to say what is best solution
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