K-Nearest Neighbor Finding
Using the MaxNearestDist Estimator

Hanan Samet

hjs@cs.umd.edu www.cs.umd.edu/ " hjs

Department of Computer Science
Center for Automation Research
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742, USA

Copyright 2003 by Hanan Samet K-Nearest Neighbor FindingUsing the MaxNearestDist Estimator — p.1/2;

www.cs.umd.edu/~hjs

Similarity Searching

1. Important task when trying to find patterns in applications involving mining
different types of data such as images, video, time series, text documents,

DNA sequences, etc.
2. Often reduces to finding k& nearest neighbors of query object
3. Organize data by use of hierarchical clustering

M partition data in clusters which are aggregated to form other clusters
M total aggregation is represented as a tree

4. Search hierarchies used by algorithms are partly specific to vector data
but can be adapted to non-vector data as well

5. Algorithms are applicable to any index based on hierarchical clustering

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist - p.2/2

Best-First Method

1.

Explores elements of the search hierarchy in increasing order of their
distance from the query object ¢

Achieved by storing nonobject elements of the search hierarchy in a
priority queue in this order

Some algorithms also store the objects in the priority queue enabling the
algorithms to be incremental

B implies both objects and nonobjects are visited in increasing order of
distance

® no need to know k in advance and can obtain neighbors one by one

May need as much storage as total number of nonobjects (and hence
objects) if their distance from ¢ is approximately the same

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist

- p.3/2

Depth-First (Branch-and-Bound) Method

1. Order of exploring elements of search hierarchy is result of a depth-first
traversal of hierarchy using distance D, from the query object to the

current k*®-nearest object to prune the search
B most commonly used method

2. Advantage over best-first method is that amount of storage is bounded by
k instead of by the number of objects

3. Advantage of best-first is avoiding visiting nonobject elements that will
eventually be determined to be too far from ¢ due to poor initial estimates
of Dy,

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist —p.4/2

Overview

1. Implementations of both depth-first and best-first have traditionally used
the estimate of the minimum distance at which a nearest neighbor can be
found to prune the search

2. Describe use of an estimate of the maximum possible distance at which a
neighbor must be found to prune the search for finding the k& nearest
neighbors

3. New estimate helps each algorithm overcome its disadvantages vis-a-vis
each other

B prunes number of nonobject elements that must be examined in
depth-first algorithm

B reduces number of nonobject elements that must be retained in
priority queue for best-first algorithm

4. Main focus is on how new estimate is incorporated in depth-first algorithm

W incorporated similarly in best-first algorithm
B comparison of two algorithms is beyond scope of this work

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist —p.5/2!

Depth-First Algorithm

1 recursive procedure DFTRAV(e)

2 if IsLEAF(e) then /* e is a leaf with objects */
3 foreach object child element o of e do

4 Compute d(q, o)

5 ifd(q,0) < Dy then INSERTL(0,d(q, 0))

6 endif

7/ enddo

8 else

9 Generate active list A containing child elements of e
10 foreach element e, of A do DFTRAv(e,)
11 enddo
12 endif

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist —p.6/2

Speeding Up Depth-First Algorithm — 1

1. DFTRAV visits every element in search hierarchy

2. No point in visiting an element and its objects if it is impossible for it to
contain any of & nearest neighbors of ¢

H e.g., when d(q, e) < d(g, eg) for every nonobject element e in search
hierarchy and for every object eg in e and that d(q,e) > Dy,

B always true if define d(q,) as minimum distance from ¢ to any object
eo In nonobject e (MINDIST)

q outside cluster q inside inner sphere of cluster

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist - p.7/2

Speeding Up Depth-First Algorithm — 2

3. If process elements of active list A(e) in MINDIST order, then as soon as
find one element e; in A(e) such that d(q, e;) > D, then no need to
process remaining elements e; of A(e) as d(q,e;) > Dy

B exit loop and backtrack to parent of ¢, OR
B terminate if e is root of search hierarchy

4. Canalsoavoidvis- ,
iting some objects P %
In a nonobject ele-
ment

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist - p.8/2

MAXNEARESTDIST Estimator

B Tighten value of estimate of distance to nearest neighbor D4

1. MAXDIsT: maximum distance from ¢ to an object in e (Fukunaga and
Narendra, 1975)

2. MAXNEARESTDIST: maximum possible distance from ¢ to nearest
neighbor in e (Larsen and Kanal, 1986)

M EX: assume search hierarchy
consists of minimum bounding
hyperspheres

MAXDIST

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist —p.9/2!

Extending MAXNEARESTDIST for Arbitrary &

B Cannot simply reset D, to MAXNEARESTDIST(q, e) whenever
MAXNEARESTDIST(q, ¢e) < Dy,

B Problem: distance s from ¢ to some of its k nearest neighbors may lie
within MAXNEARESTDIST(q, e) < s < Dy, and thus resetting Dy, to

MAXNEARESTDIST(q, e) may cause them to be missed, especially if child
element e contains just one object

® Need to examine the values of D; (1 < i < k)

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist

- p.10/2

Alternative Solution

B \Whenever find that MAXNEARESTDIST(q, e) < Dy, reset D;, to
MAXNEARESTDIST(q, e) If Di,_1 <MAXNEARESTDIST(q,) (a); otherwise,
reset Dy to Dy _1 (b)

B Problem: if D_; >MAXNEARESTDIST(q,), then now both D;, and D;,_4

are equal, and from now on we will never be able to obtain a lower bound
on Dy than Dy_4

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist - p.11/2

Ultimate Solution

B Overcome by adding additional explicit check to determine if
Dy._o <MAXNEARESTDIST(q, ep), in which case reset Dj_; to
MAXNEARESTDIST(q, ep); otherwise,reset Dy, t0 Dy,_o

m Only temporary remedy as break down again if
Dy _o5 >MAXNEARESTDIST(q, ep)

B Only solution is to repeatedly apply the method until finding smallest: > 1
such that D; >MAXNEARESTDIST(q, ep)

B Once locate this value of ¢, set D; to MAXNEARESTDIST(q, ep) after
resetting D; to D;_1 (k > 7 > 1).

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist

- p.12/2

Additional Problems

1. No guarantee that objects associated with the different D;(1 < j < k)
values are unique

B problem: same object o may be responsible for the MAXNEARESTDIST

value associated with both elements e, and e, of the search hierarchy
that caused MAXNEARESTDIST(q, ep) < Dy, and
MAXNEARESTDIST(q, eq) < Dy, respectively, at different instances of
time

B of course, this situation can only occur when e, IS an ancestor of eg,

but must be taken into account as otherwise results of the algorithm
are wrong

2. Primary role of MAXNEARESTDIST estimator is to set an upper bound on
distance from ¢ to nearest neighbor in a particular nonobject element

B NOT same as saying that it is the minimum of maximum possible
distances to k£ nearest neighbor of ¢, which is not true!

B instead, MAXNEARESTDIST should be used to provide bounds for
different clusters (nonobject elements)

B only once we have k distinct such bounds do we have an estimate on
the distance to the k" nearest neighbor

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist

- p.13/2

Use of MAXNEARESTDIST Iin Depth-First Algorithm

1. Expand role of list L of k nearest neighbors

M object elements and distance from q
B also nonobject elements corresponding to elements in active list and
their corresponding MAXNEARESTDIST values

2. Each time process a nonobject element ¢, insert in L all of e’s child
elements that comprise e’s active list with their corresponding
MAXNEARESTDIST values

B before inserting the child elements of e in L, remove e from L

B ensures no ancestor-descendant relationship for any pair of items in L

B implies object o associated with nonobject element v of L at distance
MAXNEARESTDIST is unique

3. Each entry u in L with distance d,, ensures that there is at least one object
In the data set whose maximum possible distance from g is d,

4. Implement L using a priority queue so can access farthest of k£ nearest
neighbors as well as update (i.e., insert and delete k£ nearest neighbor)
without the needless exchange operations if L was an array

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist —p.14/2

D Is Not the Same as D(Ly)

1. D(L): distance associated with the entry in L corresponding to ¢’s
kt"-nearest neighbor

2. Dy keeps track of the minimum of D(Ly) as algorithm progresses

3. D; is not necessarily equal to D(L;)

B cannot guarantee that the MAXNEARESTDIST values of all of e’s
Immediate descendents (i.e., the elements of the active list of ¢) are
smaller than e’'s MAXNEARESTDIST value

® only know that distance from ¢ to the nearest object in e and its
descendents is bounded from above by MAXNEARESTDIST value of e

H in other words, Dy, is nonincreasing, while D(Lj) can increase and
decrease as items are added and removed from L

W Ex: D(L;) must increase when
element E(Lg) has just two
sons e, and e, both of whose

MAXNEARESTDIST values are
> D(Lyg) .

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist

- p.15/2

Need to Insert All Nonobject Elements in L?

1. Dy isresetto D(Lg) whenever upon insertion of a nonobject element e,
Into L, with its corresponding MAXNEARESTDIST value, we find that L has
at least £ entries and that D(L;) is less than D, as this corresponds to the
situation that MAXNEARESTDIST(q, ep) < Dy

2. Do not reset D;, upon explicitly removing a nonobject element from L as
D, is already a minimum and thus it cannot decrease further as a result of
the removal of a nonobject element although it may decrease upon the
subsequent insertion of an object or nonobject

3. Nonobjects can only be pruned on basis of their MINDIST values, in which
case they should also be removed from L as their MAXNEARESTDIST
value is always greater than their MINDIST value which is greater than D,

B no harm in not removing any of the pruned nonobjects from L as
neither the pruned nonobjects nor their descendents will ever be
examined again as all of their MINDIST (and MAXNEARESTDIST)
values are already greater than D, which is nonincreasing

B drawback of not removing from L is that L can get much larger than &

B can get as large as O(k + m - log N) when no nonobject elements in
active list have been pruned and at deepest level of search hierarchy

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist - p.16/2

Limiting the Size of L

1. Only reason for L to keep track of the MAXNEARESTDIST values of
nonobject elements is to enable lowering the known value of D so that
more pruning will be possible in the future

2. D; being nonincreasing means that should not insert into L any nonobject
element e such that MAXNEARESTDIST(q, e) > Dy

® no problem when trying to remove e where MINDIST(q, e) < Dy while
MAXNEARESTDIST(q, e) > Dy in order to ensure that same object o is
not responsible for the presence of both e and a descendant nonobject
element of e being in the k closest elements of L to ¢ at the same time

3. When insert into L and try to update D;, only examine first k£ elements of L

®m implies no need for L to even contain more than k& elements

B however, when try to explicitly remove nonobject element e from L just
before inserting in L all of ¢’'s child elements, e might no longer be in L

B ¢ could have been implicitly removed as a byproduct of the insertion of
closer objects or nonobject elements with lower MAXNEARESTDIST
values than that of e thereby resulting in resetting Dy,

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist - p.17/2

Removing Nonobjects from L

1. If MAXNEARESTDIST(q,e) > Dy, do nothing as impossible for e to be in L,
and thus guaranteed that e was implicitly removed from L

2. Otherwise, if several elements in L with distance Dy, don’t want to
needlessly search for e as may be the case if e had already been implicitly
removed from L by virtue of the insertion of a closer object or a nonobject

with a smaller MAXNEARESTDIST value

B avoid search by adopting convention that objects have precedence in
terms of nearness over nonobjects

B implies that if insertion into full priority queue L and dequeue one
nonobject at a given distance d, then dequeue all nonobjects at the
same distance

B D, is reset only if exactly one entry has been dequeued and the
distance of the new MAXPRIORITYQUEUE(L) entry is less than Dy,

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist - p.18/2

Advantage of Expanding L to Also Contain Nonobjects

1. Otherwise, when L contains h (kh < k) objects, then all remaining entries in
L(ie., L; (h<i<k)are oo

2. Therefore, as long as the remaining & — h entries in L correspond to some
nonobjects, we have a lower bound D, than oo

3. Nonobjects in L often enable us to provide a lower bound D, than if all
entries in L were objects

H this is the case when have nonobjects with smaller MAXNEARESTDIST
values than the k objects with the k£ smallest distance values
encountered so far

4. Can use estimator value at a deeper level than the one at which it is
calculated

5. Enables using MAXNEARESTDIST value of an unexplored nonobject at
depth 7 to aid in pruning objects and nonobjects at depth j > ¢

6. better than conventional depth-first algorithm where MAXNEARESTDIST
value of a nonobject element at depth 7 could only be used to tighten the
distance to the nearest neighbor (i.e., for £ = 1), and to prune nonobject
elements at larger MINDIST values at the same depth ¢

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist - p.19/2

Example

1. Use of MAXNEARESTDIST results in not needing to explore clusters D, E,
and F for k = 2

MinDist(q,A) =5 MaxNearestDist(q,A) = 25
MinDist(q,B) = 7 MaxNearestDist(q,B) = 13
MinDist(q,C) =8 MaxNearestDist(q,C) = 16.55

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist

— p.20/2:

Conclusions

1. Using MAXNEARESTDIST estimator in depth-first k-nearest neighbor
algorithm provides a middle ground between a pure depth-first and a
best-first k-nearest neighbor algorithm

2. For N data items, the priority queue implementation of L in the
MAXNEARESTDIST depth-first k-nearest neighbor algorithm behaves
similarly to the priority queue @ in the best-first k-nearest neighbor
algorithm

B except that the upper bound on L’s size is k, while the upper bound on
QS size is O(N)

3. Worst-case storage requirements are independent of use of
MAXNEARESTDIST estimator:

B depth-first: maximum height of search hierarchy O(log N))
B best-first: size of data set O(N)

4. Can adapt best-first k-nearest neighbor algorithm to use
MAXNEARESTDIST estimator

B does not lead to more pruning or faster algorithm, BUT

B reduces number of nonobject elements that need to be retained in the
priority queue

ICIAP 2003: Hanan Samet K-Nearest Using MaxNearestDist - p.21/2

	Similarity Searching
	Best-First Method
	Depth-First (Branch-and-Bound)
Method
	Overview
	Depth-First Algorithm
	Speeding Up Depth-First Algorithm -- 1
	Speeding Up Depth-First Algorithm -- 2
	MaxNearestDist Estimator
	Extending MaxNearestDist for Arbitrary k
	Alternative Solution
	Ultimate Solution
	Additional Problems
	Use of MaxNearestDist in Depth-First Algorithm
	D_k Is Not the Same as $D(L_k)$
	Need to Insert All Nonobject Elements in L?
	Limiting the Size of L
	Removing Nonobjects from L
	Advantage of Expanding L to Also Contain Nonobjects
	Example
	Conclusions

