
Sorting in Space

Multidimensional, Spatial, and Metric Data Structures for

Computer Graphics Applications

Hanan Samet
hjs@cs.umd.edu

http://www.cs.umd.edu/˜hjs

Department of Computer Science

University of Maryland

College Park, MD 20742, USA

These notes may not be reproduced by any means

(mechanical or electronic or any other) or posted on any

web site without the express written permission of Hanan

Samet

Unless explicitly stated otherwise, the upper-left corner of

each slide indicates the page numbers in Foundations of

Multidimensional and Metric Data Structures by H. Samet,

Morgan-Kaufmann, San Francisco, 2006, where more

details on the topic can be found

Copyright c©2013 Hanan Samet Sorting in Space – p.1/3

1

TITLE:

Sorting in Space: Multidimensional, Spatial, and Metric Data Structures for Graph-
ics Applications

Hanan Samet

Computer Science Department

Center for Automation Research

Institute for Advanced Computer Studies

University of Maryland

College Park, Maryland 20742

e-mail: hjs@cs.umd.edu

url: http://www.cs.umd.edu/~hjs

SUMMARY STATEMENT:

We show how to represent spatial data using techniques that sort the data with respect to the space

it occupies. These techniques include quadtrees, octrees, and bounding volume hierarchies and are

useful for speeding-up operations involving search in all computer graphics applications including

games, ray tracing, and solid modeling.

COURSE ABSTRACT:

The representation of spatial data is an important issue in game programming, computer graphics,

visualization, solid modeling, and related areas including computer vision and geographic informa-

tion systems (GIS). Many representations are currently used. Recently, there has been much interest

in hierarchical representations such as quadtrees, octrees, and pyramids which are based on image

hierarchies, as well methods that use bounding boxes which are based on object hierarchies. The

key advantage of these representations is that they provide a way to index into space. In fact, they

are little more than multidimensional sorts. They are compact and depending on the nature of the

spatial data they save space as well as time and also facilitate operations such as search. In addi-

tion, we introduce methods for dealing with recognizing textual specifications of spatial data such

as locations in news articles.

This course provides a brief overview of hierarchical spatial data structures and related al-

gorithms that make use of them. We describe hierarchical representations of points, lines, col-

lections of small rectangles, regions, surfaces, and volumes. For region data, we point out the

dimension-reduction property of the region quadtree and octree, as how to navigate between

nodes in the same tree, thereby leading to the popularity of these representations in ray tracing

applications. We also demonstrate how to use these representations for both raster and vector

data. In the case of nonregion data, we show how these data structures can be used to com-

pute nearest objects in an incremental fashion so that the number of objects need not be known

in advance. We also review a number of different tessellations and show why hierarchical de-

composition into squares instead of triangles or hexagons is preferred. In addition, the SAND

spatial browser based on the SAND spatial database system, the VASCO JAVA applet illustrat-

1

2

file:hjs@cs.umd.edu
http://www.cs.umd.edu/~hjs

ing these methods (http://www.cs.umd.edu/ hjs/quadtree/index.html), and the NewsStand system

(http://newsstand.umiacs.umd.edu) will be demonstrated.

PREREQUISITE:

A familiarity with computer terminology and some programming experience.

COURSE LEVEL:

Introductory

INTENDED AUDIENCE:

Practitioners working in computer graphics will be given a different perspective on data structures

found to be useful in most applications Game developers and technical managers will appreciate the

presentation and methods described herein.

COURSE SYLLABUS:

The representation of spatial data is an important issue in game programming, computer graphics,

visualization, solid modeling, and related areas including computer vision and geographic informa-

tion systems (GIS). It has also taken on an increasing level of importance as a result of the popularity

of web-based mapping services such as Bing Maps, Google Maps, Google Earth, and Yahoo Maps,

as well as the increasing importance of location-based services. Operations on spatial data are fa-

cilitated by building an index on it. The traditional role of the index is to sort the data, which means

that it orders the data. However, since no ordering exists in dimensions greater than 1 without a

transformation of the data to one dimension, the role of the sort process is one of differentiating

between the data, and what is usually done is to sort (i.e., order) the spatial objects with respect to

the space that they occupy (e.g., Warnock’s algorithm, back-to-front and front-to-back display al-

gorithms, BSP trees for visibility determination, acceleration of ray tracing, bounding box/volume

hierarchies that sort the space on the basis of whether it is occupied). The resulting ordering is

usually implicit rather than explicit so that the data need not be resorted (i.e., the index need not be

rebuilt) when the queries change (e.g., the query reference objects).

There are many representations (i.e., indexes) currently in use. Recently, there has been much

interest in hierarchical data structures such as quadtrees, octrees, and pyramids, which are based on

image hierarchies, as well methods that make use of bounding boxes or volumes, which are based

on object hierarchies. The key advantage of these representations is that all of them provide a way

to index into space. They are compact and depending on the nature of the spatial data, they save

space as well as time and also facilitate operations such as search.

In this course we provide a brief overview of hierarchical spatial data structures and related

algorithms that make use of them. We describe hierarchical representations of points, lines, col-

lections of small rectangles, regions, surfaces, and volumes. For region data, we point out the

dimension-reduction property of the region quadtree and octree, as how to navigate between nodes

2

3

in the same tree, thereby leading to the popularity of these representations in ray tracing applica-

tions. We also demonstrate how to use these representations for both raster and vector data. In the

case of nonregion data, we show how these data structures can be used to compute nearest objects

in an incremental fashion so that the number of objects need not be known in advance. We point

out that these algorithms can also be used in an environment where the distance is measured along

a spatial network rather than being constrained to “as the crow flies” (i.e., the Euclidean distance).

We also review a number of different tessellations and show why hierarchical decomposition into

squares instead of triangles or hexagons is preferred. We conclude with a demonstration of the

SAND spatial browser based on the SAND spatial database system, the VASCO JAVA applet illus-

trating these methods (found at http://www.cs.umd.edu/~hjs/quadtree/index.html), and

the NewsStand system (http://newsstand.umiacs.umd.edu) for recognizing textual specifications of

spatial data such as locations in news articles.

COURSE SCHEDULE:

0:00-0:15 Introduction

0:15-0:20 Points

0:20-0:25 Lines

0:25-0:35 Regions

0:35-0:45 Bounding Box Hierarchies

0:45-0:55 Rectangles

0:55-1:00 Surfaces and Volumes

1:00-1:10 Operations

1:10-1:25 Demos

1:25-1:30 Questions

COURSE TOPICS

1. Introduction

(a) Sorting definition

(b) Sample queries

(c) Spatial Indexing

(d) Sorting approach

(e) Minimum bounding rectangles (e.g., R-tree)

(f) Disjoint cells (e.g., R+-tree, k-d-B-tree)

(g) Uniform grid

(h) Region quadtree

(i) Space ordering methods

(j) Pyramid

(k) Region quadtrees vs: pyramids

2. Points

(a) Point quadtree

3

4

http://www.cs.umd.edu/~hjs/quadtree/index.html

(b) PR quadtree

(c) Sorting points

(d) K-d tree

(e) PR k-d tree

3. Lines

(a) Strip tree

(b) MX quadtree for regions

(c) PM1 quadtree

(d) PM2 quadtree

(e) PM3 quadtree

(f) PMR quadtree

(g) Triangulations

4. Regions

(a) Region quadtree

(b) Dimension reduction

(c) Tessellations

(d) Bintree

(e) Generalized bintree

(f) XY-tree, treemap, puzzletree

(g) BSP tree

5. Bounding Box Hierarchies

(a) Overview

(b) Minimum bounding rectangles (e.g., R-trees)

(c) Searching in an R-tree

(d) Node overflows

(e) Examples of node overflow policies

6. Rectangles

(a) MX-CIF quadtree

(b) Loose quadtree or coverage fieldtree

(c) Partition fieldtree

7. Surfaces and Volumes

(a) Restricted quadtree

(b) Region octree

(c) PM octree

4

5

8. Operations

(a) Incremental nearest object location

(b) Incremental nearest object location in spatial networks

(c) Region quadtree Boolean set operations

(d) Region quadtree nearest neighbor finding

9. Example system

(a) SAND Internet browser

(b) JAVA spatial data applets

(c) NewsStand spatiotextual news retrieval

COURSE MATERIALS:

Participants receive a copy of the slides. In addition, there is a web site at

http://www.cs.umd.edu/~hjs/quadtree/index.html where applets demonstrating much of

the material in the course are available. Participants are referred to the text: H.Samet, Founda-

tions of Multidimensional and Metric Data Structures, Morgan-Kaufmann, San Francisco, 2006.

Participants also have the opportunity to obtain the book at a discount of 20% as reflected at

http://www.cs.umd.edu/~hjs/multidimensional-book-flyer.pdf

SPEAKER BIOGRAPHY:

Hanan Samet (http://www.cs.umd.edu/~hjs/) received the BS. degree in engineering from the

University of California, Los Angeles, and the M.S. degree in operations research and the M.S. and

Ph.D. degrees in computer science from Stanford University, Stanford, CA. His Ph.D. dissertation

founded the field of compiler translation validation. He is a Fellow of the IEEE, ACM, IAPR (In-

ternational Association for Pattern Recognition), and AAAS, an ACM Distinguished Speaker, and

was also elected to the ACM Council in 1989-1991 where he served as the Capital Region Repre-

sentative. He is the recipient of the 2011 ACM Paris Kanellakis Theory and Practice Award, the

2010 University of Maryland College of Computer, Mathematical and Physical Sciences Board of

Visitors Distinguished Faculty Award, the 2009 UCGIS Research Award, and a Science Foundation

of Ireland (SFI) Walton Visitor Award in 2008 at the Centre for Geocomputation at the National

University of Ireland at Maynooth (NUIM).

In 1975 he joined the Computer Science Department at the University of Maryland, College

Park, where he is now a Professor. Between 1978 and 1980 he was also affiliated with the Informa-

tion Sciences Institute at the University of Southern California where he worked on translation val-

idation. He has held visiting positions at the National University of Singapore, University of Genoa

(Italy), University of Pavia (Italy), University of Paris (France), Hebrew University of Jerusalem

(Israel), and at NTT Basic Research Lab (Japan).

At the University of Maryland he is a member of the Computer Vision Laboratory of

the Center for Automation Research and also has an appointment in the University of Mary-

land Institute for Advanced Computer Studies. At the Computer Vision Laboratory he leads

5

6

http://www.cs.umd.edu/~hjs/quadtree/index.html
http://www.cs.umd.edu/~hjs/multidimensional-book-flyer.pdf
http://www.cs.umd.edu/~hjs/

a number of research projects on the use of hierarchical data structures for geographic infor-

mation systems, computer graphics, image processing, and search. His research group has de-

veloped the QUILT system which is a GIS based on hierarchical spatial data structures such

as quadtrees and octrees, the SAND system which integrates spatial and non-spatial data, the

SAND Browser (http://www.cs.umd.edu/ brabec/sandjava) which enables browsing through a spa-

tial database using a graphical user interface, the VASCO spatial indexing applet (found at

http://www.cs.umd.edu/ hjs/quadtree/index.html), the MARCO system for map retrieval by content

which consists of a sophisticated pictorial query specification method, the STEWARD system for

identifying the geographic focus of documents thereby facilitating the performance of spatio-textual

search to enable searches that rank the results by spatial proximity rather than by exact match, and

the NewsStand and TwitterStand systems that apply these ideas to a database of news articles and

Tweets, respectively, that are continuously updated and that enable them to be accessed using a map

query interface.

He is the founding editor-in-chief of the ACM Transactions on Spatial Algorithms and Systems

(TSAS), an area editor of Graphical Models, an advisory editor of the Journal of Visual Languages

and Computing, and on the editorial boards of GeoInformatica and Image Understanding. He is the

founding chair of ACM SIGSPATIAL (http://www.sigspatial.org/), the ACM Special Interest Group

(SIG) on Spatial Information. He has served as the co-general chair of the 2007 and 2008 ACM

SIGSPATIAL Conference on Geographic Information Systems (ACM GIS). He has also served on

the program committees of many conferences, symposia, and workshops.

His research interests include data structures, computer graphics, geographic informa-

tion systems, computer vision, robotics, database management systems, and programming

languages, and is the author of over 300 publications on these topics. He is the au-

thor of the recent book titled ”Foundations of Multidimensional and Metric Data Struc-

tures” (http://www.cs.umd.edu/~hjs/multidimensional-book-flyer.pdf) published by

Morgan-Kaufmann, an imprint of Elsevier, in 2006, an award winner in the 2006 best book in

Computer and Information Science competition of the Professional and Scholarly Publishers (PSP)

Group of the American Publishers Association (AAP), and of the first two books on spatial data

structures titled ”Design and Analysis of Spatial Data Structures”, and ”Applications of Spatial Data

Structures: Computer Graphics, Image Processing, and GIS”, both published by Addison-Wesley

in 1990. He received best paper awards in the 2012 ACM SIGSPATIAL MobiGIS Workshop, 2008

SIGMOD Conference, the 2008 SIGSPATIAL ACMGIS’08 Conference, the 2007 Computers &

Graphics Journal, as well as a best demo award in the 2011 SIGSPATIAL ACMGIS’12 Conference.

His paper at the 2009 IEEE International Conference on Data Engineering (ICDE) was selected as

one of the best papers for publication in the IEEE Transactions on Knowledge and Data Engineer-

ing.

6

7

http://www.cs.umd.edu/~hjs/multidimensional-book-flyer.pdf

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

8

Why Sorting of Spatial Data is Important

Most operations invariably involve search

Search is sped up by sorting the data

sort - Definition: verb

1. to put in a certain place or rank according to kind, class, or nature

2. to arrange according to characteristics

Examples

1. Warnock algorithm: sorting objects for display
vector: hidden-line elimination
raster: hidden-surface elimination

2. Back-to-front and front-to-back algorithms

3. BSP trees for visibility determination

4. Accelerating ray tracing and ray casting by finding ray-object
intersections

5. Bounding box hierarchies arrange space according to whether
occupied or unoccupied

Copyright 2013 by Hanan Samet

9

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and find
closest in weight to Bill and can

also find closest in weight to Larry

sort cities by distance from Chicago

and find closest to Chicago but can-

not find closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist
unless a dominance relation holds

point a = {ai|1 ≤ i ≤ d} dominates point b = {bi|1 ≤ i ≤ d} if
ai ≤ bi, 1 ≤ i ≤ d.

3. Only solution is to linearize data as in a space-filling curve

sort is explicit

need implicit sort so no need to resort if reference point changes

Copyright 2013 by Hanan Samet

10

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and find
closest in weight to Bill and can

also find closest in weight to Larry

sort cities by distance from Chicago

and find closest to Chicago but can-

not find closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist
unless a dominance relation holds

point a = {ai|1 ≤ i ≤ d} dominates point b = {bi|1 ≤ i ≤ d} if
ai ≤ bi, 1 ≤ i ≤ d.

a

3. Only solution is to linearize data as in a space-filling curve

sort is explicit

need implicit sort so no need to resort if reference point changes

Copyright 2013 by Hanan Samet

11

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and find
closest in weight to Bill and can

also find closest in weight to Larry

sort cities by distance from Chicago

and find closest to Chicago but can-

not find closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist
unless a dominance relation holds

point a = {ai|1 ≤ i ≤ d} dominates point b = {bi|1 ≤ i ≤ d} if
ai ≤ bi, 1 ≤ i ≤ d.

a does not dominate b

3. Only solution is to linearize data as in a space-filling curve

sort is explicit

need implicit sort so no need to resort if reference point changes

Copyright 2013 by Hanan Samet

12

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and find
closest in weight to Bill and can

also find closest in weight to Larry

sort cities by distance from Chicago

and find closest to Chicago but can-

not find closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist
unless a dominance relation holds

point a = {ai|1 ≤ i ≤ d} dominates point b = {bi|1 ≤ i ≤ d} if
ai ≤ bi, 1 ≤ i ≤ d.

a does not dominate b but dominates c

3. Only solution is to linearize data as in a space-filling curve

sort is explicit

need implicit sort so no need to resort if reference point changes

Copyright 2013 by Hanan Samet

13

Map of Prince George’s County

Copyright 2010: Hanan Samet Location, Location, Location – p.2/30

14

Example Queries in Line Segment Databases

1. Queries about line segments

All segments that intersect a given point or set of points

All segments that have a given set of endpoints

All segments that intersect a given line segment

All segments that are coincident with a given line segment

2. Proximity queries

The nearest line segment to a given point

All segments within a given distance from a given point (also known as

a range or window query)

3. Queries involving attributes of line segments

Given a point, find the closest line segment of a particular type

Given a point, find the minimum enclosing polygon whose constituent

line segments are all of a given type

Given a point, find all the polygons that are incident on it

Copyright 2010: Hanan Samet Location, Location, Location – p.7/30

15

What Makes Continuous Spatial Data Different?

1. Spatial extent of the objects is the key to the difference

2. A record in a DBMS may be considered as a point in a multidimensional space

A line can be transformed (i.e., represented) as a

point in 4-d space with (x1 , y1 , x2 , y2)

Good for queries about the line segments

Not good for proximity queries since points outside
the object are not mapped into the higher dimen-
sional space

Representative points of two objects that are physi-

cally close to each other in the original space (e.g.,

2-d for lines) may be very far from each other in the

higher dimensional space (e.g., 4-d)

(x1,y1)

(x2,y2)

A

B

Problem is that the transformation only transforms the space occupied by

the objects and not the rest of the space (e.g., the query point)

Can overcome by projecting back to original space

3. Use an index that sorts based upon spatial occupancy (i.e., extent of the ob-

jects)

Copyright 2010: Hanan Samet Location, Location, Location – p.8/30

16

Spatial Indexing Requirements

1. Compatibility with the data being stored

2. Choose an appropriate zero or reference point

3. Need an implicit rather than an explicit index

a. impossible to foresee all possible queries in advance

b. cannot have an attribute for every possible spatial relationship
i. derive adjacency relations

ii. 2-d strings capture a subset of adjacencies
A. all rows
B. all columns

c. implicit index is better as an explicit index which, for example, sorts

two-dimensional data on the basis of distance from a given point is
impractical as it is inapplicable to other points

d. implicit means that don’t have to resort the data for queries other than
updates

Copyright 2010: Hanan Samet Location, Location, Location – p.9/30

17

gs11

SORTING ON THE BASIS OF SPATIAL OCCUPANCY

• Decompose the space from which the data is drawn into
regions called buckets (like hashing but preserves order)

• Interested in methods that are designed specifically for
the spatial data type being stored

• Basic approaches to decomposing space

1. minimum bounding rectangles

• e.g., R-tree or AABB (axis-aligned) and OBB
(arbitrary orientation)

• good at distinguishing empty and non-empty
space

• drawbacks:

a. non-disjoint decomposition of space

• may need to search entire space

b. inability to correlate occupied and unoccupied
space in two maps

2. disjoint cells

• drawback: objects may be reported more than once

• uniform grid

a. all cells the same size

b. drawback: possibility of many sparse cells

• adaptive grid — quadtree variants

a. regular decomposition

b. all cells of width power of 2

• partitions at arbitrary positions

a. drawback: not a regular decomposition

b. e.g., R+-tree

• Can use as approximations in filter/refine query
processing strategy

Copyright 2008 by Hanan Samet

2
6
4
-2

6
5
-H

ie
ra

rc
h
ic

a
l o

b
je

c
t re

p
e
s
e
n
ta

tio
n
 o

v
e
rv

ie
w

18

MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g

h

i

1

b

Order (m,M) R-tree

1. between m M/2 and M entries in each node
except root

2. at least 2 entries in root unless a leaf node

Copyright © 2007 by Hanan Samet

7

2
7
0
-2

9
6
-R

-tre
e

19

MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g

h

i

1

b

Order (m,M) R-tree

1. between m M/2 and M entries in each node
except root

2. at least 2 entries in root unless a leaf node

Copyright © 2007 by Hanan Samet

7

2

r

R3

R4

R5
R6

ic feba hgd

hi31

R3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

7

2
7
0
-2

9
6
-R

-tre
e

20

MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g

h

i

1

b

Order (m,M) R-tree

1. between m M/2 and M entries in each node
except root

2. at least 2 entries in root unless a leaf node

Copyright © 2007 by Hanan Samet

7

2

r

R3

R4

R5
R6

ic feba hgd

hi31

R3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

7

3

z

R4R3 R6R5

R1

R2

hi31

R2:R1:

Copyright © 2007 by Hanan Samet

7

2
7
0
-2

9
6
-R

-tre
e

21

MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g

h

i

1

b

Order (m,M) R-tree

1. between m M/2 and M entries in each node
except root

2. at least 2 entries in root unless a leaf node

Copyright © 2007 by Hanan Samet

7

2

r

R3

R4

R5
R6

ic feba hgd

hi31

R3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

7

3

z

R4R3 R6R5

R1

R2

hi31

R2:R1:

Copyright © 2007 by Hanan Samet

7

4

g

R2R1

hi31

R0:

R0

Copyright © 2007 by Hanan Samet

7

2
7
0
-2

9
6
-R

-tre
e

22

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1

b

ba hgd ic fe

R2R1

R4R3 R6R5

a

b

c

d

e

f

g

h

i

R3

R4

R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2007 by Hanan Samet

8

2
7
0
-2

9
6
-R

-tre
e

23

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1

b

ba hgd ic fe

R2R1

R4R3 R6R5

a

b

c

d

e

f

g

h

i

R3

R4

R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2007 by Hanan Samet

8

hi32

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

8

2
7
0
-2

9
6
-R

-tre
e

24

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1

b

ba hgd ic fe

R2R1

R4R3 R6R5

a

b

c

d

e

f

g

h

i

R3

R4

R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2007 by Hanan Samet

8

hi32

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

8

hi32

Q can be in both R1 and R2

3

r

Copyright © 2007 by Hanan Samet

8

2
7
0
-2

9
6
-R

-tre
e

25

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1

b

ba hgd ic fe

R2R1

R4R3 R6R5

a

b

c

d

e

f

g

h

i

R3

R4

R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2007 by Hanan Samet

8

hi32

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

8

hi32

Q can be in both R1 and R2

3

r

Copyright © 2007 by Hanan Samet

8

hi324

z

Searching R1 first means that R4 is searched but this
leads to failure even though Q is part of i which is in R4

Copyright © 2007 by Hanan Samet

8

2
7
0
-2

9
6
-R

-tre
e

26

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1

b

ba hgd ic fe

R2R1

R4R3 R6R5

a

b

c

d

e

f

g

h

i

R3

R4

R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2007 by Hanan Samet

8

hi32

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

8

hi32

Q can be in both R1 and R2

3

r

Copyright © 2007 by Hanan Samet

8

hi324

z

Searching R1 first means that R4 is searched but this
leads to failure even though Q is part of i which is in R4

Copyright © 2007 by Hanan Samet

8

hi325

g

Searching R2 finds that Q can only be in R5

Copyright © 2007 by Hanan Samet

8

2
7
0
-2

9
6
-R

-tre
e

27

hi33
DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a

b

c

d

e

f

g

h

i

1

b

Q

Copyright © 2007 by Hanan Samet

9

3
1
1
-R

-+
-tre

e

28

hi33
DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a

b

c

d

e

f

g

h

i

1

b

Q

Copyright © 2007 by Hanan Samet

9

hi332

r

R3

R4

R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

9

3
1
1
-R

-+
-tre

e

29

hi33
DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a

b

c

d

e

f

g

h

i

1

b

Q

Copyright © 2007 by Hanan Samet

9

hi332

r

R3

R4

R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

9

hi333

z

R4R3 R6R5

R1

R2

R1: R2:

Copyright © 2007 by Hanan Samet

9

3
1
1
-R

-+
-tre

e

30

hi33
DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a

b

c

d

e

f

g

h

i

1

b

Q

Copyright © 2007 by Hanan Samet

9

hi332

r

R3

R4

R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

9

hi333

z

R4R3 R6R5

R1

R2

R1: R2:

Copyright © 2007 by Hanan Samet

9

hi334

g

R2R1R0:

R0

Copyright © 2007 by Hanan Samet

9

3
1
1
-R

-+
-tre

e

31

hi33.1
K-D-B-TREES

a

b

c

d

e

f

g

h

i

1

b

Q

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes

• Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2007 by Hanan Samet

3
0
4
-3

1
1
-K

-d
-B

-tre
e

32

hi33.1
K-D-B-TREES

a

b

c

d

e

f

g

h

i

1

b

Q

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes

• Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2007 by Hanan Samet

hi33.12

r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

3
0
4
-3

1
1
-K

-d
-B

-tre
e

33

hi33.1
K-D-B-TREES

a

b

c

d

e

f

g

h

i

1

b

Q

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes

• Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2007 by Hanan Samet

hi33.12

r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

hi33.13

z

R4R3 R6R5

R1 R2

R1: R2:

Copyright © 2007 by Hanan Samet

3
0
4
-3

1
1
-K

-d
-B

-tre
e

34

hi33.1
K-D-B-TREES

a

b

c

d

e

f

g

h

i

1

b

Q

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes

• Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2007 by Hanan Samet

hi33.12

r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

hi33.13

z

R4R3 R6R5

R1 R2

R1: R2:

Copyright © 2007 by Hanan Samet

hi33.14

g

R2R1R0:

R0

Copyright © 2007 by Hanan Samet

3
0
4
-3

1
1
-K

-d
-B

-tre
e

35

UNIFORM GRID

Ideal for uniformly distributed data

Supports set-theoretic operations

Spatial data (e.g., line segment data) is rarely uniformly
distributed

hi34

Copyright © 2007 by Hanan Samet 10

2
1
0
-U

n
ifo

rm
 g

rid

36

hi35

QUADTREES

• Hierarchical variable resolution data structure based on
regular decomposition

• Many different decomposition schemes and applicable
to different data types:

1. points
2. lines
3. regions
4. rectangles
5. surfaces
6. volumes
7. higher dimensions including time

• changes meaning of nearest
a. nearest in time, OR

b. nearest in distance

• Can handle both raster and vector data as just a spatial
index

• Shape is usually independent of order of inserting data

• Ex: region quadtree

• A decomposition into blocks
— not necessarily a tree!

Copyright © 2007 by Hanan Samet 11

2
1
1
-R

e
g
io

n
 q

u
a
d
tre

e

37

hi36

REGION QUADTREE

• Repeatedly subdivide until obtain homogeneous region

• For a binary image (BLACK ≡ 1 and WHITE ≡ 0)

• Can also use for multicolored data (e.g., a landuse
class map associating colors with crops)

• Can also define data structure for grayscale images

• A collection of maximal blocks of size power of two
and placed at predetermined positions

1. could implement as a list of blocks each of which
has a unique pair of numbers:
• concatenate sequence of 2 bit codes correspond-

ing to the path from the root to the block’s node
• the level of the block’s node

2. does not have to be implemented as a tree
• tree good for logarithmic access

• A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

A

B C D E

NW

NE SW

SE

F G H I J L M N O Q

K P

37 38 39 40 57 5859 60

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

1

1

1

1

0

0

1

1

1

1

1

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

B

60

37

L

J

Q

GF

H

N

I

O

M
57 58

59

4039

38

Copyright © 2007 by Hanan Samet 12

2
1
1
-R

e
g
io

n
 q

u
a
d
tre

e

38

Ordering Space

Many ways of laying

out the addresses cor-
responding to the lo-

cations in space of the
cells each having its

own mapping function

Can use one of many

possible space-filling
curves

Important to dis-
tinguish between
address and location
or cell

Address of a location

or cell
� physical lo-

cation (e.g., in mem-

ory, on disk, etc.), if

any, where some of

the information asso-
ciated with the loca-
tion or cell is stored

row order row-prime order morton order

peano-hilbert order cantor-diagonal order spiral order

gray code double gray order u order
Chapter 2: Copyright 2007 Hanan Samet

1
9
9
-2

0
1
--S

p
a
c
e
 o

rd
e
rin

g
 m

e
th

o
d
s

39

bg4

CONVERTING BETWEEN POINTS AND CURVES

• Need to know size of image for all but the Morton
order

• Relatively easy for all but the Peano-Hilbert order
which is difficult (although possible) to decode
and encode to obtain the corresponding x and y
coordinate values

• Morton order

1. use bit interleaving of binary representation of
the x and y coordinates of the point

2. also known as Z-order

0 0 1

1 1 0

y

x

3. Ex: Atlanta (6,1) 0 1 0 1 1 0 = 22

Copyright © 2008 by Hanan Samet

40

bg51

b

STABILITY OF SPACE ORDERING METHODS

• An order is stable if the relative order of the individual
pixels is maintained when the resolution (i.e., the size of
the space in which the cells are embedded) is doubled or
halved

• Morton order is stable while the Peano-Hilbert order is not

• Ex:

 Morton: Peano-Hilbert:

1

32

0 1

23

0

Copyright © 2008 by Hanan Samet

41

bg51

b

STABILITY OF SPACE ORDERING METHODS

• An order is stable if the relative order of the individual
pixels is maintained when the resolution (i.e., the size of
the space in which the cells are embedded) is doubled or
halved

• Morton order is stable while the Peano-Hilbert order is not

• Ex:

 Morton: Peano-Hilbert:

1

32

0 1

23

0

Copyright © 2008 by Hanan Samet

bg5

1215 1011

2

r

• Result of doubling the resolution (i.e., the coverage)

1

32

0

9

1110

8
13

1514

12

5

76

4
3

21

0

1314 9
8

5

6
7

4

Copyright © 2008 by Hanan Samet

42

bg51

b

STABILITY OF SPACE ORDERING METHODS

• An order is stable if the relative order of the individual
pixels is maintained when the resolution (i.e., the size of
the space in which the cells are embedded) is doubled or
halved

• Morton order is stable while the Peano-Hilbert order is not

• Ex:

 Morton: Peano-Hilbert:

1

32

0 1

23

0

Copyright © 2008 by Hanan Samet

bg5

1215 1011

2

r

• Result of doubling the resolution (i.e., the coverage)

1

32

0

9

1110

8
13

1514

12

5

76

4
3

21

0

1314 9
8

5

6
7

4

Copyright © 2008 by Hanan Samet

bg53

z

in which case the circled points do not maintain the same
relative order in the Peano-Hilbert order while they do in
the Morton order

Copyright © 2008 by Hanan Samet

43

bg6

DESIRABLE PROPERTIES OF SPACE FILLING CURVES

1. Pass through each point in the space once and only
once

2. Two points that are neighbors in space are neighbors
along the curve and vice versa

• impossible to satisfy for all points at all resolutions

3. Easy to retrieve neighbors of a point

4. Curve should be stable as the space grows and
contracts by powers of two w ith the same origin

• yes for Morton and Cantor orders

• no for row, row-prime, Peano-Hilbert, and spiral
orders

5. Curve should be admissible

• at each step at least one horizontal and one vertical
neighbor must have already been encountered

• used by active border algorithms - e.g., connected
component labeling algorithm

• row, Morton, and Cantor orders are admissible

• Peano-Hilbert order is not admissible

• row-prime and spiral orders are admissible if permit
the direction of the horizontal and vertical neighbors
to vary from point to point

6. Easy to convert between two-dimensional data and the
curve and vice-versa

• easy for Morton order

• difficult for Peano-Hilbert order

• relatively easy for row, row-prime, Cantor, and spiral
orders

Copyright 2008 by Hanan Samet

1
9
9
-2

0
1
--S

p
a
c
e
 o

rd
e
rin

g
 m

e
th

o
d
s

44

hi37

PYRAMID

• Internal nodes contain summary of information in
nodes below them

• Useful for avoiding inspecting nodes where there could
be no relevant information

c1

c2

c3

c4

c5

c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}

Copyright © 2007 by Hanan Samet 13

2
6
6
-2

7
0
-P

y
ra

m
id

45

hi38

QUADTREES VS. PYRAMIDS

• Quadtrees are good for location-based queries

1. e.g., what is at location x?

2. not good if looking for a particular feature as have to
examine every block or location asking “are you the
one I am looking for?”

• Pyramid is good for feature-based queries — e.g.,

1. does wheat exist in region x?
• if wheat does not appear at the root node, then

impossible to find it in the rest of the structure and
the search can cease

2. report all crops in region x — just look at the root

3. select all locations where wheat is grown
• only descend node if there is possibility that wheat is

in one of its four sons — implies little wasted work

• Ex: truncated pyramid where 4 identically-colored sons
are merged

c1

c2

c3

c4

c5

c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}

{c2,c3,c5} {c1,c2,c3,c5}

• Can represent as a list of leaf and nonleaf blocks (e.g.,
as a linear quadtree)

Copyright © 2007 by Hanan Samet 14

2
6
6
-2

7
0
-P

y
ra

m
id

46

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

47

POINT QUADTREE (Finkel/Bentley)
1 hp4
b

• Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

0
2
8
-0

3
7
--P

o
in

t q
u
a
d
tre

e

48

POINT QUADTREE (Finkel/Bentley)
1 hp4
b

• Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp4

(52,10)

Mobile

Mobile

Copyright © 2007 by Hanan Samet

0
2
8
-0

3
7
--P

o
in

t q
u
a
d
tre

e

49

POINT QUADTREE (Finkel/Bentley)
1 hp4
b

• Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp4

(52,10)

Mobile

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp4

(62,77)

Toronto

Toronto

Copyright © 2007 by Hanan Samet

0
2
8
-0

3
7
--P

o
in

t q
u
a
d
tre

e

50

POINT QUADTREE (Finkel/Bentley)
1 hp4
b

• Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp4

(52,10)

Mobile

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp4

(62,77)

Toronto

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp4

(82,65)

Buffalo

Buffalo

Copyright © 2007 by Hanan Samet

0
2
8
-0

3
7
--P

o
in

t q
u
a
d
tre

e

51

POINT QUADTREE (Finkel/Bentley)
1 hp4
b

• Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp4

(52,10)

Mobile

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp4

(62,77)

Toronto

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp4

(82,65)

Buffalo

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp4

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

0
2
8
-0

3
7
--P

o
in

t q
u
a
d
tre

e

52

POINT QUADTREE (Finkel/Bentley)
1 hp4
b

• Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp4

(52,10)

Mobile

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp4

(62,77)

Toronto

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp4

(82,65)

Buffalo

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp4

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

6

g
hp4

(27,35)

Omaha

Omaha

Copyright © 2007 by Hanan Samet

0
2
8
-0

3
7
--P

o
in

t q
u
a
d
tre

e

53

POINT QUADTREE (Finkel/Bentley)
1 hp4
b

• Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp4

(52,10)

Mobile

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp4

(62,77)

Toronto

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp4

(82,65)

Buffalo

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp4

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

6

g
hp4

(27,35)

Omaha

Omaha

Copyright © 2007 by Hanan Samet

7

v
hp4

(85,15)

Atlanta

Atlanta

Copyright © 2007 by Hanan Samet

0
2
8
-0

3
7
--P

o
in

t q
u
a
d
tre

e

54

POINT QUADTREE (Finkel/Bentley)
1 hp4
b

• Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp4

(52,10)

Mobile

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp4

(62,77)

Toronto

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp4

(82,65)

Buffalo

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp4

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

6

g
hp4

(27,35)

Omaha

Omaha

Copyright © 2007 by Hanan Samet

7

v
hp4

(85,15)

Atlanta

Atlanta

Copyright © 2007 by Hanan Samet

8

z
hp4

(90,5)

Miami

Miami

Copyright © 2007 by Hanan Samet

0
2
8
-0

3
7
--P

o
in

t q
u
a
d
tre

e

55

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point

Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

56

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point

Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

Copyright © 2007 by Hanan Samet

2

r
hp9

(52,10)

Mobile

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

57

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point

Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

Copyright © 2007 by Hanan Samet

2

r
hp9

(52,10)

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp9

(62,77)

Toronto

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

58

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point

Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

Copyright © 2007 by Hanan Samet

2

r
hp9

(52,10)

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp9

(62,77)

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp9

(82,65)

Buffalo

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

59

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point

Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

Copyright © 2007 by Hanan Samet

2

r
hp9

(52,10)

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp9

(62,77)

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp9

(82,65)

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp9

(5,45)

Denver

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

60

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point

Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

Copyright © 2007 by Hanan Samet

2

r
hp9

(52,10)

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp9

(62,77)

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp9

(82,65)

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp9

(5,45)

Denver

Copyright © 2007 by Hanan Samet

6

g
hp9

(27,35)

Omaha

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

61

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point

Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

Copyright © 2007 by Hanan Samet

2

r
hp9

(52,10)

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp9

(62,77)

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp9

(82,65)

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp9

(5,45)

Denver

Copyright © 2007 by Hanan Samet

6

g
hp9

(27,35)

Omaha

Copyright © 2007 by Hanan Samet

7

z
hp9

(85,15)

Atlanta

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

62

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point

Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

Copyright © 2007 by Hanan Samet

2

r
hp9

(52,10)

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp9

(62,77)

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp9

(82,65)

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp9

(5,45)

Denver

Copyright © 2007 by Hanan Samet

6

g
hp9

(27,35)

Omaha

Copyright © 2007 by Hanan Samet

7

z
hp9

(85,15)

Atlanta

Copyright © 2007 by Hanan Samet

8

r
hp9

(90,5)

Miami

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

63

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

Copyright 2008 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

64

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4

5

876

2

r

Copyright 2008 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

65

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4

5

876

2

r
hp103

z

p

Copyright 2008 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

66

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4

5

876

2

r

4

g

p

3

z

Copyright 2008 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

67

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4

5

876

2

r

5

v

p

4

g

3

z

Copyright 2008 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

68

zk24
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1

b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

69

zk24
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1

b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2007 by Hanan Samet

zk242

r

1. start at block 2 and compute distance to P from A

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

70

zk24
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1

b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2007 by Hanan Samet

zk242

r

1. start at block 2 and compute distance to P from A

Copyright © 2007 by Hanan Samet

zk243

z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

71

zk24
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1

b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2007 by Hanan Samet

zk242

r

1. start at block 2 and compute distance to P from A

Copyright © 2007 by Hanan Samet

zk243

z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2007 by Hanan Samet

zk244

g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

72

zk24
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1

b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2007 by Hanan Samet

zk242

r

1. start at block 2 and compute distance to P from A

Copyright © 2007 by Hanan Samet

zk243

z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2007 by Hanan Samet

zk244

g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 2007 by Hanan Samet

zk245

v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

73

zk24
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1

b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2007 by Hanan Samet

zk242

r

1. start at block 2 and compute distance to P from A

Copyright © 2007 by Hanan Samet

zk243

z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2007 by Hanan Samet

zk244

g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 2007 by Hanan Samet

zk245

v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 2007 by Hanan Samet

zk246

z

5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

74

zk24
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1

b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2007 by Hanan Samet

zk242

r

1. start at block 2 and compute distance to P from A

Copyright © 2007 by Hanan Samet

zk243

z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2007 by Hanan Samet

zk244

g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 2007 by Hanan Samet

zk245

v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 2007 by Hanan Samet

zk246

z

5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A

Copyright © 2007 by Hanan Samet

zk247

r

• If F was moved, a better order would have started with
block 11, the southern neighbor of 1, as it is closest

new F

Copyright © 2007 by Hanan Samet

0
4
2
-0

4
7
--P

R
 q

u
a
d
tre

e

75

K-D TREE (Bentley)

• Test one attribute at a time instead of all simultaneously
as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the
data is encountered

1 hp15
b

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

0
4
8
-0

5
7
--K

-d
 tre

e

76

K-D TREE (Bentley)

• Test one attribute at a time instead of all simultaneously
as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the
data is encountered

1 hp15
b

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp15

(52,10)

Mobile

Mobile

x test

Copyright © 2007 by Hanan Samet

0
4
8
-0

5
7
--K

-d
 tre

e

77

K-D TREE (Bentley)

• Test one attribute at a time instead of all simultaneously
as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the
data is encountered

1 hp15
b

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp15

(52,10)

Mobile

Mobile

x test

Copyright © 2007 by Hanan Samet

3

z
hp15

(62,77)

Toronto

Toronto

y test

Copyright © 2007 by Hanan Samet

0
4
8
-0

5
7
--K

-d
 tre

e

78

K-D TREE (Bentley)

• Test one attribute at a time instead of all simultaneously
as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the
data is encountered

1 hp15
b

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp15

(52,10)

Mobile

Mobile

x test

Copyright © 2007 by Hanan Samet

3

z
hp15

(62,77)

Toronto

Toronto

y test

Copyright © 2007 by Hanan Samet

4

g
hp15

(82,65)

Buffalo

Buffalo

x test

Copyright © 2007 by Hanan Samet

0
4
8
-0

5
7
--K

-d
 tre

e

79

K-D TREE (Bentley)

• Test one attribute at a time instead of all simultaneously
as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the
data is encountered

1 hp15
b

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp15

(52,10)

Mobile

Mobile

x test

Copyright © 2007 by Hanan Samet

3

z
hp15

(62,77)

Toronto

Toronto

y test

Copyright © 2007 by Hanan Samet

4

g
hp15

(82,65)

Buffalo

Buffalo

x test

Copyright © 2007 by Hanan Samet

5

v
hp15

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

0
4
8
-0

5
7
--K

-d
 tre

e

80

K-D TREE (Bentley)

• Test one attribute at a time instead of all simultaneously
as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the
data is encountered

1 hp15
b

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp15

(52,10)

Mobile

Mobile

x test

Copyright © 2007 by Hanan Samet

3

z
hp15

(62,77)

Toronto

Toronto

y test

Copyright © 2007 by Hanan Samet

4

g
hp15

(82,65)

Buffalo

Buffalo

x test

Copyright © 2007 by Hanan Samet

5

v
hp15

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

6

g
hp15

(27,35)

Omaha

Omaha

Copyright © 2007 by Hanan Samet

0
4
8
-0

5
7
--K

-d
 tre

e

81

K-D TREE (Bentley)

• Test one attribute at a time instead of all simultaneously
as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the
data is encountered

1 hp15
b

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp15

(52,10)

Mobile

Mobile

x test

Copyright © 2007 by Hanan Samet

3

z
hp15

(62,77)

Toronto

Toronto

y test

Copyright © 2007 by Hanan Samet

4

g
hp15

(82,65)

Buffalo

Buffalo

x test

Copyright © 2007 by Hanan Samet

5

v
hp15

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

6

g
hp15

(27,35)

Omaha

Omaha

Copyright © 2007 by Hanan Samet

7

r
hp15

(85,15)

Atlanta

Atlanta

y test

Copyright © 2007 by Hanan Samet

0
4
8
-0

5
7
--K

-d
 tre

e

82

K-D TREE (Bentley)

• Test one attribute at a time instead of all simultaneously
as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the
data is encountered

1 hp15
b

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp15

(52,10)

Mobile

Mobile

x test

Copyright © 2007 by Hanan Samet

3

z
hp15

(62,77)

Toronto

Toronto

y test

Copyright © 2007 by Hanan Samet

4

g
hp15

(82,65)

Buffalo

Buffalo

x test

Copyright © 2007 by Hanan Samet

5

v
hp15

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

6

g
hp15

(27,35)

Omaha

Omaha

Copyright © 2007 by Hanan Samet

7

r
hp15

(85,15)

Atlanta

Atlanta

y test

Copyright © 2007 by Hanan Samet

8

v
hp15

(90,5)

Miami

Miami

Copyright © 2007 by Hanan Samet

0
4
8
-0

5
7
--K

-d
 tre

e

83

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

0
7
1
-0

7
2
--P

R
 k

-d
 tre

e

84

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

2

r
hp19

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

0
7
1
-0

7
2
--P

R
 k

-d
 tre

e

85

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

2

r
hp19

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

3

z
hp19

(52,10)

Mobile

MobileChicago

Copyright © 2007 by Hanan Samet

0
7
1
-0

7
2
--P

R
 k

-d
 tre

e

86

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

2

r
hp19

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

3

z
hp19

(52,10)

Mobile

MobileChicago

Copyright © 2007 by Hanan Samet

4

g
hp19

(62,77)

Toronto

Mobile Toronto

Copyright © 2007 by Hanan Samet

0
7
1
-0

7
2
--P

R
 k

-d
 tre

e

87

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

2

r
hp19

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

3

z
hp19

(52,10)

Mobile

MobileChicago

Copyright © 2007 by Hanan Samet

4

g
hp19

(62,77)

Toronto

Mobile Toronto

Copyright © 2007 by Hanan Samet

5

v
hp19

(82,65)

Buffalo

BuffaloToronto

Copyright © 2007 by Hanan Samet

0
7
1
-0

7
2
--P

R
 k

-d
 tre

e

88

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

2

r
hp19

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

3

z
hp19

(52,10)

Mobile

MobileChicago

Copyright © 2007 by Hanan Samet

4

g
hp19

(62,77)

Toronto

Mobile Toronto

Copyright © 2007 by Hanan Samet

5

v
hp19

(82,65)

Buffalo

BuffaloToronto

Copyright © 2007 by Hanan Samet

6

z
hp19

(5,45)

Denver

Chicago

Denver

Copyright © 2007 by Hanan Samet

0
7
1
-0

7
2
--P

R
 k

-d
 tre

e

89

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

2

r
hp19

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

3

z
hp19

(52,10)

Mobile

MobileChicago

Copyright © 2007 by Hanan Samet

4

g
hp19

(62,77)

Toronto

Mobile Toronto

Copyright © 2007 by Hanan Samet

5

v
hp19

(82,65)

Buffalo

BuffaloToronto

Copyright © 2007 by Hanan Samet

6

z
hp19

(5,45)

Denver

Chicago

Denver

Copyright © 2007 by Hanan Samet

7

g
hp19

(27,35)

Omaha

ChicagoOmaha

Copyright © 2007 by Hanan Samet

0
7
1
-0

7
2
--P

R
 k

-d
 tre

e

90

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

2

r
hp19

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

3

z
hp19

(52,10)

Mobile

MobileChicago

Copyright © 2007 by Hanan Samet

4

g
hp19

(62,77)

Toronto

Mobile Toronto

Copyright © 2007 by Hanan Samet

5

v
hp19

(82,65)

Buffalo

BuffaloToronto

Copyright © 2007 by Hanan Samet

6

z
hp19

(5,45)

Denver

Chicago

Denver

Copyright © 2007 by Hanan Samet

7

g
hp19

(27,35)

Omaha

ChicagoOmaha

Copyright © 2007 by Hanan Samet

8

r
hp19

(85,15)

Atlanta

Mobile

Atlanta

Copyright © 2007 by Hanan Samet

0
7
1
-0

7
2
--P

R
 k

-d
 tre

e

91

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

2

r
hp19

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

3

z
hp19

(52,10)

Mobile

MobileChicago

Copyright © 2007 by Hanan Samet

4

g
hp19

(62,77)

Toronto

Mobile Toronto

Copyright © 2007 by Hanan Samet

5

v
hp19

(82,65)

Buffalo

BuffaloToronto

Copyright © 2007 by Hanan Samet

6

z
hp19

(5,45)

Denver

Chicago

Denver

Copyright © 2007 by Hanan Samet

7

g
hp19

(27,35)

Omaha

ChicagoOmaha

Copyright © 2007 by Hanan Samet

8

r
hp19

(85,15)

Atlanta

Mobile

Atlanta

Copyright © 2007 by Hanan Samet

(90,5)

Miami

9

v
hp19

MiamiAtlanta

Copyright © 2007 by Hanan Samet

0
7
1
-0

7
2
--P

R
 k

-d
 tre

e

92

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

93

STRIP TREE (Ballard, Peucker)
cd4

Top-down hierarchical curve approximation

Assume curve is continuous

Ex:

Rectangle strips of arbitrary orientation

1

b

P

Q

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

94

STRIP TREE (Ballard, Peucker)
cd4

Top-down hierarchical curve approximation

Assume curve is continuous

Ex:

Rectangle strips of arbitrary orientation

1

b

P

Q

Copyright © 2007 by Hanan Samet

Contact points = where the curve touches the box

not tangent points1.
curve need not be differentiable - just continuous2.

2

r

WL

WR

LEFT
SON

RIGHT
SON

WRWLYQXQYPXP

cd4

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

95

STRIP TREE (Ballard, Peucker)
cd4

Top-down hierarchical curve approximation

Assume curve is continuous

Ex:

Rectangle strips of arbitrary orientation

1

b

P

Q

Copyright © 2007 by Hanan Samet

Contact points = where the curve touches the box

not tangent points1.
curve need not be differentiable - just continuous2.

2

r

WL

WR

LEFT
SON

RIGHT
SON

WRWLYQXQYPXP

cd4

Copyright © 2007 by Hanan Samet

3

z

A

B

A B

cd4

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

96

STRIP TREE (Ballard, Peucker)
cd4

Top-down hierarchical curve approximation

Assume curve is continuous

Ex:

Rectangle strips of arbitrary orientation

1

b

P

Q

Copyright © 2007 by Hanan Samet

Contact points = where the curve touches the box

not tangent points1.
curve need not be differentiable - just continuous2.

2

r

WL

WR

LEFT
SON

RIGHT
SON

WRWLYQXQYPXP

cd4

Copyright © 2007 by Hanan Samet

3

z

A

B

A B

cd4

Copyright © 2007 by Hanan Samet

4

g

C

D

C D

cd4

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

97

STRIP TREE (Ballard, Peucker)
cd4

Top-down hierarchical curve approximation

Assume curve is continuous

Ex:

Rectangle strips of arbitrary orientation

1

b

P

Q

Copyright © 2007 by Hanan Samet

Contact points = where the curve touches the box

not tangent points1.
curve need not be differentiable - just continuous2.

2

r

WL

WR

LEFT
SON

RIGHT
SON

WRWLYQXQYPXP

cd4

Copyright © 2007 by Hanan Samet

3

z

A

B

A B

cd4

Copyright © 2007 by Hanan Samet

4

g

C

D

C D

cd4

Copyright © 2007 by Hanan Samet

5

v

cd4

Terminate when all rectangles are of width W

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

98

SPECIAL CASES
cd5

Closed curve1.

Curve extends beyond its endpoints2.

1

b

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

99

SPECIAL CASES
cd5

Closed curve1.

Curve extends beyond its endpoints2.

1

b

Copyright © 2007 by Hanan Samet

cd52

r

enclosed by a rectangle

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

100

SPECIAL CASES
cd5

Closed curve1.

Curve extends beyond its endpoints2.

1

b

Copyright © 2007 by Hanan Samet

cd52

r

enclosed by a rectangle

Copyright © 2007 by Hanan Samet

cd53

z

split into two rectangular strips

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

101

APPLICATIONS
cd6

Curve intersection1.

Union of two curves2.

Others3.

length

1

b

area of a closed curve

intersection of curves with areas

etc.

or

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

102

APPLICATIONS
cd6

Curve intersection1.

Union of two curves2.

Others3.

length

1

b

area of a closed curve

intersection of curves with areas

etc.

or

Copyright © 2007 by Hanan Samet

cd62

r

NULL CLEAR POSSIBLE

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

103

APPLICATIONS
cd6

Curve intersection1.

Union of two curves2.

Others3.

length

1

b

area of a closed curve

intersection of curves with areas

etc.

or

Copyright © 2007 by Hanan Samet

cd62

r

NULL CLEAR POSSIBLE

Copyright © 2007 by Hanan Samet

cd63

z

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

104

APPLICATIONS
cd6

Curve intersection1.

Union of two curves2.

Others3.

length

1

b

area of a closed curve

intersection of curves with areas

etc.

or

Copyright © 2007 by Hanan Samet

cd62

r

NULL CLEAR POSSIBLE

Copyright © 2007 by Hanan Samet

cd63

z

Copyright © 2007 by Hanan Samet

cd64

g

not possible as the result may fail to be continuous

Copyright © 2007 by Hanan Samet

3
8
2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

105

MX QUADTREE FOR REGIONS (Hunter)

• Represent the boundary as a sequence of BLACK
pixels in a region quadtree

• Useful for a simple digitized polygon (i.e., non-
intersecting edges)

• Three types of nodes

1. interior - treat like WHITE nodes

2. exterior - treat like WHITE nodes

3. boundary - the edge of the polygon passes
through them and treated like BLACK nodes

• Disadvantages

1. a thickness is associated with the line segments

2. no more than 4 lines can meet at a point

hp131

b

Copyright 2008 by Hanan Samet

3
5
7
-3

5
9
--M

X
 q

u
a
d
tre

e

106

MX QUADTREE FOR REGIONS (Hunter)

• Represent the boundary as a sequence of BLACK
pixels in a region quadtree

• Useful for a simple digitized polygon (i.e., non-
intersecting edges)

• Three types of nodes

1. interior - treat like WHITE nodes

2. exterior - treat like WHITE nodes

3. boundary - the edge of the polygon passes
through them and treated like BLACK nodes

• Disadvantages

1. a thickness is associated with the line segments

2. no more than 4 lines can meet at a point

hp131

b
hp132

r

Copyright 2008 by Hanan Samet

3
5
7
-3

5
9
--M

X
 q

u
a
d
tre

e

107

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

108

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

cd32

b

2

r

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

109

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

cd32

b

2

r

Copyright © 2007 by Hanan Samet

cd323

z

c

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

110

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

cd32

b

2

r

Copyright © 2007 by Hanan Samet

cd323

z

c

Copyright © 2007 by Hanan Samet

cd324

g

d

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

111

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

cd32

b

2

r

Copyright © 2007 by Hanan Samet

cd323

z

c

Copyright © 2007 by Hanan Samet

cd324

g

d

Copyright © 2007 by Hanan Samet

cd325

v

e

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

112

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

cd32

b

2

r

Copyright © 2007 by Hanan Samet

cd323

z

c

Copyright © 2007 by Hanan Samet

cd324

g

d

Copyright © 2007 by Hanan Samet

cd325

v

e

Copyright © 2007 by Hanan Samet

cd32

f

6

r

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

113

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

cd32

b

2

r

Copyright © 2007 by Hanan Samet

cd323

z

c

Copyright © 2007 by Hanan Samet

cd324

g

d

Copyright © 2007 by Hanan Samet

cd325

v

e

Copyright © 2007 by Hanan Samet

cd32

f

6

r

Copyright © 2007 by Hanan Samet

cd327

z

g

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

114

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

cd32

b

2

r

Copyright © 2007 by Hanan Samet

cd323

z

c

Copyright © 2007 by Hanan Samet

cd324

g

d

Copyright © 2007 by Hanan Samet

cd325

v

e

Copyright © 2007 by Hanan Samet

cd32

f

6

r

Copyright © 2007 by Hanan Samet

cd327

z

g

Copyright © 2007 by Hanan Samet

cd32

h

8

g

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

115

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

cd32

b

2

r

Copyright © 2007 by Hanan Samet

cd323

z

c

Copyright © 2007 by Hanan Samet

cd324

g

d

Copyright © 2007 by Hanan Samet

cd325

v

e

Copyright © 2007 by Hanan Samet

cd32

f

6

r

Copyright © 2007 by Hanan Samet

cd327

z

g

Copyright © 2007 by Hanan Samet

cd32

h

8

g

Copyright © 2007 by Hanan Samet

cd32

i

9

v

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

116

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

117

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r

cd33

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

118

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r

cd33

Copyright © 2007 by Hanan Samet

c

3

z

cd33

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

119

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r

cd33

Copyright © 2007 by Hanan Samet

c

3

z

cd33

Copyright © 2007 by Hanan Samet

d

4

g

cd33

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

120

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r

cd33

Copyright © 2007 by Hanan Samet

c

3

z

cd33

Copyright © 2007 by Hanan Samet

d

4

g

cd33

Copyright © 2007 by Hanan Samet

e

5

v

cd33

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

121

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r

cd33

Copyright © 2007 by Hanan Samet

c

3

z

cd33

Copyright © 2007 by Hanan Samet

d

4

g

cd33

Copyright © 2007 by Hanan Samet

e

5

v

cd33

Copyright © 2007 by Hanan Samet

f

6

r

cd33

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

122

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r

cd33

Copyright © 2007 by Hanan Samet

c

3

z

cd33

Copyright © 2007 by Hanan Samet

d

4

g

cd33

Copyright © 2007 by Hanan Samet

e

5

v

cd33

Copyright © 2007 by Hanan Samet

f

6

r

cd33

Copyright © 2007 by Hanan Samet

g

7

z

cd33

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

123

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r

cd33

Copyright © 2007 by Hanan Samet

c

3

z

cd33

Copyright © 2007 by Hanan Samet

d

4

g

cd33

Copyright © 2007 by Hanan Samet

e

5

v

cd33

Copyright © 2007 by Hanan Samet

f

6

r

cd33

Copyright © 2007 by Hanan Samet

g

7

z

cd33

Copyright © 2007 by Hanan Samet

h

8

g

cd33

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

124

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r

cd33

Copyright © 2007 by Hanan Samet

c

3

z

cd33

Copyright © 2007 by Hanan Samet

d

4

g

cd33

Copyright © 2007 by Hanan Samet

e

5

v

cd33

Copyright © 2007 by Hanan Samet

f

6

r

cd33

Copyright © 2007 by Hanan Samet

g

7

z

cd33

Copyright © 2007 by Hanan Samet

h

8

g

cd33

Copyright © 2007 by Hanan Samet

9

v

i

cd33

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

125

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

126

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r
cd34

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

127

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r
cd34

Copyright © 2007 by Hanan Samet

c

3

z
cd34

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

128

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r
cd34

Copyright © 2007 by Hanan Samet

c

3

z
cd34

Copyright © 2007 by Hanan Samet

d

4

g
cd34

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

129

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r
cd34

Copyright © 2007 by Hanan Samet

c

3

z
cd34

Copyright © 2007 by Hanan Samet

d

4

g
cd34

Copyright © 2007 by Hanan Samet

e

5

v
cd34

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

130

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r
cd34

Copyright © 2007 by Hanan Samet

c

3

z
cd34

Copyright © 2007 by Hanan Samet

d

4

g
cd34

Copyright © 2007 by Hanan Samet

e

5

v
cd34

Copyright © 2007 by Hanan Samet

f

6

r
cd34

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

131

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r
cd34

Copyright © 2007 by Hanan Samet

c

3

z
cd34

Copyright © 2007 by Hanan Samet

d

4

g
cd34

Copyright © 2007 by Hanan Samet

e

5

v
cd34

Copyright © 2007 by Hanan Samet

f

6

r
cd34

Copyright © 2007 by Hanan Samet

g

7

z
cd34

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

132

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r
cd34

Copyright © 2007 by Hanan Samet

c

3

z
cd34

Copyright © 2007 by Hanan Samet

d

4

g
cd34

Copyright © 2007 by Hanan Samet

e

5

v
cd34

Copyright © 2007 by Hanan Samet

f

6

r
cd34

Copyright © 2007 by Hanan Samet

g

7

z
cd34

Copyright © 2007 by Hanan Samet

h

8

g
cd34

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

133

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r
cd34

Copyright © 2007 by Hanan Samet

c

3

z
cd34

Copyright © 2007 by Hanan Samet

d

4

g
cd34

Copyright © 2007 by Hanan Samet

e

5

v
cd34

Copyright © 2007 by Hanan Samet

f

6

r
cd34

Copyright © 2007 by Hanan Samet

g

7

z
cd34

Copyright © 2007 by Hanan Samet

h

8

g
cd34

Copyright © 2007 by Hanan Samet

9

v

i

cd34

Copyright © 2007 by Hanan Samet

3
6
5
-3

6
9
-P

M
 q

u
a
d
tre

e

134

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

3
7
4
-3

7
7
-P

M
R

 q
u
a
d
tre

e

135

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

cd352

r

b

Copyright © 2007 by Hanan Samet

3
7
4
-3

7
7
-P

M
R

 q
u
a
d
tre

e

136

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

cd352

r

b

Copyright © 2007 by Hanan Samet

cd353

z

c

Copyright © 2007 by Hanan Samet

3
7
4
-3

7
7
-P

M
R

 q
u
a
d
tre

e

137

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

cd352

r

b

Copyright © 2007 by Hanan Samet

cd353

z

c

Copyright © 2007 by Hanan Samet

cd35

d

4

g

Copyright © 2007 by Hanan Samet

3
7
4
-3

7
7
-P

M
R

 q
u
a
d
tre

e

138

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

cd352

r

b

Copyright © 2007 by Hanan Samet

cd353

z

c

Copyright © 2007 by Hanan Samet

cd35

d

4

g

Copyright © 2007 by Hanan Samet

cd355

v

e

Copyright © 2007 by Hanan Samet

3
7
4
-3

7
7
-P

M
R

 q
u
a
d
tre

e

139

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

cd352

r

b

Copyright © 2007 by Hanan Samet

cd353

z

c

Copyright © 2007 by Hanan Samet

cd35

d

4

g

Copyright © 2007 by Hanan Samet

cd355

v

e

Copyright © 2007 by Hanan Samet

cd35

f

6

r

Copyright © 2007 by Hanan Samet

3
7
4
-3

7
7
-P

M
R

 q
u
a
d
tre

e

140

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

cd352

r

b

Copyright © 2007 by Hanan Samet

cd353

z

c

Copyright © 2007 by Hanan Samet

cd35

d

4

g

Copyright © 2007 by Hanan Samet

cd355

v

e

Copyright © 2007 by Hanan Samet

cd35

f

6

r

Copyright © 2007 by Hanan Samet

cd35

g

7

z

Copyright © 2007 by Hanan Samet

3
7
4
-3

7
7
-P

M
R

 q
u
a
d
tre

e

141

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

cd352

r

b

Copyright © 2007 by Hanan Samet

cd353

z

c

Copyright © 2007 by Hanan Samet

cd35

d

4

g

Copyright © 2007 by Hanan Samet

cd355

v

e

Copyright © 2007 by Hanan Samet

cd35

f

6

r

Copyright © 2007 by Hanan Samet

cd35

g

7

z

Copyright © 2007 by Hanan Samet

cd35

h

8

g

Copyright © 2007 by Hanan Samet

3
7
4
-3

7
7
-P

M
R

 q
u
a
d
tre

e

142

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

cd352

r

b

Copyright © 2007 by Hanan Samet

cd353

z

c

Copyright © 2007 by Hanan Samet

cd35

d

4

g

Copyright © 2007 by Hanan Samet

cd355

v

e

Copyright © 2007 by Hanan Samet

cd35

f

6

r

Copyright © 2007 by Hanan Samet

cd35

g

7

z

Copyright © 2007 by Hanan Samet

cd35

h

8

g

Copyright © 2007 by Hanan Samet

cd35

i

9

v

Copyright © 2007 by Hanan Samet

3
7
4
-3

7
7
-P

M
R

 q
u
a
d
tre

e

143

Triangulations

PM2 quadtree is quite useful vis-a-vis PM1 quadtree

Given a triangle table, only need to store at most a single vertex with each

cell and can reconstruct mesh with the aid of clipping

Example triangular mesh

PM1 quadtree PM2 quadtree

Can also formulate a PM-triangle quadtree variant

Copyright 2013 by Hanan Samet

144

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

145

hi36

REGION QUADTREE

• Repeatedly subdivide until obtain homogeneous region

• For a binary image (BLACK ≡ 1 and WHITE ≡ 0)

• Can also use for multicolored data (e.g., a landuse
class map associating colors with crops)

• Can also define data structure for grayscale images

• A collection of maximal blocks of size power of two
and placed at predetermined positions

1. could implement as a list of blocks each of which
has a unique pair of numbers:
• concatenate sequence of 2 bit codes correspond-

ing to the path from the root to the block’s node
• the level of the block’s node

2. does not have to be implemented as a tree
• tree good for logarithmic access

• A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

A

B C D E

NW

NE SW

SE

F G H I J L M N O Q

K P

37 38 39 40 57 5859 60

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

1

1

1

1

0

0

1

1

1

1

1

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

B

60

37

L

J

Q

GF

H

N

I

O

M
57 58

59

4039

38

Copyright © 2007 by Hanan Samet
12

2
1
1
-R

e
g
io

n
 q

u
a
d
tre

e

146

bg7
SPACE REQUIREMENTS

1. Rationale for using quadtrees/octrees is not so much
for saving space but for saving execution time

2. Execution time of standard image processing
algorithms that are based on traversing the entire
image and performing a computation at each image
element is proportional to the number of blocks in the
decomposition of the image rather than their size

• aggregation of space leads directly to execution
time savings as the aggregate (i.e., block) is visited
just once instead of once for each image element
(i.e., pixel, voxel) in the aggregate (e.g., connected
component labeling)

3. If want to save space, then, in general, statistical
image compression methods are superior

• drawback: statistical methods are not progressive
as need to transmit the entire image whereas
quadtrees lend themselves to progressive
approximation

• quadtrees, though, do achieve compression as a
result of use of common subexpression elimination
techniques

a. e.g., checkerboard image

b. see also vector quantization

4. Sensitive to positioning of the origin of the
decomposition

• for an n x n image, the optimal positioning requires
an O(n 2 log2n) dynamic programming algorithm
(Li, Grosky, and Jain)

Copyright © 2007 by Hanan Samet

3
5
7
-3

5
9
-M

X
-q

u
a
d
tre

e

147

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 2007 by Hanan Samet

3
5
7
-3

5
9
-M

X
-q

u
a
d
tre

e

148

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 2007 by Hanan Samet

bg82
r

Copyright © 2007 by Hanan Samet

3
5
7
-3

5
9
-M

X
-q

u
a
d
tre

e

149

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 2007 by Hanan Samet

bg82
r

Copyright © 2007 by Hanan Samet

bg83

z

Copyright © 2007 by Hanan Samet

3
5
7
-3

5
9
-M

X
-q

u
a
d
tre

e

150

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 2007 by Hanan Samet

bg82
r

Copyright © 2007 by Hanan Samet

bg83

z

Copyright © 2007 by Hanan Samet

bg84

g

Copyright © 2007 by Hanan Samet

3
5
7
-3

5
9
-M

X
-q

u
a
d
tre

e

151

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 2007 by Hanan Samet

bg82
r

Copyright © 2007 by Hanan Samet

bg83

z

Copyright © 2007 by Hanan Samet

bg84

g

Copyright © 2007 by Hanan Samet

bg85

r

• easy to see dependence on perimeter as decomposition
only takes place on the boundary as the resolution
increases

Copyright © 2007 by Hanan Samet

3
5
7
-3

5
9
-M

X
-q

u
a
d
tre

e

152

tl1
ALTERNATIVE DECOMPOSITION METHODS

• A planar decomposition for image representation should be:

1. infinitely repetitive

2. infinitely decomposable into successively finer patterns

• Classification of tilings (Bell, Diaz, Holroyd, and Jackson)

1. isohedral — all tiles are equivalent under the symmetry
group of the tiling (i.e., when stand in one tile and look
around, the view is independent of the tile)

1

b

B A

1
2

3

[36]

[34.6]

[33.42]

[32.4.3.2]

[3.4.6.4]

[3.6.3.6]

[3.122]

[44]

[4.6.12]

[63]

[4.82]

2. regular — each tile is a regular polygon

• There are 81 types if classify by their symmetry groups

• Only 11 types if classify by their adjacency structure

• [3.122] means 3 edges at the first vertex of the polygonal
tile followed by 12 edges at the next two vertices

Copyright © 2007 by Hanan Samet

1
9
6
-1

9
8
--T

ilin
g
 m

e
th

o
d
s

153

tl1
ALTERNATIVE DECOMPOSITION METHODS

• A planar decomposition for image representation should be:

1. infinitely repetitive

2. infinitely decomposable into successively finer patterns

• Classification of tilings (Bell, Diaz, Holroyd, and Jackson)

1. isohedral — all tiles are equivalent under the symmetry
group of the tiling (i.e., when stand in one tile and look
around, the view is independent of the tile)

1

b

B A

1
2

3

[36]

[34.6]

[33.42]

[32.4.3.2]

[3.4.6.4]

[3.6.3.6]

[3.122]

[44]

[4.6.12]

[63]

[4.82]

2. regular — each tile is a regular polygon

• There are 81 types if classify by their symmetry groups

• Only 11 types if classify by their adjacency structure

• [3.122] means 3 edges at the first vertex of the polygonal
tile followed by 12 edges at the next two vertices

Copyright © 2007 by Hanan Samet

tl12

r

YESNO

Copyright © 2007 by Hanan Samet

1
9
6
-1

9
8
--T

ilin
g
 m

e
th

o
d
s

154

tl21

b

• Limited ≡ NOT similar (i.e., cannot be decomposed
infinitely into smaller tiles of the same shape)

• Unlimited: each edge of each tile lies on an infinitely
straight line composed entirely of edges

• Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

• Two additional hierarchies:

 Note: [4.82] and [4.6.12] are not regular

rotation of 135° between levels reflection between levels

[4.82] [4.6.12]

[63] [44] [36]

PROPERTIES OF TILINGS — SIMILARITY

• Similarity — a tile at level k has the same shape as a tile
at level 0 (basic tile shape)

Copyright © 2007 by Hanan Samet

1
9
6
-1

9
8
--T

ilin
g
 m

e
th

o
d
s

155

tl21

b

• Limited ≡ NOT similar (i.e., cannot be decomposed
infinitely into smaller tiles of the same shape)

• Unlimited: each edge of each tile lies on an infinitely
straight line composed entirely of edges

• Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

• Two additional hierarchies:

 Note: [4.82] and [4.6.12] are not regular

rotation of 135° between levels reflection between levels

[4.82] [4.6.12]

[63] [44] [36]

PROPERTIES OF TILINGS — SIMILARITY

• Similarity — a tile at level k has the same shape as a tile
at level 0 (basic tile shape)

Copyright © 2007 by Hanan Samet

tl22

r

YES YES NO

Copyright © 2007 by Hanan Samet

1
9
6
-1

9
8
--T

ilin
g
 m

e
th

o
d
s

156

tl3
PROPERTIES OF TILINGS — ADJACENCY

• Adjacency — two tiles are neighbors if they are adjacent
along an edge or at a vertex

• Uniform adjacency ≡ distances between the centroid of
one tile and the centroids of all its neighbors are the same

• Adjacency number of a tiling (A) ≡ number of different
adjacency distances

1

b

[36] [44] [63]

Copyright © 2007 by Hanan Samet

1
9
6
-1

9
8
--T

ilin
g
 m

e
th

o
d
s

157

tl3
PROPERTIES OF TILINGS — ADJACENCY

• Adjacency — two tiles are neighbors if they are adjacent
along an edge or at a vertex

• Uniform adjacency ≡ distances between the centroid of
one tile and the centroids of all its neighbors are the same

• Adjacency number of a tiling (A) ≡ number of different
adjacency distances

1

b

[36] [44] [63]

Copyright © 2007 by Hanan Samet

tl32

r

A=1 A=2 A=3

Copyright © 2007 by Hanan Samet

1
9
6
-1

9
8
--T

ilin
g
 m

e
th

o
d
s

158

tl4

[44] [63] [36]

PROPERTIES OF TILINGS — UNIFORM ORIENTATION

• Uniform orientation

• All tiles with the same orientation can be mapped into
each other by translations of the plane which do not
involve rotation for reflection

1

b

Conclusion:

• [44] has a lower adjacency number than [63]

• [44] has a uniform orientation while [63] does not

• [44] is unlimited while [36] is limited

Use [44]!

Copyright © 2007 by Hanan Samet

1
9
6
-1

9
8
--T

ilin
g
 m

e
th

o
d
s

159

tl4

[44] [63] [36]

PROPERTIES OF TILINGS — UNIFORM ORIENTATION

• Uniform orientation

• All tiles with the same orientation can be mapped into
each other by translations of the plane which do not
involve rotation for reflection

1

b

Conclusion:

• [44] has a lower adjacency number than [63]

• [44] has a uniform orientation while [63] does not

• [44] is unlimited while [36] is limited

Use [44]!

Copyright © 2007 by Hanan Samet

tl42

r

YES NO YES

Copyright © 2007 by Hanan Samet

1
9
6
-1

9
8
--T

ilin
g
 m

e
th

o
d
s

160

Bintree

Regular decomposition k-d tree

Cycle through attributes

A1

A2 A3

C3

C1

C2

B2

B1

W3

W7

W4 W5

W6

W8

W9

W2

W1

W8 C1 W9 C2

C3

W7

A2 W4 A3 W5

W6

W1

W2 B1

B2

W3

A1

west east

north south

west east

Chapter 2: Copyright 2007 Hanan Samet

2
2
1
-2

2
2
--B

in
tre

e

161

Generalized Bintree

Regular decomposition k-d tree but no need to cycle through attributes

Need to record identity of partition axis at each nonleaf node

A1

A2

C2C1

B2
B1

W3

W6
W4

W5 W7

W2

W1

W7 C1

C2

W6

A2 W4

W5

W1

W2 B1

B2

W3

A1

y:

x: x:

y: y: y:

x:

x:

y: x:

y: x:

Chapter 2: Copyright 2007 Hanan Samet

2
2
1
-2

2
2
--B

in
tre

e

162

X-Y Tree, Treemap, and Puzzletree

Split into two or more parts at each partition step

Implies no two successive partitions along the same attribute as they are
combined

Implies cycle through attributes in two dimensions

A1

C1

B1

W4

W1

W2

B2
W3

1

B1W3

6

B2

C1

2 6

W4

5

W1A1

4 5

W2

y: y:

y:

x:

x:

Chapter 2: Copyright 2007 Hanan Samet

2
2
5
-2

3
0
--X

-Y
 tre

e
, tre

e
m

a
p
, a

n
d
 p

u
z
z
le

tre
e

163

Three-Dimensional X-Y Tree, Treemap, and Puzzletree

No longer require cycling through dimensions as this results in losing

some perceptually appealing block combinations

G

x

y

z

1

BA

4 5

C

x:

z:

1 3

G

y:

D F

1 3x:

H J

1 3x:

6 7

K

z: 6 7z:

L

D

F

J

B
A

C

Chapter 2: Copyright 2007 Hanan Samet

2
2
5
-2

3
0
--X

-Y
 tre

e
, tre

e
m

a
p
, a

n
d
 p

u
z
z
le

tre
e

164

Bintree compared with X-Y Tree, Treemap, Puzzletree

Much more decomposition in bintree

Bintree

A1 A3 W5 B2 B3W7 C3 C1

W3 W8

W2

A2
B1

C2

W10
W6

W9
W4

W1

X-Y Tree

W2

3

A3

x:

W1

4 5

A2

y:

C3

13

W10

x:

W9

4 5

C2

y:

6x:

W4

3 4

B1

y:

7 8 10

B2 W6W5 B3 W7

1 4 5 11 12 15

A1 C1W8W3

x:

Chapter 2: Copyright 2007 Hanan Samet

2
2
5
-2

3
0
--X

-Y
 tre

e
, tre

e
m

a
p
, a

n
d
 p

u
z
z
le

tre
e

165

ar2

BSP TREES (Fuchs, Kedem, Naylor)

• Like a bintree except that the decomposition lines are
at arbitrary orientations (i.e., they need not be parallel
or orthogonal)

• For data of arbitrary dimensions

• In 2D (3D), partition along the edges (faces) of a
polygon (polyhedron)

• Ex: arrows indicate direction of positive area

B

C

A

2

3

4

5

1

D

B

C

A

2 3

4 51

D

• Usually used for hidden-surface elimination

1. domain is a set of polygons in three dimensions

2. position of viewpoint determines the order in which
the BSP tree is traversed

• A polygon’s plane is extended infinitely to partition the
entire space

Copyright © 2007 by Hanan Samet

2
3
3
-2

3
7
--B

S
P

 tre
e

166

ar3
DRAWBACKS OF BSP TREES

• A polygon may be included in both the left and right
subtrees of node

• Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

• Shape of the BSP tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

• Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

• Ex: use line segments
 in two dimensions

1

b

C
D

A
B

Copyright © 2007 by Hanan Samet

2
3
3
-2

3
7
--B

S
P

 tre
e

167

ar3
DRAWBACKS OF BSP TREES

• A polygon may be included in both the left and right
subtrees of node

• Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

• Shape of the BSP tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

• Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

• Ex: use line segments
in two dimensions

1

b

C
D

A
B

Copyright © 2007 by Hanan Samet

ar32

r

1. partition
induced by
choosing B as
the root

B

C D

A D

3 4 1 2

5 6 C

D

A
B

1

2

3

4
5

6

Copyright © 2007 by Hanan Samet

2
3
3
-2

3
7
--B

S
P

 tre
e

168

ar3
DRAWBACKS OF BSP TREES

• A polygon may be included in both the left and right
subtrees of node

• Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

• Shape of the BSP tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

• Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

• Ex: use line segments
in two dimensions

1

b

C
D

A
B

Copyright © 2007 by Hanan Samet

ar32

r

1. partition
induced by
choosing B as
the root

B

C D

A D

3 4 1 2

5 6 C

D

A
B

1

2

3

4
5

6

Copyright © 2007 by Hanan Samet

ar33

z

2. partition
induced by
choosing C as
the root

C

D

A
B

1
4

5
2

3

C

D

B

1 2

3

A

4 5

Copyright © 2007 by Hanan Samet

2
3
3
-2

3
7
--B

S
P

 tre
e

169

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

170

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding
hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2013 by Hanan Samet

171

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding
hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2013 by Hanan Samet

172

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding
hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2013 by Hanan Samet

173

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding
hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2013 by Hanan Samet

174

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding
hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2013 by Hanan Samet

175

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding
hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2013 by Hanan Samet

176

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding
hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2013 by Hanan Samet

177

rc13

1. between m M/2 and M entries in each node
except root

MINIMUM BOUNDING RECTANGLES

• Rectangle has single bounding rectangle, yet area it
spans may be included in several bounding rectangles

• Drawback: not a disjoint decomposition of space

• May have to visit several rectangles to determine the
presence/absence of a rectangle

1

b

• Order (m,M) R-tree

2. at least 2 entries in root unless a leaf node

• Ex: order (2,3) R-tree

• Rectangles grouped into hierarchies, stored in another
structure such as a B-tree

A

E
3

G

2 F

D

C1

B

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

178

rc13

1. between m M/2 and M entries in each node
except root

MINIMUM BOUNDING RECTANGLES

• Rectangle has single bounding rectangle, yet area it
spans may be included in several bounding rectangles

• Drawback: not a disjoint decomposition of space

• May have to visit several rectangles to determine the
presence/absence of a rectangle

1

b

• Order (m,M) R-tree

2. at least 2 entries in root unless a leaf node

• Ex: order (2,3) R-tree

• Rectangles grouped into hierarchies, stored in another
structure such as a B-tree

A

E
3

G

2 F

D

C1

B

Copyright © 2007 by Hanan Samet

rc132

r

3ER3: R4: R5: R6:

R3

R4

R5

R6

1A GF2DCB

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

179

rc13

1. between m M/2 and M entries in each node
except root

MINIMUM BOUNDING RECTANGLES

• Rectangle has single bounding rectangle, yet area it
spans may be included in several bounding rectangles

• Drawback: not a disjoint decomposition of space

• May have to visit several rectangles to determine the
presence/absence of a rectangle

1

b

• Order (m,M) R-tree

2. at least 2 entries in root unless a leaf node

• Ex: order (2,3) R-tree

• Rectangles grouped into hierarchies, stored in another
structure such as a B-tree

A

E
3

G

2 F

D

C1

B

Copyright © 2007 by Hanan Samet

rc132

r

3ER3: R4: R5: R6:

R3

R4

R5

R6

1A GF2DCB

Copyright © 2007 by Hanan Samet

rc133

z

R2:R1: R6R5R4R3

R1

R2

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

180

rc13

1. between m M/2 and M entries in each node
except root

MINIMUM BOUNDING RECTANGLES

• Rectangle has single bounding rectangle, yet area it
spans may be included in several bounding rectangles

• Drawback: not a disjoint decomposition of space

• May have to visit several rectangles to determine the
presence/absence of a rectangle

1

b

• Order (m,M) R-tree

2. at least 2 entries in root unless a leaf node

• Ex: order (2,3) R-tree

• Rectangles grouped into hierarchies, stored in another
structure such as a B-tree

A

E
3

G

2 F

D

C1

B

Copyright © 2007 by Hanan Samet

rc132

r

3ER3: R4: R5: R6:

R3

R4

R5

R6

1A GF2DCB

Copyright © 2007 by Hanan Samet

rc133

z

R2:R1: R6R5R4R3

R1

R2

Copyright © 2007 by Hanan Samet

rc134

g

R0: R2R1

R0

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

181

rc15SEARCHING FOR A RECTANGLE
CONTAINING A POINT IN AN R-TREE

1

b

• Drawback is that may have to examine many nodes
since a rectangle can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., D in R0, R1, R2, R3, and R5)

 Ex: Search for the rectangle containing point Q

A

E 3

G

2 F

D

C1

B

3ER3: R4: R5: R6:1A GF2DCB

R2:R1: R6R5R4R3

R0: R2R1

R3

R4

R5

R6

R1

R2

Q

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

182

rc15SEARCHING FOR A RECTANGLE
CONTAINING A POINT IN AN R-TREE

1

b

• Drawback is that may have to examine many nodes
since a rectangle can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., D in R0, R1, R2, R3, and R5)

 Ex: Search for the rectangle containing point Q

A

E 3

G

2 F

D

C1

B

3ER3: R4: R5: R6:1A GF2DCB

R2:R1: R6R5R4R3

R0: R2R1

R3

R4

R5

R6

R1

R2

Q

Copyright © 2007 by Hanan Samet

rc15

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

183

rc15SEARCHING FOR A RECTANGLE
CONTAINING A POINT IN AN R-TREE

1

b

• Drawback is that may have to examine many nodes
since a rectangle can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., D in R0, R1, R2, R3, and R5)

 Ex: Search for the rectangle containing point Q

A

E 3

G

2 F

D

C1

B

3ER3: R4: R5: R6:1A GF2DCB

R2:R1: R6R5R4R3

R0: R2R1

R3

R4

R5

R6

R1

R2

Q

Copyright © 2007 by Hanan Samet

rc15

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

rc15

Q can be in both R1 and R2

3

r

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

184

rc15SEARCHING FOR A RECTANGLE
CONTAINING A POINT IN AN R-TREE

1

b

• Drawback is that may have to examine many nodes
since a rectangle can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., D in R0, R1, R2, R3, and R5)

 Ex: Search for the rectangle containing point Q

A

E 3

G

2 F

D

C1

B

3ER3: R4: R5: R6:1A GF2DCB

R2:R1: R6R5R4R3

R0: R2R1

R3

R4

R5

R6

R1

R2

Q

Copyright © 2007 by Hanan Samet

rc15

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

rc15

Q can be in both R1 and R2

3

r

Copyright © 2007 by Hanan Samet

rc154

z

Searching R1 first means that R3 is searched but this leads
to failure even though Q is in a part of D which is in R3

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

185

rc15SEARCHING FOR A RECTANGLE
CONTAINING A POINT IN AN R-TREE

1

b

• Drawback is that may have to examine many nodes
since a rectangle can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., D in R0, R1, R2, R3, and R5)

 Ex: Search for the rectangle containing point Q

A

E 3

G

2 F

D

C1

B

3ER3: R4: R5: R6:1A GF2DCB

R2:R1: R6R5R4R3

R0: R2R1

R3

R4

R5

R6

R1

R2

Q

Copyright © 2007 by Hanan Samet

rc15

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

rc15

Q can be in both R1 and R2

3

r

Copyright © 2007 by Hanan Samet

rc154

z

Searching R1 first means that R3 is searched but this leads
to failure even though Q is in a part of D which is in R3

Copyright © 2007 by Hanan Samet

rc155

g

Searching R2 finds that Q can only be in R5

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

186

Dynamic R-Tree Construction

Differ by how to split overflowing node p upon insertion

Conflicting goals

Rectangles
Copyright 2013 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

187

Dynamic R-Tree Construction

Differ by how to split overflowing node p upon insertion

Conflicting goals

1. Reduce likelihood that each node q is visited by the search

achieve by minimizing total area spanned by bounding box of q

(coverage)

Rectangles Goal 1
Copyright 2013 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

188

Dynamic R-Tree Construction

Differ by how to split overflowing node p upon insertion

Conflicting goals

1. Reduce likelihood that each node q is visited by the search

achieve by minimizing total area spanned by bounding box of q

(coverage)

2. minimize number of children of p that must be visited by search
operations

achieve by minimizing area common to children so that the area that

they span is not visited a multiple number of times (overlap)

Rectangles Goal 1 Goal 2
Copyright 2013 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

189

vr8

EXAMPLE DYNAMIC SPLITTING METHODS

1. Methods based on reducing coverage:

• exhaustive search

• quadratic

• linear

2. R*-tree

• minimize overlap in leaf nodes

• Minimize coverage in nonleaf nodes

• also reduces coverage by minimizing perimeter of
bounding boxes of resulting nodes when effect on
coverage is the same

• when node overflows, first see if can avoid
problem by reinserting a fraction of the nodes (e.g.,
30%)

3. Ang/Tan: linear with focus on reduction of overlap

4. Packed methods that make use of an ordering

• usually order centroids of bounding boxes of
objects and build a B+-tree

a. Hilbert packed R-tree: Peano-Hilbert order

b. Morton packed R-tree: Morton order

• node overflow

a. goals of minimizing coverage or overlap are not
part of the splitting process

b. do not make use of spatial extent of bounding
boxes in determining how to split a node

Copyright 2008 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

190

rc16

R-TREE OVERFLOW NODE SPLITTING POLICIES

• Could use exhaustive search to look at all possible
partitions

• Usually two stages:

1. pick a pair of bounding boxes to serve as seeds for
resulting nodes (‘seed-picking’)

2. redistribute remaining nodes with goal of minimizing
the growth of the total area (‘seed-growing’)

• Different algorithms of varying time complexity

1. quadratic:

• find two boxes j and k that would waste the most
area if they were in the same node

• for each remaining box i, determine the increase in
area dij and dik of the bounding boxes of j and k
resulting from the addition of i and add the box r for
which |drj – drk| is a maximum to the node with the
smallest increase in area

• rationale: find box with most preference for one of j, k

2. linear:

• find two boxes with greatest normalized separation
along all of the dimensions

• add remaining boxes in arbitrary order to box
whose area is increased the least by the addition

3. linear (Ang/Tan)

• minimizes overlap

• for each dimension, associate each box with the
closest face of the box of the overflowing node

• pick partition that has most even distribution
a. if a tie, minimize overlap
b. if a tie, minimize coverage

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

191

rc17

R*-TREE

• Tries to minimize overlap in case of leaf nodes and
minimize increase in area for nonleaf nodes

• Changes from R-tree:

1. insert into leaf node p for which the resulting
bounding box has minimum increase in overlap with
bounding boxes of p’s brothers

• compare with R-tree where insert into leaf node for
which increase in area is a minimum (minimizes
coverage)

2. in case of overflow in p, instead of splitting p as in R-
tree, reinsert a fraction of objects in p
• known as ‘forced reinsertion’ and similar to

‘deferred splitting’ or ‘rotation’ in B-trees

• how do we pick objects to be reinserted? possibly
sort by distance from center of p and reinsert
furthest ones

3. in case of true overflow, use a two-stage process

• determine the axis along which the split takes place
a. sort bounding boxes for each axis to get d lists
b. choose the axis having the split value for which

the sum of the perimeters of the bounding boxes
of the resulting nodes is the smallest while still
satisfying the capacity constraints (reduces
coverage)

• determine the position of the split
a. position where overlap between two nodes is

minimized
b. resolve ties by minimizing total area of bounding

boxes (reduces coverage)

• Works very well but takes time due to reinsertion

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

192

rc18

EXAMPLE OF R-TREE NODE SPLITTING POLICIES

• Sample collection of 1700 lines using m=20 and M=50

Collection of lines R*-tree

Linear Quadratic

Copyright © 2007 by Hanan Samet

2
7
0
-2

9
6
--R

-tre
e

193

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

194

hp14
MX-CIF QUADTREE (Kedem)

1

b

Collections of small rectangles for VLSI applications

Each rectangle is associated with its minimum
enclosing quadtree block

Like hashing: quadtree blocks serve as hash buckets

1.

2.

3.

1

2

3

4
5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

Copyright © 2007 by Hanan Samet 24

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

195

hp14
MX-CIF QUADTREE (Kedem)

1

b

Collections of small rectangles for VLSI applications

Each rectangle is associated with its minimum
enclosing quadtree block

Like hashing: quadtree blocks serve as hash buckets

1.

2.

3.

1

2

3

4
5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

Copyright © 2007 by Hanan Samet 24

hp142

r

Collision = more than one rectangle in a block

resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

Copyright © 2007 by Hanan Samet 24

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

196

hp14
MX-CIF QUADTREE (Kedem)

1

b

Collections of small rectangles for VLSI applications

Each rectangle is associated with its minimum
enclosing quadtree block

Like hashing: quadtree blocks serve as hash buckets

1.

2.

3.

1

2

3

4
5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

Copyright © 2007 by Hanan Samet 24

hp142

r

Collision = more than one rectangle in a block

resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

Copyright © 2007 by Hanan Samet 24

hp14

one for y-axis

Binary tree for y-
axis through A

Y1

Y2
10

Y4

2

Y5

Y3

6
Y7

8

Y6

3

g

Copyright © 2007 by Hanan Samet 24

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

197

hp14
MX-CIF QUADTREE (Kedem)

1

b

Collections of small rectangles for VLSI applications

Each rectangle is associated with its minimum
enclosing quadtree block

Like hashing: quadtree blocks serve as hash buckets

1.

2.

3.

1

2

3

4
5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

Copyright © 2007 by Hanan Samet 24

hp142

r

Collision = more than one rectangle in a block

resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

Copyright © 2007 by Hanan Samet 24

hp14

one for y-axis

Binary tree for y-
axis through A

Y1

Y2
10

Y4

2

Y5

Y3

6
Y7

8

Y6

3

g

Copyright © 2007 by Hanan Samet 24

hp14

if a rectangle intersects both x and y axes, then
associate it with the y axis

4

v

Copyright © 2007 by Hanan Samet 24

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

198

hp14
MX-CIF QUADTREE (Kedem)

1

b

Collections of small rectangles for VLSI applications

Each rectangle is associated with its minimum
enclosing quadtree block

Like hashing: quadtree blocks serve as hash buckets

1.

2.

3.

1

2

3

4
5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

Copyright © 2007 by Hanan Samet 24

hp142

r

Collision = more than one rectangle in a block

resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

Copyright © 2007 by Hanan Samet 24

hp14

one for y-axis

Binary tree for y-
axis through A

Y1

Y2
10

Y4

2

Y5

Y3

6
Y7

8

Y6

3

g

Copyright © 2007 by Hanan Samet 24

hp14

if a rectangle intersects both x and y axes, then
associate it with the y axis

4

v

Copyright © 2007 by Hanan Samet 24

hp145

z

one for x-axis

Binary tree for x-
axis through A

X1

X3
9

X5

7

X4

X2

X6

Copyright © 2007 by Hanan Samet 24

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

199

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum

enclosing quadtree block of a rectangle o is not a function of the size of o

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

200

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum

enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

201

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum

enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

202

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum

enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)

so expanded block is of width (1 + p)w

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

203

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum

enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)

so expanded block is of width (1 + p)w

1. p = 0.3

{11,12}

{7,8,10}
{2,9}

{2,6,7,8,9,10}

{11}

{3,4,5}

{1}

A

B

E

C D

F
{6}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

204

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum

enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)

so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

A

B{}

E

C{2,9}

{2,4}

{5} {3} {6} {9} {7} {8} {10}

D

F

{11} {12}

{}

{1}

{7,8,10}

{11,12}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

205

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum

enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)

so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

Maximum w (i.e., minimum depth of

minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

A

B{}

E

C{2,9}

{2,4}

{5} {3} {6} {9} {7} {8} {10}

D

F

{11} {12}

{}

{1}

{7,8,10}

{11,12}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

206

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

207

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

208

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

209

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

210

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

211

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

212

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

o

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

213

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

o

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

214

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

o

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

215

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

r

o

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

216

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition

fieldtree is superior to the cover field-

tree when p <1/4

r

o

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

217

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition

fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2013 by Hanan Samet

4
6
6
-4

7
4
-M

X
-C

IF
 q

u
a
d
tre

e

218

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

219

sf2

HIERARCHICAL RECTANGULAR DECOMPOSITION

• Similar to triangular decomposition

• Good when data points are the vertices of a
rectangular grid

• Drawback is absence of continuity between adjacent
patches of unequal width (termed the alignment
problem)

• Overcoming the presence of cracks

1. use the interpolated point instead of the true point
(Barrera and Hinjosa)

2. triangulate the squares (Von Herzen and Barr)

• can split into 2, 4, or 8 triangles depending on how
many lines are drawn through the midpoint

• if split into 2 triangles, then cracks still remain

• no cracks if split into 4 or 8 triangles

Copyright © 2007 by Hanan Samet 25

4
0
2
-4

0
8
-H

ie
ra

rc
h
ic

a
l re

c
ta

n
g
u
la

r s
u
rfa

c
e
 d

e
c
o
m

p
o
s
itio

n

220

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1

 Note: also used in finite element analysis to adptively
refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2007 by Hanan Samet 26

4
0
2
-4

0
8
-H

ie
ra

rc
h
ic

a
l re

c
ta

n
g
u
la

r s
u
rfa

c
e
 d

e
c
o
m

p
o
s
itio

n

221

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1

 Note: also used in finite element analysis to adptively
refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2007 by Hanan Samet 26

sf32
r

Copyright © 2007 by Hanan Samet 26

4
0
2
-4

0
8
-H

ie
ra

rc
h
ic

a
l re

c
ta

n
g
u
la

r s
u
rfa

c
e
 d

e
c
o
m

p
o
s
itio

n

222

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1

 Note: also used in finite element analysis to adptively
refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2007 by Hanan Samet 26

sf32
r

Copyright © 2007 by Hanan Samet 26

sf33

z

• 8-triangle decomposition rule

1. decompose each block into 8 triangles (i.e., 2 triangles
per edge)

2. unless the edge is shared by a larger block

3. in which case only 1 triangle is formed

Copyright © 2007 by Hanan Samet 26

4
0
2
-4

0
8
-H

ie
ra

rc
h
ic

a
l re

c
ta

n
g
u
la

r s
u
rfa

c
e
 d

e
c
o
m

p
o
s
itio

n

223

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1

 Note: also used in finite element analysis to adptively
refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2007 by Hanan Samet 26

sf32
r

Copyright © 2007 by Hanan Samet 26

sf33

z

• 8-triangle decomposition rule

1. decompose each block into 8 triangles (i.e., 2 triangles
per edge)

2. unless the edge is shared by a larger block

3. in which case only 1 triangle is formed

Copyright © 2007 by Hanan Samet 26

sf34

g

• 4-triangle decomposition rule

1. decompose each block into 4 triangles (i.e., 1 triangle
per edge)

2. unless the edge is shared by a smaller block

3. in which case 2 triangles are formed along the edge

Copyright © 2007 by Hanan Samet 26

4
0
2
-4

0
8
-H

ie
ra

rc
h
ic

a
l re

c
ta

n
g
u
la

r s
u
rfa

c
e
 d

e
c
o
m

p
o
s
itio

n

224

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1

 Note: also used in finite element analysis to adptively
refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2007 by Hanan Samet 26

sf32
r

Copyright © 2007 by Hanan Samet 26

sf33

z

• 8-triangle decomposition rule

1. decompose each block into 8 triangles (i.e., 2 triangles
per edge)

2. unless the edge is shared by a larger block

3. in which case only 1 triangle is formed

Copyright © 2007 by Hanan Samet 26

sf34

g

• 4-triangle decomposition rule

1. decompose each block into 4 triangles (i.e., 1 triangle
per edge)

2. unless the edge is shared by a smaller block

3. in which case 2 triangles are formed along the edge

Copyright © 2007 by Hanan Samet 26

sf3

• Prefer 8-triangle rule as it is better for display applications
(shading)

5

v

Copyright © 2007 by Hanan Samet 26

4
0
2
-4

0
8
-H

ie
ra

rc
h
ic

a
l re

c
ta

n
g
u
la

r s
u
rfa

c
e
 d

e
c
o
m

p
o
s
itio

n

225

td3

OCTREES

1. Interior (voxels)

• analogous to region quadtree

• approximate object by aggregating similar voxels

• good for medical images but not for objects with
planar faces

Ex:

1 2 3 4 13 14 15

12111098765

B

A
14 15

4
9 10

6

1 2

13

1211

5

2. Boundary (PM octrees)

• adaptation of PM quadtree to three-dimensional
data

• decompose until each block contains

a. one face

b. more than one face but all meet at same edge

c. more than one edge but all meet at same
vertex

• impose spatial index on a boundary model (BRep)

Copyright 2008 by Hanan Samet

3
6
9
-3

7
0
--P

M
 o

c
tre

e

226

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

227

Basic Definitions

1. Often only information available is a distance function indicating degree of

similarity (or dis-similarity) between all pairs of N data objects

2. Distance metric d: objects must reside in finite metric space (S, d) where

for o1, o2, o3 in S, d must satisfy

d(o1, o2) = d(o2, o1) (symmetry)

d(o1, o2) ≥ 0, d(o1, o2) = 0 iff o1 = o2 (non-negativity)

d(o1, o3) ≤ d(o1, o2) + d(o2, o3) (triangle inequality)

3. Triangle inequality is a key property for pruning search space

Computing distance is expensive

4. Non-negativity property enables ignoring negative values in derivations

Copyright 2008: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.2/3

5
9
8
-6

0
0
--D

is
ta

n
c
e
-b

a
s
e
d
 in

d
e
x
in

g

228

Pivots

Identify a distinguished object or subset of the objects termed pivots or
vantage points

1. sort remaining objects based on

a. distances from the pivots, or
b. which pivot is the closest

2. and build index
3. use index to achieve pruning of other objects during search

Given pivot p ∈ S, for all objects o ∈ S′
⊆ S, we know:

1. exact value of d(p, o),

2. d(p, o) lies within range [rlo, rhi] of values or

drawback is asymmetry of partition as outer shell is usually narrow

3. o is closer to p than to some other object p2 ∈ S

Distances from pivots are useful in pruning the search

Copyright 2008: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.3/3

5
9
8
-6

0
0
--D

is
ta

n
c
e
-b

a
s
e
d
 in

d
e
x
in

g

229

Pivots

Identify a distinguished object or subset of the objects termed pivots or
vantage points

1. sort remaining objects based on

a. distances from the pivots, or
b. which pivot is the closest

2. and build index
3. use index to achieve pruning of other objects during search

Given pivot p ∈ S, for all objects o ∈ S′
⊆ S, we know:

1. exact value of d(p, o),

2. d(p, o) lies within range [rlo, rhi] of values (ball partitioning) or

drawback is asymmetry of partition as outer shell is usually narrow

3. o is closer to p than to some other object p2 ∈ S

Distances from pivots are useful in pruning the search

S1

p r

S2

Copyright 2008: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.3/3

5
9
8
-6

0
0
--D

is
ta

n
c
e
-b

a
s
e
d
 in

d
e
x
in

g

230

Pivots

Identify a distinguished object or subset of the objects termed pivots or
vantage points

1. sort remaining objects based on

a. distances from the pivots, or
b. which pivot is the closest

2. and build index
3. use index to achieve pruning of other objects during search

Given pivot p ∈ S, for all objects o ∈ S′
⊆ S, we know:

1. exact value of d(p, o),

2. d(p, o) lies within range [rlo, rhi] of values (ball partitioning) or

drawback is asymmetry of partition as outer shell is usually narrow

3. o is closer to p than to some other object p2 ∈ S (generalized hyperplane

partitioning)

Distances from pivots are useful in pruning the search

S1

p r

S2

p

p2

Copyright 2008: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.3/3

5
9
8
-6

0
0
--D

is
ta

n
c
e
-b

a
s
e
d
 in

d
e
x
in

g

231

vp-Tree (Metric Tree; Uhlmann|Yianilos)

Ball partitioning method

Pick � from
�
and let � be median of distances of other objects from �

Partition
�
into two sets

��� and
��� where:

�� � �	�
 � � � � � � � ��� �
� � � �

�� � �	�
 � � � � � � � ��� �
� � � �

Apply recursively, yielding a binary tree with pivot and radius values at

internal nodes

Choosing pivots

1. simplest is to pick at random

2. choose a random sample and then select median

S1

p r

S2

p

S1 S2

<r ≥r

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.35/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

232

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

233

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

234

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

235

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

236

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

237

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

238

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

239

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

240

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

241

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

l e

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

242

vp-Tree Example

e

t

k

u w
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

we

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

243

vp-Tree Example

e

t

k

u l
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

we

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0
4
-6

0
7
--P

iv
o
t-b

a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

244

gh-Tree (Metric Tree; Uhlmann)

Generalized hyperplane partitioning method

Pick �� and �� from
�
and partition

�
into two sets

�� and
�� where:

�� � ��� � � 	 � ���
 �� � � � ��
 � � � � � ��
 � � �

�� � ��� � � 	 � ���
 �� � � � ��
 � � � � � ��
 � � �

Objects in
�� are closer to � � than to �� (or equidistant from both), and

objects in
�� are closer to �� than to � �

hyperplane corresponds to all points � satisfying
� � � �
 � � � � � ��
 � �

can also “move” hyperplane, by using
� � � �
 � � � � � ��
 � � � �

Apply recursively, yielding a binary tree with two pivots at internal nodes

p1

p2

S1 S2

p1 p2

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.39/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

245

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

246

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

247

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

c d

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

248

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

e fc d

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

249

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

g h

e fc d

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

250

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

g h i j

e fc d

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

251

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

g h i j k l

e fc d

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

252

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

g h i j k l m n

e fc d

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

253

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

{o,p} {q} {r} {s} {t} {u} {v}

g h i j k l m n

e fc d

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

254

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

{o,p} {q} {r} {s} {t} {u} {v}

g h i j k l m n

e fc d

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1
3
-6

1
6
--C

lu
s
te

r-b
a
s
e
d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

255

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (
�
) PR k-d tree as split whenever region has

� � �
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1
8
-6

2
2
--M

b
-tre

e

256

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (
�
) PR k-d tree as split whenever region has

� � �
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1
8
-6

2
2
--M

b
-tre

e

257

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (
�
) PR k-d tree as split whenever region has

� � �
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

c a

a

c

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1
8
-6

2
2
--M

b
-tre

e

258

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (
�
) PR k-d tree as split whenever region has

� � �
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e b

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

c a

a

c

e

b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1
8
-6

2
2
--M

b
-tre

e

259

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (
�
) PR k-d tree as split whenever region has

� � �
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e b

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

c a

a

c

e

b

o c

c

o

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1
8
-6

2
2
--M

b
-tre

e

260

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (
�
) PR k-d tree as split whenever region has

� � �
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e b

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

c a

a

c

e

b

o c

c

o

a d
d

a

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1
8
-6

2
2
--M

b
-tre

e

261

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (
�
) PR k-d tree as split whenever region has

� � �
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e b

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

c a

a

c

e

b

o c

c

o

a d
d

a

e u

e

u

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1
8
-6

2
2
--M

b
-tre

e

262

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (
�
) PR k-d tree as split whenever region has

� � �
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e b

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

c a

a

c

e

b

o c

c

o

a d
d

a

e u

e

u

b v

v

b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1
8
-6

2
2
--M

b
-tre

e

263

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (
�
) PR k-d tree as split whenever region has

� � �
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e b

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

c a

a

c

e

b

o c

c

o

a d
d

a

e u

e

u

b v

v

b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1
8
-6

2
2
--M

b
-tre

e

264

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

mb-tree

(100,100)(0,100)

y

(0,0) x (100,0)

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

265

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

mb-tree

(100,100)(0,100)

y

(0,0) x (100,0)

Chicago

(35,42)
Chicago

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

266

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

mb-tree

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

MobileChicago

Mobile
(52,10)

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

267

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

mb-tree

Chicago

Mobile

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

Toronto

(62,77)
Toronto

(62,77)
Toronto

Toronto

Toronto

Chicago

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

268

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

mb-tree

Mobile

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

(62,77)
Toronto

Chicago
(82,65)
Buffalo

Toronto Buffalo

BuffaloToronto

-Buffalo

(82,65)
Buffalo

(62,77)
Toronto

Toronto

Toronto

Chicago

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

269

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

mb-tree

Mobile

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

(62,77)
Toronto

(82,65)
Buffalo

Toronto BuffaloChicago

Denver
(5,45) Denver

BuffaloToronto

-Buffalo

(82,65)
Buffalo

-Denver

Denver Chicago

(5,45)
Denver

(62,77)
Toronto

Toronto

Toronto

Chicago

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

270

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

mb-tree

Mobile

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

(62,77)
Toronto

(82,65)
Buffalo

Toronto Buffalo

Denver
(5,45) Denver

Omaha
(27,35)

ChicagoOmaha

Omaha -

Omaha Chicago

(27,35)
Omaha

BuffaloToronto

-Buffalo

(82,65)
Buffalo

-Denver

Denver Chicago

(5,45)
Denver

(62,77)
Toronto

Toronto

Toronto

Chicago

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

271

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

mb-tree

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

(62,77)
Toronto

(82,65)
Buffalo

Toronto Buffalo

Denver
(5,45) Denver

Omaha
(27,35)

ChicagoOmaha

Atlanta
Mobile

(85,15)
Atlanta

Mobile

-Atlanta

Atlanta

(85,15)
Atlanta

Omaha -

Omaha Chicago

(27,35)
Omaha

BuffaloToronto

-Buffalo

(82,65)
Buffalo

-Denver

Denver Chicago

(5,45)
Denver

(62,77)
Toronto

Toronto

Toronto

Chicago

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

272

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

mb-tree

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

(62,77)
Toronto

(82,65)
Buffalo

Toronto Buffalo

Denver
(5,45) Denver

Omaha
(27,35)

ChicagoOmaha

Mobile

(85,15)
Atlanta

Miami
(90,5)

Atlanta Miami

MiamiAtlanta

-Miami

(90,5)
Miami

Mobile

-Atlanta

Atlanta

(85,15)
Atlanta

Omaha -

Omaha Chicago

(27,35)
Omaha

BuffaloToronto

-Buffalo

(82,65)
Buffalo

-Denver

Denver Chicago

(5,45)
Denver

(62,77)
Toronto

Toronto

Toronto

Chicago

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

273

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

Partition of
underlying
space
analogous

to that of
BSP tree
for points

mb-tree

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

(62,77)
Toronto

(82,65)
Buffalo

Toronto Buffalo

Denver
(5,45) Denver

Omaha
(27,35)

ChicagoOmaha

Mobile

(85,15)
Atlanta

Miami
(90,5)

Atlanta Miami

MiamiAtlanta

-Miami

(90,5)
Miami

Mobile

-Atlanta

Atlanta

(85,15)
Atlanta

Omaha -

Omaha Chicago

(27,35)
Omaha

BuffaloToronto

-Buffalo

(82,65)
Buffalo

-Denver

Denver Chicago

(5,45)
Denver

(62,77)
Toronto

Toronto

Toronto

Chicago

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1
8
-6

2
2
 -- M

b
-tre

e

274

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

275

Incremental Nearest Neighbors (Hjaltason/Samet)

Motivation

1. often don’t know in advance how many neighbors will need

2. e.g., want nearest city to Chicago with population > 1 million

Several approaches

1. guess some area range around Chicago and check populations of

cities in range

if find a city with population > 1 million, must make sure that there
are no other cities that are closer with population > 1 million

inefficient as have to guess size of area to search

problem with guessing is we may choose too small a region or too
large a region

a. if size too small, area may not contain any cities with right
population and need to expand the search region

b. if size too large, may be examining many cities needlessly

2. sort all the cities by distance from Chicago

impractical as we need to re-sort them each time pose a similar
query with respect to another city

also sorting is overkill when only need first few neighbors

3. find
�

closest neighbors and check population condition

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.98/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

276

Mechanics of Incremental Nearest Neighbor Algorithm

Make use of a search hierarchy (e.g., tree) where

1. objects at lowest level

2. object approximations are at next level (e.g., bounding boxes in an

R-tree)

3. nonleaf nodes in a tree-based index

Traverse search hierarchy in a “best-first” manner similar to A*-algorithm

instead of more traditional depth-first or breadth-first manners

1. at each step, visit element with smallest distance from query object
among all unvisited elements in the search hierarchy

i.e., all unvisited elements whose parents have been visited

2. use a global list of elements, organized by their distance from query

object
use a priority queue as it supports necessary insert and delete
minimum operations
ties in distance: priority to lower type numbers

if still tied, priority to elements deeper in search hierarchy

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.99/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

277

Incremental Nearest Neighbor Algorithm

Algorithm:

INCNEAREST(� , � , �)

1 � � NEWPRIORITYQUEUE()

2 ���	� root of the search hierarchy induced by � , � , and �
3 ENQUEUE(� , �
� , 0)

4 while not ISEMPTY(�) do

5 ����� DEQUEUE(�)

6 if �� � then /* � � is an object */

7 Report � � as the next nearest object

8 else

9 for each child element � ��� of ��� do

10 ENQUEUE(� , � ��� , � ����� ��� � �����)
1. Lines 1-3 initialize priority queue with root

2. In main loop take element ��� closest to � off the queue

report �
� as next nearest object if ��� is an object

otherwise, insert child elements of ��� into priority queue

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.100/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

278

Example of INCNEAREST

Initially, algorithm descends tree to leaf

node containing q

n

g

a

q

e

d

c

b
i

f

h

n

n1

n2n3

n

n1 n2

n3

queue

front

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.101/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

279

Example of INCNEAREST

Initially, algorithm descends tree to leaf

node containing q

expand n

n

g

a

q

e

d

c

b
i

f

h

n

n1

n2n3

n

n1 n2

n3

queue

front

expand

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.101/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

280

Example of INCNEAREST

Initially, algorithm descends tree to leaf

node containing q

expand n

n

g

a

q

e

d

c

b
i

f

h

n

n1

n2n3

n

n1 n2

n3

queue

front

expand

n2

n3

n1
front

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.101/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

281

Example of INCNEAREST

Initially, algorithm descends tree to leaf

node containing q

expand n

expand n �

n

g

a

q

e

d

c

b
i

f

h

n

n1

n2n3

n

n1 n2

n3

queue

front

expand

n2

n3

n1
front

expand

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.101/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

282

Example of INCNEAREST

Initially, algorithm descends tree to leaf

node containing q

expand n

expand n �

n

g

a

q

e

d

c

b
i

f

h

n

n1

n2n3

n

n1 n2

n3

queue

front

expand

n2

n3

n1
front

expand

c
a
d
n2

n3
front

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.101/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

283

Example of INCNEAREST

Initially, algorithm descends tree to leaf

node containing q

expand n

expand n �
Start growing search region

expand n �

n

g

a

q

e

d

c

b
i

f

h

n

n1

n2n3

n

n1 n2

n3

queue

front

expand

n2

n3

n1
front

expand

c
a
d
n2

n3
front

expand

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.101/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

284

Example of INCNEAREST

Initially, algorithm descends tree to leaf

node containing q

expand n

expand n
Start growing search region

expand n !
report e as nearest neighbor

n

g

a

q

e

d

c

b
i

f

h

n

n1

n2n3

n

n1 n2

n3

queue

front

expand

n2

n3

n1
front

expand

c
a
d
n2

n3
front

expand

h
b
c
a
d
n2

e front

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.101/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

285

VASCO Spatial Applet

http://www.cs.umd.edu/˜hjs/quadtree/index.html

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.102/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

286

Complexity Analysis

Algorithm is I/O optimal

no nodes outside search region are accessed

better pruning than branch and bound algorithm

Observations for finding " nearest neighbors for uniformly-distributed

two-dimensional points

expected # of points on priority queue: # $&% "('
expected # of leaf nodes intersecting search region: # $ "*) % "+'

In worst case, priority queue will be as large as entire data set

e.g., when data objects are all nearly

equidistant from query object

probability of worst case very low, as it

depends on a particular configuration of

both the data objects and the query object

(but: curse of dimensionality!)

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.103/113

4
9
0
-4

9
9
--In

c
re

m
e
n
ta

l n
e
a
re

s
t n

e
ig

b
h
o
r fin

d
in

g

287

Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”

2. Precompute and store shortest paths between all vertices in network

Reduce cost of storing shortest paths between all

pairs of N vertices from O(N3) to O(N1.5) using

path coherence of destination vertices

Scalable Network Distance Browsing in Spatial Databases – p.2/15

288

Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”

2. Precompute and store shortest paths between all vertices in network

Reduce cost of storing shortest paths between all

pairs of N vertices from O(N3) to O(N1.5) using

path coherence of destination vertices

Can reduce to O(N) by also using path coherence

of source vertices

Scalable Network Distance Browsing in Spatial Databases – p.2/15

289

Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”

2. Precompute and store shortest paths between all vertices in network

Reduce cost of storing shortest paths between all

pairs of N vertices from O(N3) to O(N1.5) using

path coherence of destination vertices

Can reduce to O(N) by also using path coherence

of source vertices

3. Decouple domain S of query objects (q) and objects from which neighbors are

drawn from domain V of vertices of network

Implies no need to recompute shortest paths
each time q or S change

Scalable Network Distance Browsing in Spatial Databases – p.2/15

290

Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”

2. Precompute and store shortest paths between all vertices in network

Reduce cost of storing shortest paths between all

pairs of N vertices from O(N3) to O(N1.5) using

path coherence of destination vertices

Can reduce to O(N) by also using path coherence

of source vertices

3. Decouple domain S of query objects (q) and objects from which neighbors are

drawn from domain V of vertices of network

Implies no need to recompute shortest paths
each time q or S change

4. Avoids Dijkstra’s algorithm which visits too many vertices

Ex: Dijkstra’s algorithm visits 3191 out of the 4233 ver-

tices in network to identify a 76 edge path from X to V

Scalable Network Distance Browsing in Spatial Databases – p.2/15

291

Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”

2. Precompute and store shortest paths between all vertices in network

Reduce cost of storing shortest paths between all

pairs of N vertices from O(N3) to O(N1.5) using

path coherence of destination vertices

Can reduce to O(N) by also using path coherence

of source vertices

3. Decouple domain S of query objects (q) and objects from which neighbors are

drawn from domain V of vertices of network

Implies no need to recompute shortest paths
each time q or S change

4. Avoids Dijkstra’s algorithm which visits too many vertices

Ex: Dijkstra’s algorithm visits 3191 out of the 4233 ver-

tices in network to identify a 76 edge path from X to V

5. Instead, only visit vertices on shortest paths to nearest
neighbors

Scalable Network Distance Browsing in Spatial Databases – p.2/15

292

Application – Find the closest Kinko’s

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

Scalable Network Distance Browsing in Spatial Databases – p.3/15

293

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

Scalable Network Distance Browsing in Spatial Databases – p.3/15

294

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M

Scalable Network Distance Browsing in Spatial Databases – p.3/15

295

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O

Scalable Network Distance Browsing in Spatial Databases – p.3/15

296

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N

Scalable Network Distance Browsing in Spatial Databases – p.3/15

297

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D

Scalable Network Distance Browsing in Spatial Databases – p.3/15

298

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

Scalable Network Distance Browsing in Spatial Databases – p.3/15

299

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering

Scalable Network Distance Browsing in Spatial Databases – p.3/15

300

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O

Scalable Network Distance Browsing in Spatial Databases – p.3/15

301

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D

Scalable Network Distance Browsing in Spatial Databases – p.3/15

302

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N

Scalable Network Distance Browsing in Spatial Databases – p.3/15

303

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M

Scalable Network Distance Browsing in Spatial Databases – p.3/15

304

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G

Scalable Network Distance Browsing in Spatial Databases – p.3/15

305

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

Scalable Network Distance Browsing in Spatial Databases – p.3/15

306

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

trafficability ordering

Scalable Network Distance Browsing in Spatial Databases – p.3/15

307

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

trafficability ordering O

Scalable Network Distance Browsing in Spatial Databases – p.3/15

308

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

trafficability ordering O D

Scalable Network Distance Browsing in Spatial Databases – p.3/15

309

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

trafficability ordering O D G

Scalable Network Distance Browsing in Spatial Databases – p.3/15

310

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

trafficability ordering O D G N

Scalable Network Distance Browsing in Spatial Databases – p.3/15

311

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

trafficability ordering O D G N M

Scalable Network Distance Browsing in Spatial Databases – p.3/15

312

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

trafficability ordering O D G N M (Error: +32 minutes)

Scalable Network Distance Browsing in Spatial Databases – p.3/15

313

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

trafficability ordering O D G N M (Error: +32 minutes)

Challenge: Real time + exact queries

Scalable Network Distance Browsing in Spatial Databases – p.3/15

314

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

Scalable Network Distance Browsing in Spatial Databases – p.4/15

315

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

Scalable Network Distance Browsing in Spatial Databases – p.4/15

316

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

Scalable Network Distance Browsing in Spatial Databases – p.4/15

317

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m

Scalable Network Distance Browsing in Spatial Databases – p.4/15

318

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m
7

C:14.3m

5.6m SE

Scalable Network Distance Browsing in Spatial Databases – p.4/15

319

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m
7

C:14.3m

5.6m SE

D:11.4m 4
5.8m E

Scalable Network Distance Browsing in Spatial Databases – p.4/15

320

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m
7

C:14.3m

5.6m SE

D:11.4m 4
5.8m E

2

7.7m NE

E:10.6m

Scalable Network Distance Browsing in Spatial Databases – p.4/15

321

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m
7

C:14.3m

5.6m SE

D:11.4m 4
5.8m E

2

7.7m NE

E:10.6m

1 F:10.5m

7.9m NE

Scalable Network Distance Browsing in Spatial Databases – p.4/15

322

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m
7

C:14.3m

5.6m SE

D:11.4m 4
5.8m E

2

7.7m NE

E:10.6m

1 F:10.5m

7.9m NE

G:11.3m
3

8.0m NE

Scalable Network Distance Browsing in Spatial Databases – p.4/15

323

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m
7

C:14.3m

5.6m SE

D:11.4m 4
5.8m E

2

7.7m NE

E:10.6m

1 F:10.5m

7.9m NE

G:11.3m
3

8.0m NE

6
H:13.4m

9.9m NE

Scalable Network Distance Browsing in Spatial Databases – p.4/15

324

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m
7

C:14.3m

5.6m SE

D:11.4m 4
5.8m E

2

7.7m NE

E:10.6m

1 F:10.5m

7.9m NE

G:11.3m
3

8.0m NE

6
H:13.4m

9.9m NE Notice difference in the ordering

Scalable Network Distance Browsing in Spatial Databases – p.4/15

325

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m
7

C:14.3m

5.6m SE

D:11.4m 4
5.8m E

2

7.7m NE

E:10.6m

1 F:10.5m

7.9m NE

G:11.3m
3

8.0m NE

6
H:13.4m

9.9m NE Notice difference in the ordering

Goal: Instant answers as well as accurate answers

Scalable Network Distance Browsing in Spatial Databases – p.4/15

326

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

Scalable Network Distance Browsing in Spatial Databases – p.5/15

327

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

Scalable Network Distance Browsing in Spatial Databases – p.5/15

328

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Scalable Network Distance Browsing in Spatial Databases – p.5/15

329

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Scalable Network Distance Browsing in Spatial Databases – p.5/15

330

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Scalable Network Distance Browsing in Spatial Databases – p.5/15

331

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Scalable Network Distance Browsing in Spatial Databases – p.5/15

332

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Scalable Network Distance Browsing in Spatial Databases – p.5/15

333

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Scalable Network Distance Browsing in Spatial Databases – p.5/15

334

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-
tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.5/15

335

How to Store Colored Regions?

Shortest-path Map

Scalable Network Distance Browsing in Spatial Databases – p.6/15

336

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

Shortest-path Map

R-tree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

337

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

Shortest-path Map

R-tree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

338

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

Shortest-path Map

R-tree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

339

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

Shortest-path Map

R-tree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

340

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

Shortest-path Map

R-tree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

341

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

Shortest-path Map

R-tree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

342

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

Shortest-path Map

R-tree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

343

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Shortest-path Map

R-tree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

344

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

345

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

346

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

347

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

348

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

349

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

Scalable Network Distance Browsing in Spatial Databases – p.7/15

350

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

n
0.5

n
0.5

Scalable Network Distance Browsing in Spatial Databases – p.7/15

351

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

n
0.5

n
0.5

Scalable Network Distance Browsing in Spatial Databases – p.7/15

352

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

n
0.5

n
0.5

n
0.5

n
0.5

Scalable Network Distance Browsing in Spatial Databases – p.7/15

353

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

n
0.5

n
0.5

n
0.5

n
0.5

Scalable Network Distance Browsing in Spatial Databases – p.7/15

354

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

n
0.5

n
0.5

n
0.5

n
0.5

Scalable Network Distance Browsing in Spatial Databases – p.7/15

355

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

n
0.5

n
0.5

n
0.5

n
0.5

Scalable Network Distance Browsing in Spatial Databases – p.7/15

356

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

n
0.5

n
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

N
u

m
b

e
r

o
f

M
o

rt
o

n
 b

lo
c
k
s

(m
)

(l
o

g
 s

c
a

le
)

Number of Vertices (n) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.7/15

357

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

n
0.5

n
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

N
u

m
b

e
r

o
f

M
o

rt
o

n
 b

lo
c
k
s

(m
)

(l
o

g
 s

c
a

le
)

Number of Vertices (n) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.7/15

358

Path Retrieval
Problem: How to retrieve the shortest path from a

Scalable Network Distance Browsing in Spatial Databases – p.8/15

359

Path Retrieval
Problem: How to retrieve the shortest path from a source s

s
s

Scalable Network Distance Browsing in Spatial Databases – p.8/15

360

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ds
s

d

Scalable Network Distance Browsing in Spatial Databases – p.8/15

361

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ds
s

Retrieve the shortest-path quadtree Qs corresponding to s

Scalable Network Distance Browsing in Spatial Databases – p.8/15

362

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ds
s

d

Retrieve the shortest-path quadtree Qs corresponding to s

Find the colored region that contains d in Qs

Scalable Network Distance Browsing in Spatial Databases – p.8/15

363

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

t ds
s

d

t

Retrieve the shortest-path quadtree Qs corresponding to s

Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Scalable Network Distance Browsing in Spatial Databases – p.8/15

364

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

t ds

t

Retrieve the shortest-path quadtree Qs corresponding to s

Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Scalable Network Distance Browsing in Spatial Databases – p.8/15

365

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

t ds

t

Retrieve the shortest-path quadtree Qs corresponding to s

Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t

Scalable Network Distance Browsing in Spatial Databases – p.8/15

366

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

t ds

d

t

Retrieve the shortest-path quadtree Qs corresponding to s

Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t

Find the colored region that contains d in Qt

Scalable Network Distance Browsing in Spatial Databases – p.8/15

367

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ut ds

d

t

u

Retrieve the shortest-path quadtree Qs corresponding to s

Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t

Find the colored region that contains d in Qt

Retrieve the vertex u connected to t in the region containing d in Qt

Scalable Network Distance Browsing in Spatial Databases – p.8/15

368

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ut ds
s

d

t

u

Retrieve the shortest-path quadtree Qs corresponding to s

Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t

Find the colored region that contains d in Qt

Retrieve the vertex u connected to t in the region containing d in Qt

Entire shortest path can be retrieved in size-of-path steps

Scalable Network Distance Browsing in Spatial Databases – p.8/15

369

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ut ds
s

d

t

u

Retrieve the shortest-path quadtree Qs corresponding to s

Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t

Find the colored region that contains d in Qt

Retrieve the vertex u connected to t in the region containing d in Qt

Entire shortest path can be retrieved in size-of-path steps

Network distance between s and d is immediately obtained from shortest path
Scalable Network Distance Browsing in Spatial Databases – p.8/15

370

Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block

Refinement involves finding the next link in the shortest path

Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Scalable Network Distance Browsing in Spatial Databases – p.9/15

371

Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block

Refinement involves finding the next link in the shortest path

Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Munich

Hanover

Mainz

Bremen

Berlin

Scalable Network Distance Browsing in Spatial Databases – p.9/15

372

Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block

Refinement involves finding the next link in the shortest path

Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Mainz

Hanover

[10,20] [15,30]

Berlin

Munich

Mainz

Munich BremenBremen

Scalable Network Distance Browsing in Spatial Databases – p.9/15

373

Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block

Refinement involves finding the next link in the shortest path

Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Mainz

Hanover

[10,20] [15,30]

Berlin

Munich

Mainz

Munich BremenBremen

Hanover [12,18] [17,20]

Scalable Network Distance Browsing in Spatial Databases – p.9/15

374

Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block

Refinement involves finding the next link in the shortest path

Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Mainz

Hanover

[10,20] [15,30]

Berlin

Munich

Mainz

Munich BremenBremen

Hanover [12,18] [17,20]

Berlin [13,15] [18,19]

Scalable Network Distance Browsing in Spatial Databases – p.9/15

375

Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block

Refinement involves finding the next link in the shortest path

Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Mainz

Hanover

[10,20] [15,30]

Berlin

Munich

Mainz

Munich BremenBremen

Hanover [12,18] [17,20]

Berlin [13,15] [18,19]

Munich is closer as distance interval via Berlin does not intersect distance
interval to Bremen via Berlin Scalable Network Distance Browsing in Spatial Databases – p.9/15

376

Properties of a Non-Incremental kNN Algorithm

Neighbors produced in increasing order of distance from q

Use a priority queue Q of objects and blocks

Q contains network distance interval [δ−, δ+] of objects from q

Additional information stored with each object o in Q

1. An intermediate vertex u in shortest path from q to u

2. network distance d from q to u

Uses another priority queue L in addition to Q

Stores k objects found so far in increasing order of δ+

Dk is the maximum of the distance interval of the kth element in L

Idea: Prune elements e from Q such that δ−e ≥ Dk

Elements are removed from Q in increasing order of the minimum of their

distance interval δ− from q

Objects may be reinserted in Q if δ− < Dk

Terminate when δ− ≥ Dk

Advantages over Incremental best-first kNN (INN)

Smaller size of Q

Faster than INN
Scalable Network Distance Browsing in Spatial Databases – p.10/15

377

kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance

from q is > Dk

Scalable Network Distance Browsing in Spatial Databases – p.11/15

378

kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance

from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for

which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

Scalable Network Distance Browsing in Spatial Databases – p.11/15

379

kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance

from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for

which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for

which the minimum distance from q is < Dk

Scalable Network Distance Browsing in Spatial Databases – p.11/15

380

kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance

from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for

which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for

which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions

with the current top element of Q

Scalable Network Distance Browsing in Spatial Databases – p.11/15

381

kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance

from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for

which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for

which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions

with the current top element of Q

A collision occurs if the distance interval of p intersects the distance
interval of the current top element in Q

Scalable Network Distance Browsing in Spatial Databases – p.11/15

382

kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance

from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for

which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for

which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions

with the current top element of Q

A collision occurs if the distance interval of p intersects the distance
interval of the current top element in Q

Collision:

Scalable Network Distance Browsing in Spatial Databases – p.11/15

383

kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance

from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for

which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for

which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions

with the current top element of Q

A collision occurs if the distance interval of p intersects the distance
interval of the current top element in Q

Collision:
Remove p from L if δ+ ≤ Dk

Apply refinement to improve distance interval of p and reinsert p in

L if δ+ ≤ Dk and in Q if δ− < Dk and go to Step 2

No collision:

Scalable Network Distance Browsing in Spatial Databases – p.11/15

384

kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance

from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for

which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for

which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions

with the current top element of Q

A collision occurs if the distance interval of p intersects the distance
interval of the current top element in Q

Collision:
Remove p from L if δ+ ≤ Dk

Apply refinement to improve distance interval of p and reinsert p in

L if δ+ ≤ Dk and in Q if δ− < Dk and go to Step 2

No collision: p is already one of k nearest neighbors in L (Theorem 1)

and go to Step 2

Scalable Network Distance Browsing in Spatial Databases – p.11/15

385

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

Scalable Network Distance Browsing in Spatial Databases – p.12/15

386

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

q x

Scalable Network Distance Browsing in Spatial Databases – p.12/15

387

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

q x

Queue

front

L

Scalable Network Distance Browsing in Spatial Databases – p.12/15

388

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

q x

Queue

front

L

n

1. Insert n into Queue.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

389

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

q x

Queue

front

L

1. Insert n into Queue.

expand

o

m

2. Expand n. Insert o,m into Queue.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

390

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.

a

b

b

a

expand

m

3. Expand o. Insert a,b into Queue, L.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

391

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.

a

b

b

a

expand

m

3. Expand o. Insert a,b into Queue, L.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

392

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e expand

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.

a

g g

e

g

e

a

f

b

4. Expand m. Insert g,e,f into Queue and g into L.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

393

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e expand

Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.

a

g g

e

g

e

a

f

b

4. Expand m. Insert g,e,f into Queue and g into L.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

394

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

ee

gg

a

g

a

expand

Prune f and b from Queue.

prune

prune

Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

395

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

5. Process a. Collision of a with g.

ee

gg

a

g

a

Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

collision

Scalable Network Distance Browsing in Spatial Databases – p.12/15

396

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

5. Process a. Collision of a with g.

refine

e

a

g

g

a

Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

collision

Refine a. Reinsert a into Queue and L.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

397

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.

5. Process a. Collision of a with g.

e

a

g

g

a

Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

collision

Scalable Network Distance Browsing in Spatial Databases – p.12/15

398

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.

refine

a

g

a

g

e

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

collision

Refine and Reinsert g into Queue and L.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

399

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.
Update D k.

a

g

a

g

e

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

collision

Refine and Reinsert g into Queue and L.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

400

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.
Update D k.

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

Refine and Reinsert g into Queue and L.

e

gg

a a

no
collision

report

7. Process a. No collision of a with g. No need to refine a further.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

401

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.
Update D k.

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

Refine and Reinsert g into Queue and L.
7. Process a. No collision of a with g. No need to refine a further.

g

no collision

report

e

a

g

No need to refine g further. Report L.
8. Process g. No collision of g with e.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

402

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.
Update D k.

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

Refine and Reinsert g into Queue and L.
7. Process a. No collision of a with g. No need to refine a further.

No need to refine g further. Report L.
8. Process g. No collision of g with e.

(Search radius to first element in Queue)
Example of a best−first nearest neighbor algorithm.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

403

Musings on How Realistic is the Approach

How about a system for the whole US?

24 million vertices x 10 seconds (say) per shortest path

Single machine = 2777 days

Google with 0.5 million machines = 480 seconds

Modest Cluster of 2000 machines = 1 day, 10 hours

Storage shown to be cN
√

N Morton Blocks

N = 24 million vertices, 8 bytes per Morton block, c = 2 from empirical
analysis = 1.8 TB

Easily Parallelizable: data parallelism

Mostly a one-time effort (decoupling)

Open Challenge: Updates!

Changes to spatial network (e.g., road closure)

Dynamic traffic information

Strategy: How to localize changes to minimize recomputation?

Approximation Strategies: location based services

Shortest-path quadtree on proximal vertices only (say, 100 miles around a

vertex)

Multiresolution spatial networks
Full resolution around a source vertex that gets sparse gradually

Scalable Network Distance Browsing in Spatial Databases – p.13/15

404

Path Coherence Beyond SILC

The SILC framework captures the path coherence in the shortest paths

Scalable Network Distance Browsing in Spatial Databases – p.14/15

405

Path Coherence Beyond SILC

The SILC framework captures the path coherence in the shortest paths

Captured: single source vertex to multiple destination vertices

Scalable Network Distance Browsing in Spatial Databases – p.14/15

406

Path Coherence Beyond SILC

The SILC framework captures the path coherence in the shortest paths

Captured: single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

Scalable Network Distance Browsing in Spatial Databases – p.14/15

407

Path Coherence Beyond SILC

The SILC framework captures the path coherence in the shortest paths

Captured: single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

A new framework: Path Coherent Pairs (PCP)

Scalable Network Distance Browsing in Spatial Databases – p.14/15

408

Path Coherence Beyond SILC

The SILC framework captures the path coherence in the shortest paths

Captured: single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

A new framework: Path Coherent Pairs (PCP)

Example of a path coherent pair denoted by: ()

Scalable Network Distance Browsing in Spatial Databases – p.14/15

409

Path Coherence Beyond SILC

The SILC framework captures the path coherence in the shortest paths

Captured: single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

A new framework: Path Coherent Pairs (PCP)

Example of a path coherent pair denoted by: (A,)

A is a set of source vertices

Scalable Network Distance Browsing in Spatial Databases – p.14/15

410

Path Coherence Beyond SILC

The SILC framework captures the path coherence in the shortest paths

Captured: single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

A new framework: Path Coherent Pairs (PCP)

Example of a path coherent pair denoted by: (A, B,)

A is a set of source vertices
B is a set of destination vertices

Scalable Network Distance Browsing in Spatial Databases – p.14/15

411

Path Coherence Beyond SILC

The SILC framework captures the path coherence in the shortest paths

Captured: single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

A new framework: Path Coherent Pairs (PCP)

Example of a path coherent pair denoted by: (A, B, v)

A is a set of source vertices
B is a set of destination vertices
v is a common vertex to all pairs of shortest paths

Scalable Network Distance Browsing in Spatial Databases – p.14/15

412

Finding Path Coherent Pairs in Spatial Networks

Scalable Network Distance Browsing in Spatial Databases – p.15/15

413

Finding Path Coherent Pairs in Spatial Networks

Source Vertices:

Scalable Network Distance Browsing in Spatial Databases – p.15/15

414

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D)

D

Scalable Network Distance Browsing in Spatial Databases – p.15/15

415

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N)

D

N

Scalable Network Distance Browsing in Spatial Databases – p.15/15

416

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.15/15

417

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices:

D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.15/15

418

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L)

L
D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.15/15

419

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S)

S

L
D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.15/15

420

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

P

S

L
D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.15/15

421

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

Anyone driving from “North-East” to “North-West” US uses I-80W

I−80W

P

S

L
D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.15/15

422

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

Anyone driving from “North-East” to “North-West” US uses I-80W

Capture shortest paths from one million (say) sources in “North-East” to one

million (say) destinations in “North-West” using O(1) storage

I−80W

P

S

L
D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.15/15

423

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

Anyone driving from “North-East” to “North-West” US uses I-80W

Capture shortest paths from one million (say) sources in “North-East” to one

million (say) destinations in “North-West” using O(1) storage

Intuition: Sources “sufficiently far” from destinations share common vertices in

their shortest paths

I−80W

P

S

L
D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.15/15

424

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

Anyone driving from “North-East” to “North-West” US uses I-80W

Capture shortest paths from one million (say) sources in “North-East” to one

million (say) destinations in “North-West” using O(1) storage

Intuition: Sources “sufficiently far” from destinations share common vertices in

their shortest paths

Decompose road network into PCPs:

Any vertex pair is contained in

exactly one set in the shape of a
dumbbell

All N2 shortest paths are captured

using O(sdN) storage where s is a

small constant

I−80W

P

S

L
D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.15/15

425

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

Anyone driving from “North-East” to “North-West” US uses I-80W

Capture shortest paths from one million (say) sources in “North-East” to one

million (say) destinations in “North-West” using O(1) storage

Intuition: Sources “sufficiently far” from destinations share common vertices in

their shortest paths

Decompose road network into PCPs:

Any vertex pair is contained in

exactly one set in the shape of a
dumbbell

All N2 shortest paths are captured

using O(sdN) storage where s is a

small constant

I−80W

P

S

L
D

N

B

Key idea is the analogy to the well-separated pairs in computational geometry

Scalable Network Distance Browsing in Spatial Databases – p.15/15

426

tf1
SET OPERATIONS ON QUADTREES

1
b

UNION(S,T) : traverse S and T in tandem

1. GRAY(S) :

GRAY(T) : recursively process subtrees and
 merge if all resulting sons are BLACK

BLACK(T) : result is T
WHITE(T) : result is S

2. BLACK(S) : result is S
3. WHITE(S) : result is T

Copyright © 2007 by Hanan Samet

S
e
c
tio

n
-6

.3
.2

-A
p
p
lic

a
tio

n
s
 o

f S
p
a
tia

l D
a
ta

 S
tru

c
tu

re
s

427

tf1
SET OPERATIONS ON QUADTREES

1
b

UNION(S,T) : traverse S and T in tandem

1. GRAY(S) :

GRAY(T) : recursively process subtrees and
 merge if all resulting sons are BLACK

BLACK(T) : result is T
WHITE(T) : result is S

2. BLACK(S) : result is S
3. WHITE(S) : result is T

Copyright © 2007 by Hanan Samet

tf1

B

A

2

r

2

4

1

3

8

10

7

9
6

5

5

1 2 3 4

6

7 8 9 10

C

Copyright © 2007 by Hanan Samet

S
e
c
tio

n
-6

.3
.2

-A
p
p
lic

a
tio

n
s
 o

f S
p
a
tia

l D
a
ta

 S
tru

c
tu

re
s

428

tf1
SET OPERATIONS ON QUADTREES

1
b

UNION(S,T) : traverse S and T in tandem

1. GRAY(S) :

GRAY(T) : recursively process subtrees and
 merge if all resulting sons are BLACK

BLACK(T) : result is T
WHITE(T) : result is S

2. BLACK(S) : result is S
3. WHITE(S) : result is T

Copyright © 2007 by Hanan Samet

tf1

B

A

2

r

2

4

1

3

8

10

7

9
6

5

5

1 2 3 4

6

7 8 9 10

C

Copyright © 2007 by Hanan Samet

tf13

g

c

12

14

11

13

16

18

15

17

19 20

D

E
19 20

11 12 13 14 15 16 17 18

F

Copyright © 2007 by Hanan Samet

S
e
c
tio

n
-6

.3
.2

-A
p
p
lic

a
tio

n
s
 o

f S
p
a
tia

l D
a
ta

 S
tru

c
tu

re
s

429

tf1
SET OPERATIONS ON QUADTREES

1
b

UNION(S,T) : traverse S and T in tandem

1. GRAY(S) :

GRAY(T) : recursively process subtrees and
 merge if all resulting sons are BLACK

BLACK(T) : result is T
WHITE(T) : result is S

2. BLACK(S) : result is S
3. WHITE(S) : result is T

Copyright © 2007 by Hanan Samet

tf1

B

A

2

r

2

4

1

3

8

10

7

9
6

5

5

1 2 3 4

6

7 8 9 10

C

Copyright © 2007 by Hanan Samet

tf13

g

c

12

14

11

13

16

18

15

17

19 20

D

E
19 20

11 12 13 14 15 16 17 18

F

Copyright © 2007 by Hanan Samet

tf14

z

Copyright © 2007 by Hanan Samet

S
e
c
tio

n
-6

.3
.2

-A
p
p
lic

a
tio

n
s
 o

f S
p
a
tia

l D
a
ta

 S
tru

c
tu

re
s

430

tf1
SET OPERATIONS ON QUADTREES

1
b

UNION(S,T) : traverse S and T in tandem

1. GRAY(S) :

GRAY(T) : recursively process subtrees and
 merge if all resulting sons are BLACK

BLACK(T) : result is T
WHITE(T) : result is S

2. BLACK(S) : result is S
3. WHITE(S) : result is T

Copyright © 2007 by Hanan Samet

tf1

B

A

2

r

2

4

1

3

8

10

7

9
6

5

5

1 2 3 4

6

7 8 9 10

C

Copyright © 2007 by Hanan Samet

tf13

g

c

12

14

11

13

16

18

15

17

19 20

D

E
19 20

11 12 13 14 15 16 17 18

F

Copyright © 2007 by Hanan Samet

tf14

z

Copyright © 2007 by Hanan Samet

tf15

v

INTERSECTION: interchange roles of BLACK and WHITE in
UNION

Copyright © 2007 by Hanan Samet

S
e
c
tio

n
-6

.3
.2

-A
p
p
lic

a
tio

n
s
 o

f S
p
a
tia

l D
a
ta

 S
tru

c
tu

re
s

431

tf1
SET OPERATIONS ON QUADTREES

1
b

UNION(S,T) : traverse S and T in tandem

1. GRAY(S) :

GRAY(T) : recursively process subtrees and
 merge if all resulting sons are BLACK

BLACK(T) : result is T
WHITE(T) : result is S

2. BLACK(S) : result is S
3. WHITE(S) : result is T

Copyright © 2007 by Hanan Samet

tf1

B

A

2

r

2

4

1

3

8

10

7

9
6

5

5

1 2 3 4

6

7 8 9 10

C

Copyright © 2007 by Hanan Samet

tf13

g

c

12

14

11

13

16

18

15

17

19 20

D

E
19 20

11 12 13 14 15 16 17 18

F

Copyright © 2007 by Hanan Samet

tf14

z

Copyright © 2007 by Hanan Samet

tf15

v

INTERSECTION: interchange roles of BLACK and WHITE in
UNION

Copyright © 2007 by Hanan Samet

tf16

r

Execution time is bounded by sum of nodes in two input
trees but may be less if don't create a new copy as really
just the sum of the minimum of the number of nodes at
corresponding levels of the two quadtrees

Copyright © 2007 by Hanan Samet

S
e
c
tio

n
-6

.3
.2

-A
p
p
lic

a
tio

n
s
 o

f S
p
a
tia

l D
a
ta

 S
tru

c
tu

re
s

432

tf1
SET OPERATIONS ON QUADTREES

1
b

UNION(S,T) : traverse S and T in tandem

1. GRAY(S) :

GRAY(T) : recursively process subtrees and
 merge if all resulting sons are BLACK

BLACK(T) : result is T
WHITE(T) : result is S

2. BLACK(S) : result is S
3. WHITE(S) : result is T

Copyright © 2007 by Hanan Samet

tf1

B

A

2

r

2

4

1

3

8

10

7

9
6

5

5

1 2 3 4

6

7 8 9 10

C

Copyright © 2007 by Hanan Samet

tf13

g

c

12

14

11

13

16

18

15

17

19 20

D

E
19 20

11 12 13 14 15 16 17 18

F

Copyright © 2007 by Hanan Samet

tf14

z

Copyright © 2007 by Hanan Samet

tf15

v

INTERSECTION: interchange roles of BLACK and WHITE in
UNION

Copyright © 2007 by Hanan Samet

tf16

r

Execution time is bounded by sum of nodes in two input
trees but may be less if don't create a new copy as really
just the sum of the minimum of the number of nodes at
corresponding levels of the two quadtrees

Copyright © 2007 by Hanan Samet

tf17

z

More efficient than vectors as make use of global data
1. vectors require a sort for efficiency
2. region quadtree is already sorted

Copyright © 2007 by Hanan Samet

S
e
c
tio

n
-6

.3
.2

-A
p
p
lic

a
tio

n
s
 o

f S
p
a
tia

l D
a
ta

 S
tru

c
tu

re
s

433

nf11

b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that

1. is position-independent

2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

A 1
3 24

5

A has neighbors5

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

434

nf11

b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that

1. is position-independent

2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

A 1
3 24

5

A has neighbors5

Copyright © 2007 by Hanan Samet

nf12

r

6

6

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

435

nf11

b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that

1. is position-independent

2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

A 1
3 24

5

A has neighbors5

Copyright © 2007 by Hanan Samet

nf12

r

6

6

Copyright © 2007 by Hanan Samet

nf13

z

7

7

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

436

nf11

b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that

1. is position-independent

2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

A 1
3 24

5

A has neighbors5

Copyright © 2007 by Hanan Samet

nf12

r

6

6

Copyright © 2007 by Hanan Samet

nf13

z

7

7

Copyright © 2007 by Hanan Samet

nf14

g

8

8

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

437

nf11

b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that

1. is position-independent

2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

A 1
3 24

5

A has neighbors5

Copyright © 2007 by Hanan Samet

nf12

r

6

6

Copyright © 2007 by Hanan Samet

nf13

z

7

7

Copyright © 2007 by Hanan Samet

nf14

g

8

8

Copyright © 2007 by Hanan Samet

nf15

v

• Some block configurations are impossible, thereby
simplifying a number of algorithms

1. impossible for a node A to have
two larger neighbors B and C
on directly opposite sides or
touching corners

2. partial overlap of two blocks B
and C with A is impossible
since a quadtree is constructed
by recursively splitting blocks
into blocks that have side
lengths that are powers of 2

A

A

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

438

nf11

b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that

1. is position-independent

2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

A 1
3 24

5

A has neighbors5

Copyright © 2007 by Hanan Samet

nf12

r

6

6

Copyright © 2007 by Hanan Samet

nf13

z

7

7

Copyright © 2007 by Hanan Samet

nf14

g

8

8

Copyright © 2007 by Hanan Samet

nf15

v

• Some block configurations are impossible, thereby
simplifying a number of algorithms

1. impossible for a node A to have
two larger neighbors B and C
on directly opposite sides or
touching corners

2. partial overlap of two blocks B
and C with A is impossible
since a quadtree is constructed
by recursively splitting blocks
into blocks that have side
lengths that are powers of 2

A

A

Copyright © 2007 by Hanan Samet

nf16

r

C

B

C
B

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

439

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1

b

A

D

C E

G

FB

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

440

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1

b

A

D

C E

G

FB

Copyright © 2007 by Hanan Samet

nf22

r

1

2

3 4

5

6

NE

NE

NW

NW

NE

NW

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

441

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1

b

A

D

C E

G

FB

Copyright © 2007 by Hanan Samet

nf22

r

1

2

3 4

5

6

NE

NE

NW

NW

NE

NW

Copyright © 2007 by Hanan Samet

nf23

z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

442

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1

b

A

D

C E

G

FB

Copyright © 2007 by Hanan Samet

nf22

r

1

2

3 4

5

6

NE

NE

NW

NW

NE

NW

Copyright © 2007 by Hanan Samet

nf23

z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 2007 by Hanan Samet

nf24

b

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);

/* Find = size neighbor of P in direction D */

begin

 value pointer node P;

 value direction D;

 return(SON(if ADJ(D,SONTYPE(P)) then

 EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)

 else FATHER(P),

 REFLECT(D,SONTYPE(P))));

end;

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

443

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1

b

A

D

C E

G

FB

Copyright © 2007 by Hanan Samet

nf22

r

1

2

3 4

5

6

NE

NE

NW

NW

NE

NW

Copyright © 2007 by Hanan Samet

nf23

z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 2007 by Hanan Samet

nf24

b

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);

/* Find = size neighbor of P in direction D */

begin

 value pointer node P;

 value direction D;

 return(SON(if ADJ(D,SONTYPE(P)) then

 EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)

 else FATHER(P),

 REFLECT(D,SONTYPE(P))));

end;

Copyright © 2007 by Hanan Samet

nf25

r

P D

NW

T

F

F

T

NE

T

T

F

F

SW

F

F

T

T

SE

F

T

T

F

ADJ(A,B)

N

E

S

W

A
B

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

444

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1

b

A

D

C E

G

FB

Copyright © 2007 by Hanan Samet

nf22

r

1

2

3 4

5

6

NE

NE

NW

NW

NE

NW

Copyright © 2007 by Hanan Samet

nf23

z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 2007 by Hanan Samet

nf24

b

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);

/* Find = size neighbor of P in direction D */

begin

 value pointer node P;

 value direction D;

 return(SON(if ADJ(D,SONTYPE(P)) then

 EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)

 else FATHER(P),

 REFLECT(D,SONTYPE(P))));

end;

Copyright © 2007 by Hanan Samet

nf25

r

P D

NW

T

F

F

T

NE

T

T

F

F

SW

F

F

T

T

SE

F

T

T

F

ADJ(A,B)

N

E

S

W

A
B

Copyright © 2007 by Hanan Samet

nf26

z

P D

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

445

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1

b

A

D

C E

G

FB

Copyright © 2007 by Hanan Samet

nf22

r

1

2

3 4

5

6

NE

NE

NW

NW

NE

NW

Copyright © 2007 by Hanan Samet

nf23

z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 2007 by Hanan Samet

nf24

b

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);

/* Find = size neighbor of P in direction D */

begin

 value pointer node P;

 value direction D;

 return(SON(if ADJ(D,SONTYPE(P)) then

 EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)

 else FATHER(P),

 REFLECT(D,SONTYPE(P))));

end;

Copyright © 2007 by Hanan Samet

nf25

r

P D

NW

T

F

F

T

NE

T

T

F

F

SW

F

F

T

T

SE

F

T

T

F

ADJ(A,B)

N

E

S

W

A
B

Copyright © 2007 by Hanan Samet

nf26

z

P D

Copyright © 2007 by Hanan Samet

nf27

g

NW

SW

NE

SW

NE

NE

SE

NW

SE

NW

SW

NW

SE

NW

SE

SE

NE

SW

NE

SW

REFLECT(A,B)

N

E

S

W

A
B

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

446

nf4
ANALYSIS OF NEIGHBOR FINDING

1. Bottom-up random image model where each pixel
has an equal probability of being black or white

• probability of the existence of a 2x2 block at a
particular position is 1/8

• OK for a checkerboard image but inappropriate for
maps as it means that there is a very low probability
of aggregation

• problem is that such a model assumes
independence

• in contrast, a pixel’s value is typically related to that
of its neighbors

2. Top-down random image model where the probability
of a node being black or white is p and 1-2p for being
gray

• model does not make provisions for merging

• uses a branching process model and analysis is in
terms of extinct branching processes

3. Use a model based on positions of the blocks in the
decomposition

• a block is equally likely to be at any position and
depth in the tree

• compute an average case based on all the possible
positions of a block of size 1x1, 2x2, 4x4, etc.

• 1 case at depth 0, 4 cases at depth 1, 16 cases at
depth 2, etc.

• this is not a realizable situation but in practice does
model the image accurately

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

447

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1

b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

448

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1

b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 2007 by Hanan Samet

nf52

r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

449

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1

b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 2007 by Hanan Samet

nf52

r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 2007 by Hanan Samet

nf53

z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

450

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1

b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 2007 by Hanan Samet

nf52

r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 2007 by Hanan Samet

nf53

z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 2007 by Hanan Samet

nf54

g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

451

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1

b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 2007 by Hanan Samet

nf52

r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 2007 by Hanan Samet

nf53

z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 2007 by Hanan Samet

nf54

g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 2007 by Hanan Samet

nf55

v

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n

–i·(2n

–i

 –1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n

–i rows

2n

–i

 –1 adjacencies per row
2n

–i

 ·20 have NCA at level n
2n

–i

 ·21 have NCA at level n –1
…
2n

–i

 ·2n

–i

–1 have NCA at level i +1

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

452

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1

b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 2007 by Hanan Samet

nf52

r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 2007 by Hanan Samet

nf53

z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 2007 by Hanan Samet

nf54

g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 2007 by Hanan Samet

nf55

v

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n

–i·(2n

–i

 –1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n

–i rows

2n

–i

 –1 adjacencies per row
2n

–i

 ·20 have NCA at level n
2n

–i

 ·21 have NCA at level n –1
…
2n

–i

 ·2n

–i

–1 have NCA at level i +1

Copyright © 2007 by Hanan Samet

nf56

b

• For node A at level i, direction D, and the NCA

at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

453

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1

b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 2007 by Hanan Samet

nf52

r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 2007 by Hanan Samet

nf53

z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 2007 by Hanan Samet

nf54

g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 2007 by Hanan Samet

nf55

v

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n

–i·(2n

–i

 –1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n

–i rows

2n

–i

 –1 adjacencies per row
2n

–i

 ·20 have NCA at level n
2n

–i

 ·21 have NCA at level n –1
…
2n

–i

 ·2n

–i

–1 have NCA at level i +1

Copyright © 2007 by Hanan Samet

nf56

b

• For node A at level i, direction D, and the NCA

at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 2007 by Hanan Samet

nf57

z

A

i

j

i

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

454

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1

b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 2007 by Hanan Samet

nf52

r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 2007 by Hanan Samet

nf53

z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 2007 by Hanan Samet

nf54

g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 2007 by Hanan Samet

nf55

v

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n

–i·(2n

–i

 –1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n

–i rows

2n

–i

 –1 adjacencies per row
2n

–i

 ·20 have NCA at level n
2n

–i

 ·21 have NCA at level n –1
…
2n

–i

 ·2n

–i

–1 have NCA at level i +1

Copyright © 2007 by Hanan Samet

nf56

b

• For node A at level i, direction D, and the NCA

at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 2007 by Hanan Samet

nf57

z

A

i

j

i

Copyright © 2007 by Hanan Samet

nf58

g

 nodes are visited on the average ≤ 4

2n− i
⋅ 2n − j

⋅ 2 ⋅(j − i)
j = i +1

n

∑
i =0

n−1

∑

2n − i
⋅ (2n− i

− 1)
i =0

n−1

∑

Copyright © 2007 by Hanan Samet

2
1
7
-Q

u
a
d
tre

e
 n

e
ig

h
b
o
r fin

d
in

g

455

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2013 Hanan Samet Sorting in Space – p.2/3

456

VASCO Spatial Applet

http://www.cs.umd.edu/˜hjs/quadtree/index.html

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.102/113

4
9

0
-4

9
9

--In
c
re

m
e

n
ta

l n
e

a
re

s
t n

e
ig

b
h

o
r fin

d
in

g

457

SAND Internet Browser

http://www.cs.umd.edu/~brabec/sandjava/
Copyright 2013 by Hanan Samet

SAND Internet Browser

http://www.cs.umd.edu/~brabec/sandjava/
Copyright 2008 by Hanan Samet

459

References

1. [Same06] H. Samet. Foundations of Multidimensional and Metric Data

Structures. Morgan-Kaufmann, San Francisco, CA, USA, 2006.

2. [Same90a] H. Samet. The Design and Analysis of Spatial Data Structures,

Addison-Wesley, Reading, MA, 1990.

3. [Same90b] H. Samet. Applications of Spatial Data Structures: Computer

Graphics, Image Processing, and GIS, Addison-Wesley, Reading, MA,

1990.

4. [Same08a] H. Samet. A Sorting Approach to Indexing Spatial Data,

International Journal of Shape Modeling 14, 1(June 2008), pp. 15–37.

5. [Same08b] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable

network distance browsing in spatial databases, In Proc. of SIGMOD, pp.

43–54, Vancouver, Canada, Jun 2008. (2008 ACM SIGMOD Best Paper Award)

6. [Sank09] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for

spatial networks, In Proc. of VLDB, vol 2, pp. 1210–1221, Lyon, France,

Aug 2009.

7. [Sank10] J. Sankaranarayanan and H. Samet. Query processing using

distance oracles for spatial networks, IEEE Transactions on Knowledge

and Data Engineering, 22(8):1158–1175, Aug 2010. (Best Papers of ICDE

2009 Special Issue)
Copyright c©2013 Hanan Samet Sorting in Space – p.3/3

460

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

A Sorting Approach to Indexing Spatial Data∗

HANAN SAMET

Center for Automation Research

Institute for Advanced Computer Studies

Computer Science Department

University of Maryland

College Park, Maryland 20742, USA

hjs@cs.umd.edu http://www.cs.umd.edu/~hjs

August 9, 2010

Abstract

Spatial data is distinguished from conventional data by having extent. Therefore, spatial queries involve

both the objects and the space that they occupy. The handling of queries that involve spatial data is facil-

itated by building an index on the data. The traditional role of the index is to sort the data, which means

that it orders the data. However, since generally no ordering exists in dimensions greater than 1 without a

transformation of the data to one dimension, the role of the sort process is one of differentiating between

the data and what is usually done is to sort the spatial objects with respect to the space that they occupy.

The resulting ordering is usually implicit rather than explicit so that the data need not be resorted (i.e., the

index need not be rebuilt) when the queries change (e.g., the query reference objects). The index is said to

order the space and the characteristics of such indexes are explored further.

1 Introduction

The representation of multidimensional data is an important issue in solid modeling as well as in many other

diverse fields including computer-aided design (CAD), computational geometry, finite-element analysis, and

computer graphics (e.g., [44, 45, 47]). The main motivation in choosing an appropriate representation is to

facilitate operations such as search. This means that the representation involves sorting the data in some

manner to make it more accessible. In fact, the term access structure or index is often used as an alternative

to the term data structure in order to emphasize the importance of the connection to sorting.

The most common definition of “multidimensional data” is a collection of points in a higher dimensional

space (i.e., greater than 1). These points can represent locations and objects in space as well as more general

records where each attribute (i.e., field) corresponds to a dimension and only some, or even none, of the

attributes are locational. As an example of nonlocational point data, consider an employee record that has

attributes corresponding to the employee’s name, address, gender, age, height, weight, and social security

number (i.e., identity number). Such records arise in database management systems and can be treated

as points in, for this example, a seven-dimensional space (i.e., there is one dimension for each attribute),

although the different dimensions have different type units (i.e., name and address are strings of characters;

gender is binary; while age, height, weight, and social security number are numbers some of which have

are associated with different units). Note that the address attribute could also be interpreted in a locational

sense using positioning coordinates such as latitude and longitude readings although the stringlike symbolic

representation is far more common.

∗This work was supported in part by the National Science Foundation under Grants EIA-00-91474, CCF-05-15241, and IIS-07-

13501, Microsoft Research, NVIDIA, and the University of Maryland General Research Board.

1

461

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

When multidimensional data corresponds to locational data, we have the additional property that all of

the attributes usually have the same unit (possibly with the aid of scaling transformations), which is distance

in space. In this case, we can combine the distance-denominated attributes and pose queries that involve

proximity. For example, we may wish to find the closest city to Chicago within the two-dimensional space

from which the locations of the cities are drawn. Another query seeks to find all cities within 50 miles of

Chicago. In contrast, such queries are not very meaningful when the attributes do not have the same type.

Nevertheless, other queries such as range queries that seek, for example, all individuals born between 1940

and 1960 whose weight ranges between 150 and 200 pounds are quite common and can be posed regardless

of the nature of the attributes.

When the range of multidimensional data spans a continuous physical space (i.e., an infinite collection of

locations), the issues become more interesting. In particular, we are no longer just interested in the locations

of objects, but, in addition, we are also interested in the space that they occupy (i.e., their extent). Some

example objects with extent include lines (e.g., roads, rivers), intervals (which can correspond to time as well

as space), regions of varying shape and dimensionality (e.g., lakes, counties, buildings, crop maps, polygons,

polyhedra), and surfaces. The objects (when they are not points) may be disjoint or could even overlap.

The fact that the objects have extent has a direct effect on the type of indexes that we need. This can

be best understood by examining the nature of the queries that we wish to support. For example, consider

a database of objects. There are three types of queries that can be posed to such a database. The first is

the set of queries about the objects themselves such as finding all objects that contain a given point or set

of points, have a non-empty intersection with a given object, have a partial boundary in common, have a

boundary in common, have any points in common, contain a given object, included in a given object, etc.

The second consists of proximity queries such as the nearest object to a given point or object, and all objects

within a given distance of a point or object (also known as a range or window query). The third consists of

queries involving non-spatial attributes of objects such as given a point or object, finding the nearest object

of a particular type, the minimum enclosing object of a particular type, or all the objects of a particular type

whose boundary passes through it.

Being able to support the different types of queries described above has a direct effect on the type of

indexes that are useful for such data. In particular, recall our earlier observation that a record in a conventional

database may be considered as a point in a multidimensional space. For example, a straight line segment

object having endpoints (x1,y1) and (x2,y2) can be transformed (i.e., represented) as the point (x1,y1,x2,y2)
in a 4-d space (termed a corner transformation [50])1. This representation is good for queries about the line

segments (the first type), while it is not good for proximity queries (i.e., the second and third type) since

points outside the object are not mapped into the higher dimensional space. In particular, the representative

points of two objects that are physically close to each other in the original space (e.g., 2-d for lines) may be

very far from each other in the higher dimensional space (e.g., 4-d), thereby leading to large search regions.

This is especially true if there is a great difference in the relative size of the two objects (e.g., a short line

in proximity to a long line as in Figure 1). On the other hand, when the objects are small (e.g., their extent

is small), then the method works reasonably well as the objects are basically point objects. The problem

is that the transformation only transforms the space occupied by the objects and not the rest of the space

(e.g., the query point). Proponents of the transformation method argue that this problem can be overcome by

projecting back to original space and indexing on the projection (e.g., [54]). However, at this point, it is not

unreasonable to ask why we bother to make the transformation in the first place.

Figure 1: Example of two objects that are close to each other in the original space but are
not clustered in the same region of the transformed space when using a transformation such
as the corner transformation.

1Although for ease of visualization, our discussion and examples are in terms of line segment and rectangle objects, it is applicable

to data of arbitrary dimension such as polyhedra and hyperrectangles.

2

462

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

It is important to observe that our notion of sorting spatial objects is more one of differentiating between

the objects which is different from the conventional one which is intimately tied to the notion of providing

an ordering. As we know, such an ordering implies a linearization which restricts the underlying data to one

dimension, and such an ordering usually does not exist in dimensions d higher than one save for a dominance

relationship (e.g., [39]) where point a = {ai|1 ≤ i ≤ d} is said to dominate point b = {bi|1 ≤ i ≤ d} if

bi ≤ ai,1 ≤ i≤ d. On the other hand, it is clear that the rationale for our discussion is that the data in which

we are interested is of dimension greater than one. This leads to the conclusion that what is needed is an index

that sorts (i.e., differentiates) between objects on the basis of spatial occupancy (i.e., their spatial extent). In

other words, it sorts the objects relative to the space that they occupy, and this is the focus of the rest of this

paper.

Before choosing a particular index we should also make sure that the following requirements are satisfied.

First of all, the index should be compatible with the type of data (i.e., spatial objects) that is being stored. In

other words, it should enable users to distinguish between different objects as well as render the search effi-

cient in terms of pruning irrelevant objects from further consideration. Second, we must have an appropriate

zero or reference point. In the case of spatial occupancy, this is usually some easily identified point or object

(e.g., the origin of the multidimensional space from which the objects are drawn). Most importantly, given

our observation about the absence of an ordering, it is best to have an implicit rather than an explicit index.

In particular, an implicit index is needed because it is impossible to foresee all possible queries in advance.

For example, in the case of spatial relationships such as left, right, up, down, etc. it is impractical to have a

data structure which has an attribute for every possible spatial relationship. In other words, the index should

support the ability to derive the spatial relationships between the objects. It should be clear that an implicit

index is superior to an explicit index, which, for example in the case of two-dimensional data such as the

locations of cities, sorts the cities on the basis of their distance from a given point. The problem is that

this sorting order is inapplicable to other reference points. In other words, having sorted all of the cities in

the US with respect to their distance from Chicago, the result is useless if we want to find the closest city

to New Orleans that satisfies a particular condition like having a population greater than 50,000 inhabitants.

Therefore, having an implicit index means that we don’t have to resort the data for queries other than updates.

2 Methods Based on Spatial Occupancy

h

a b

e

fi

c

d

g

(a)

a b

R3:

R1: R3 R4

d g

R4:

c i

R5:

e f

R6:

R2: R5 R6

R0: R1 R2

h

(b)

h

a b

e

f
i

c

d

g

Q

R3

R4

R5 R6

R0R1

R2

(c)

Figure 2: (a) Example collection of straight line segments embedded in a 4×4 grid, (b) the
object hierarchy for the R-tree corresponding to the objects in (a), and (c) the spatial extent
of the minimum bounding rectangles corresponding to the object hierarchy in (b). Notice that
the leaf nodes in (b) also store bounding rectangles although this is only shown for the nonleaf
nodes.

The indexing methods that are based on sorting the spatial objects by spatial occupancy essentially de-

compose the underlying space from which the data is drawn into regions called buckets in the spirit of classical

hashing methods, with the difference that the spatial indexing methods preserve order. In other words, objects

in close proximity should be placed in the same bucket or at least in buckets that are close to each other in the

sense of the order in which they would be accessed (i.e., retrieved from secondary storage in case of a false

3

463

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

hit, etc.).

There are two principal methods of representing spatial data. The first is to use an object hierarchy that

initially aggregates objects into groups, preferably based on their spatial proximity, and then uses proximity

to further aggregate the groups thereby forming a hierarchy, where the number of objects that are aggregated

in each node of the hierarchy is permitted to range between parameters m≤ ⌈M/2⌉ and M. The rationale for

choosing this type of a range is for the hierarchy to mimic the behavior of a B-tree (e.g., [15]), where each

element of the hierarchy acts like a disk page and thus is guaranteed to be half full, provided that m= ⌈M/2⌉.

Note that the object hierarchy is not unique as it depends on the manner in which the objects were

aggregated to form the hierarchy (e.g., minimizing overlap between objects or coverage of the underlying

space). Queries are facilitated by also associating a minimum bounding box with each object and group

of objects as this enables a quick way to test if a point can possibly lie within the area spanned by the

object or group of objects. A negative answer means that no further processing is required for the object

or group while a positive answer means that further tests must be performed. Thus the minimum bounding

box serves to avoid wasting work. Equivalently, it serves to differentiate (i.e., “sort”) between occupied and

unoccupied space. Data structures that make use of axis-aligned bounding boxes (AABB) such as the R-

tree [23] and the R∗-tree [10] illustrate the use of this method, as well as the more general oriented bounding

box (OBB) where the sides are orthogonal, while no longer having to be parallel to the coordinate axes

(e.g., [22, 40]). In addition, some data structures use other shapes for the bounding boxes such as spheres (e.g.,

SS-tree [35, 61]), combinations of hyperrectangles and hyperspheres (e.g.,SR-tree [30]), truncated tetrahedra

(e.g., prism tree [38]), as well as triangular pyramids which are 5-sided objects with two parallel triangular

faces and three rectangular faces forming a three-dimensional pie slice (e.g., BOXTREE [9]). These data

structures differ primarily in the properties of the bounding boxes, and their interrelationships, that they use

to determine how to aggregate the bounding boxes, and, of course, the objects. Aggregation is an issue

when the data structure is used in a dynamic environment, where objects are inserted and removed from the

hierarchy thereby leading to elements that are full or sparse vis-a-vis the values of m and M.

As an example of an R-tree, consider the collection of straight line segment objects given in Figure 2(a)

shown embedded in a 4×4 grid. Figure 2(b) is an example of the object hierarchy induced by an R-tree for

this collection, with m = 2 and M = 3. Figure 2(c) shows the spatial extent of the bounding rectangles of the

nodes in Figure 2(a), with heavy lines denoting the bounding rectangles corresponding to the leaf nodes, and

broken lines denoting the bounding rectangles corresponding to the subtrees rooted at the nonleaf nodes.

The drawback of the object hierarchy approach is that from the perspective of a space decomposition

method, the resulting hierarchy of bounding boxes often leads to a non-disjoint decomposition of the under-

lying space. This means that if a search fails to find an object in one path starting at the root, then it is not

necessarily the case that the object will not be found in another path starting at the root. This is the case in

Figure 2(c) when we search for the line segment object that contains Q. In particular, we first visit nodes R1
and R4 unsuccessfully, and thus need to visit nodes R2 and R5 in order to find the correct line segment object

i.

The second method is based on a decomposition (usually recursive) of the underlying space into disjoint

blocks so that a subset of the objects is associated with each block. There are several ways to proceed. The

first is to simply redefine the decomposition and aggregation associated with the object hierarchy method so

that the minimum bounding boxes are decomposed into disjoint boxes, thereby also implicitly partitioning

the underlying objects that they bound. In this case, the partition of the underlying space is heavily dependent

on the data and is said to be at arbitrary positions. The k-d-B-tree [42] and the R+-tree [51] are examples of

such an approach, with the difference being that in the k-d-B-tree, the entire space which contains the objects

is decomposed into subspaces and it is these subspaces that are aggregated, while in the R+-tree, it is the

bounding boxes that are decomposed and subsequently aggregated.

Figure 3 is an example of one possible R+-tree for the collection of line segments in Figure 2(a). This

particular tree is of order (2,3) although in general it is not possible to guarantee that all nodes save for the

root node will always have a minimum of 2 entries. In particular, the expected B-tree performance guarantees

are not necessarily valid (i.e., pages are not guaranteed to be m/M full) unless we are willing to perform very

complicated record insertion and deletion procedures. Notice that in this example line segment objects c, h,

and i appear in two different nodes. Of course, other variants are possible since the R+-tree is not unique.

4

464

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

h

a b

e

f
i

c

d

g

(b)

(a)

R3:

R1: R3 R4

d g

R4:

a b

R5:

c f

R6:

R2: R5 R6

R0: R1 R2

h

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

R5

R3

R4 R6

R0

R1

R2

c h i e i

Figure 3: (a) R+-tree for the collection of line segments in Figure 2(a) with m=2 and M=3,
and (b) the spatial extents of the bounding rectangles. Notice that the leaf nodes in the index
also store bounding rectangles although this is only shown for the nonleaf nodes.

The second way is to partition the underlying space into cells (i.e., blocks) at fixed positions so that

all resulting cells are of uniform size, which is the case when using the uniform grid (e.g., [11, 33, 43]),

also the standard indexing method for maps. Figure 2(a) is an example of a 4× 4 uniform grid in which a

collection of straight line segments has been embedded. One drawback of the uniform grid is the possibility

of a large number of empty or sparsely-filled cells when the objects are not uniformly distributed, as well

as the possibility that most of the objects will lie in a small subset of the cells. This is resolved by making

use of a variable resolution representation such as one of the quadtree variants (e.g., [47]) where the subset

of the objects that are associated with the cells is defined by placing an upper bound on the number of

objects that can be associated with each cell. The cells that comprise the underlying space are recursively

decomposed into congruent sibling cells whenever this upper bound is exceeded. Therefore, the upper bound

serves as a stopping condition for the recursive decomposition process. An alternative, as exemplified by

the PK-tree [46, 58], makes use of a lower bound on the number of objects that can be associated with each

cell (termed an instantiation or aggregation threshold). Depending on the underlying representation that is

used, the result can also be viewed as a hierarchy of congruent cells (see, e.g., the pyramid structure [55]

which is a family of representations that make use of multiple resolution which can be characterized as image

hierarchies [47]).

The PR quadtree [36, 45] is one example of a variable resolution representation for point objects where the

underlying space in which a set of point objects lie is recursively decomposed into four equal-sized square-

shaped cells until each cell is empty or contains just one object. For example, Figure 4 is the PR quadtree

for the set of point objects A–F and P. The PR quadtree represents the underlying decomposition as a tree

although our figure only illustrates the resulting decomposition of the underlying space into cells (i.e., the

leaf nodes/blocks of the PR quadtree).

Turning to more complex such objects such as line segments, which have extent, we consider the PM1

quadtree [49]. It is an example of a variable resolution representation for a collection of straight line segment

objects such as the polygonal subdivision given in Figure 2(a). In this case, the stopping condition of its

decomposition rule stipulates that partitioning occurs as long as a cell contains more than one line segment

unless the line segments are all incident at the same vertex, which is also in the same cell (e.g., Figure 5(a)),

The PM1 quadtree and its variants are ideal for representing polygonal meshes as they provide an access

structure to enable the quick determination of the polygon that contains a given point (i.e., a point location

operation). In particular, the PM2 quadtree [49], which differs from the PM1 quadtree by permitting a cell

c to contain several line segments as long as they are incident at the same vertex v regardless of whether or

not v is in c (e.g., Figure 5(b)), is particularly suitable for representing triangular meshes [16]. A similar

representation to the PM1 quadtree has been devised for collections of three-dimensional objects such as

5

465

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

P

12 10 6 7

11 9 1 3 5

2 4

13 8

D

E C

A

B

F

Figure 4: Block decomposition induced by the PR quadtree for the point objects A–F and P.

polyhedra images (e.g., [8] and the references cited in [47]). The decomposition criteria are such that no cell

contains more than one face, edge, or vertex unless the faces all meet at the same vertex or are adjacent to the

same edge.

(a) (b)

Figure 5: (a) PM1 quadtree and (b) PM2 quadtree for a collection of straight line segment
objects that form a triangulation.

The above variants of the PM quadtree and PM octree represent an object by its boundary. The region

quadtree [32] and region octree [27, 34] are variable resolution representations of objects by their interiors.

In particular, the environment containing the objects is recursively decomposed into four or eight, respec-

tively, rectangular congruent blocks until each block is either completely occupied by an object or is empty.

For example, Figure 6(b) is the block decomposition for the region quadtree corresponding to the result of

embedding the two-dimensional object in Figure 6(a) in an 8×8 grid, while Figure 7(b) is the block decom-

position for the region octree corresponding to the three-dimensional staircaselike object in Figure 7(a).

Region octrees are also known as volumetric or voxel representations and are useful for medical ap-

plications. They are to be contrasted with procedural representations such as constructive solid geometry

(CSG) [41] where primitive instances of objects are combined to form more complex objects by use of geo-

metric transformations and regularized Boolean set operations (e.g., union, intersection). A disadvantage of

the CSG representation is that it is not unique. In particular, there are frequently several ways of constructing

an object (e.g., from different primitive elements). In addition, there is no overall notion of geometry except

of the primitives that form each of the objects and thus there is no easy correlation between the objects and

6

466

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

1

2 3

4 5

6
7 8

9 10
13

11 12

14

15 16

17 18
19

(a) (b)

Figure 6: (a) Sample object, and (b) its region quadtree block decomposition with the blocks
of the object being shaded, assuming that it is embedded in an 8×8 grid.

the space in which they are embedded unless techniques such as the PM-CSG tree [62] are used.

14 15

4
9 10

6

1 2

13

1211

5

(a) (b)

Figure 7: (a) Example three-dimensional object, and (b) its region octree block decomposition.

The principal drawback of the disjoint method is that when the objects have extent (e.g., line segments,

rectangles, and any other non-point objects), then an object is associated with more than one cell when the

object has been decomposed. This means that queries such as those that seek the length of all objects in a

particular spatial region will have to remove duplicate objects before reporting the total length. Nevertheless,

methods have been developed that avoid these duplicates by making use of the geometry of the type of

the data that is being represented (e.g., [4, 5, 17]). Note that the result of constraining the positions of the

partitions means that there is a limit on the possible sizes of the resulting cells (e.g., a power of 2 in the

case of a quadtree variant). However, the result is that the underlying representation is good for operations

between two different data sets as their representations are in registration (i.e., it is easy to correlate occupied

and unoccupied space in the two data sets, which is not easy when the positions of the partitions are not

constrained as is the case with methods rooted in representations based an object hierarchy even though the

resulting decomposition of the underlying space is disjoint).

The PR, PM, and region quadtrees make use of a space hierarchy of where each level of the hierarchy

contains congruent cells. The difference is that in the PR quadtree, each object is associated with just one cell,

while in the PM and region quadtrees, the extent of the objects causes them to be decomposed into subobjects

and thereby possibly be associated with more than one cell, although the cells are disjoint. At times, we

want to use a space decomposition method that makes use of a hierarchy of congruent cells while still not

decomposing the objects. In this case, we relax the disjointness requirement by stipulating that only the cells

at a given level (i.e., depth) of the hierarchy must be disjoint. In particular, we recursively decompose the

cells that comprise the underlying space into congruent sibling cells so that each object is associated with

just one cell, and this is the smallest possible congruent cell that contains the object in its entirety. Assuming

a top-down subdivision process that decomposes each cell into four square cells (i.e., a quadtree) at each

level of decomposition, the result is that each object is associated with its minimum enclosing quadtree cell.

7

467

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

Subdivision ceases whenever a cell contains no objects. Alternatively, subdivision can also cease once a cell

is smaller than a predetermined threshold size. This threshold is often chosen to be equal to the expected size

of the objects. We use the term MX-CIF quadtree [1, 31] (see also the multilayer grid file [53], R-file [28],

filter tree [52], and SQ-histogram [3]) to describe such a decomposition method.

In order to simplify our presentation, we assume that the objects stored in the MX-CIF quadtree are

rectangles, although the MX-CIF quadtree is applicable to arbitrary objects in arbitrary dimensions in which

case it keeps track of their minimum bounding boxes. For example, Figure 8b is the tree representation of the

MX-CIF quadtree for a collection of rectangle objects given in Figure 8a. Note that objects can be associated

with both terminal and non-terminal nodes of the tree.

(a) (b)

A

E

G

F

D

CB

{F}

{G}

{A,E}

{B,C,D}

E

D B

(c) (d)

Figure 8: (a) Collection of rectangle objects and the cell decomposition induced by the MX-CIF
quadtree; (b) the tree representation of (a); the binary trees for the y axes passing through
the root of the tree in (b), and through (d) the NE son of the root of the tree in (b).

Since there is no limit on the number of objects that are associated with a particular cell, an additional

decomposition rule is sometimes provided to distinguish between these objects. For example, in the case

of the MX-CIF quadtree, a one-dimensional analog of the two-dimensional decomposition rule is used. In

particular, all objects that are associated with a given cell b are partitioned into two sets: those that intersect

(or whose sides are collinear) with the vertical axis passing through the center of b, and those that intersect

(or whose sides are collinear) with the horizontal axis passing through the center of b. Objects that intersect

with the center of b are associated with the horizontal axis. Associated with each axis is a one-dimensional

MX-CIF quadtree (i.e., a binary tree), where each object o is associated with the node that corresponds to

o’s minimum enclosing interval. For example, Figure 8c and Figure 8d illustrate the binary trees associated

with the y axes passing through the root and the NE son of the root, respectively, of the MX-CIF quadtree

of Figure 8b. Thus we see that the two-dimensional MX-CIF quadtree acts like a hashing function with the

one-dimensional MX-CIF quadtree playing the role of a collision resolution technique.

The MX-CIF quadtree can be interpreted as an object hierarchy where the objects appear at different

levels of the hierarchy and the congruent cells play the same role as the minimum bounding boxes. The

difference is that the set of possible minimum bounding boxes is constrained to the set of possible congruent

cells. Thus, we can view the MX-CIF quadtree as a variable resolution R-tree. An alternative interpretation

is that the MX-CIF quadtree provides a variable number of grids, each one being at half the resolution of its

immediate successor, where an object is associated with the grid whose cells have the tightest fit. In fact, this

interpretation forms the basis of the filter tree [52] and the multilayer grid file [53] where the only difference

from the MX-CIF quadtree is the nature of the access structure for the cells (i.e., a hierarchy of grids based

on a regular decomposition for the filter tree and based on a grid file for the multilayer grid file, and a tree

structure for the MX-CIF quadtree).

One of the main drawbacks of the MX-CIF quadtree is that the size (i.e., width w) of the cell c corre-

sponding to the minimum enclosing quadtree cell of object o’s minimum enclosing bounding box b is not a

function of the size of b or o. Instead, it is dependent on the position of o. In fact, c is often considerably

larger than b thereby causing inefficiency in search operations due to a reduction in the ability to prune ob-

jects from further consideration. This situation arises whenever b overlaps the axes lines that pass through

8

468

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

the center of c, and thus w can be as large as the width of the entire underlying space.

There are several ways of overcoming this drawback. One easy way is to introduce redundancy (i.e.,

representing the object several times thereby replicating the number of references to it) by decomposing

the quadtree cell c into smaller quadtree cells, each of which minimally encloses some portion of o (or,

alternatively, some portion of o’s minimum enclosing bounding box b) and contains a reference to o. The

expanded MX-CIF quadtree [2] is a simple example of such an approach where c is decomposed once into

four subblocks ci, which are then decomposed further until obtaining the minimum enclosing quadtree cell si
for the portion of o, if any, that is covered by ci. A more general approach. used in spatial join algorithms [29],

sets a bound on the number of replications, (termed a size bound [37] and used in the GESS method [18])

or on the size of the covering quadtree cells resulting from the decomposition of c that contain the replicated

references (termed an error bound [37]).

Replicating the number of references to the objects is reminiscent of the manner in which the non-

disjointness of the decomposition of the underlying space resulting from the use of an object hierarchy was

overcome, and thus has the same shortcoming of possibly requiring the application of a duplicate object re-

moval step prior to reporting the answer to some queries. The cover fieldtree [19, 20], and the equivalent loose

quadtree (loose octree in three dimensions) [57], adopt a different approach at overcoming the independence

of the sizes of c and b drawback. In particular, they do not replicate the objects. Instead, they expand the

size of the space that is spanned by each quadtree cell c of width w by a cell expansion factor p (p > 0) so

that the expanded cell is of width (1+ p) ·w. In this case, an object is associated with its minimum enclosing

expanded quadtree cell. It has been shown that given a quadtree cell c of width w and cell expansion factor p,

the radius r of the minimum bounding box b of the smallest object o that could possibly be associated with

c must be greater than pw/4 [57]. However, the utility of the loose quadtree is best evaluated in terms of the

inverse of this relation (i.e., the maximum possible width w of c given an object o with minimum bounding

box b of radius r) as reducing w is the primary motivation for the development of the loose quadtree as an

alternative to the MX-CIF quadtree.

It has been shown [48] that the maximum possible width w of c given an object o with minimum bounding

box b of radius r is just a function of r and p and is independent of the position of o. More precisely, taking

the ratio of cell to bounding box width w/(2r), we have [48]:

1/(1 + p)≤ w/(2r) ≤ 1/p.

In particular, the range of possible ratios of width w/(2r) as a function of p for p ≥ 1 takes on at most two

values, and usually just one value [48].

The ideal value for p is 1 [57]. The rationale is that using cell expansion factors much smaller than 1

increases the likelihood that the minimum enclosing expanded quadtree cell is large (as is the case for the

MX-CIF quadtree, where p = 0), and that letting p be much larger than 1 results in the areas spanned by the

expanded quadtree cells being too large, thereby having much overlap. For example, letting p = 1, Figure 9

is the loose quadtree corresponding to the collection of objects in Figure 8(a) and its MX-CIF quadtree in

Figure 8(b). In this example, there are only two differences between the loose and MX-CIF quadtrees:

1. Rectangle object E is associated with the SW child of the root of the loose quadtree instead of with the

root of the MX-CIF quadtree.

2. Rectangle object B is associated with the NW child of the NE child of the root of the loose quadtree

instead of with the NE child of the root of the MX-CIF quadtree.

Note that the loose quadtree (cover fieldtree) is not the only approach at overcoming the drawback of the

MX-CIF quadtree. In particular, the partition fieldtree [19, 20] is an alternative method of overcoming the

drawback of the MX-CIF quadtree. The partition fieldtree proceeds by shifting the positions of the centroids

of cells at successive levels of subdivision by one-half the width of the cell that is being subdivided. Figure 10

shows an example of such a subdivision. This subdivision rule guarantees that the width w of the minimum

enclosing quadtree cell for the minimum bounding box b for object o is bounded by eight times the maximum

extent r of b [20, 47]. The same ratio is obtained for the cover fieldtree when p = 1/4, and thus the partition

fieldtree is superior to the cover fieldtree when p < 1/4 [47].

9

469

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

(a) (b)

A

E

G
F

D

CB

{G}

{A}

{B}

{E}
{C,D}

{F}

Figure 9: (a) Cell decomposition induced by the loose quadtree for a collection of rectangle
objects identical to those in Figure 8(a), and (b) its tree representation.

Figure 10: Example of the subdivision induced by a partition fieldtree.

3 Examples of the Utility of Sorting

As an example of the utility of sorting spatial data suppose that we want to determine the nearest object to

a given point (i.e., a “pick” operation in computer graphics). In order to see how the search is facilitated

by sorting the underlying data, consider the set of point objects A–F in Figure 4 which are stored in a PR

quadtree [36, 45], and let us find the nearest neighbor of P. The search must first determine the leaf that

contains the location/object whose nearest neighboring object is sought (i.e., P). Assuming a tree-based

index, this is achieved by a top-down recursive algorithm. Initially, at each level of the recursion, we explore

the subtree that contains P. Once the leaf node containing P has been found (i.e., 1), the distance from P to

the nearest object in the leaf node is calculated (empty leaf nodes have a value of infinity). Next, we unwind

the recursion so that at each level, we search the subtrees that represent regions overlapping a circle centered

at P whose radius is the distance to the closest object that has been found so far. When more than one subtree

must be searched, the subtrees representing regions nearer to P are searched before the subtrees that are

farther away (since it is possible that an object in them might make it unnecessary to search the subtrees that

are farther away).

In our example, the order in which the nodes are visited is given by their labels. We visit the brothers of

the node 1 containing the query point P (and all remaining nodes at each level) in the order of the minimum

distance from P to their borders (i.e., SE, NW, and NE for node 1). Therefore, as we unwind for the first

time, we visit the eastern brother of node 1 and its subtrees (nodes 2 and 3 followed by nodes 4 and 5), node

6, and node 7. Note that once we have visited node 2, there is no need to visit node 4 since node 2 contains

A. However, we must still visit node 3 containing point B (closer than A), but now there is no need to visit

node 5. Similarly, there is no need to visit nodes 6 and 7 as they are too far away from P given our knowledge

10

470

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

of A. Unwinding one more level reveals that due to the distance between P and A, we must visit node 8 as it

could contain a point that is closer to P than A; however, there is no need to visit nodes 9, 10, 11, 12, and 13.

The algorithm that we described can also be adapted to find the k nearest neighbors in which case the

pruning of objects that cannot serve as the k nearest neighbors is achieved by making use of the distance

to the kth nearest object that has been found so far. Having retrieved the k closest objects, should we be

interested in retrieving an additional object (i.e., the k+ 1th nearest object), then we have to reinvoke the

algorithm again to find the k+ 1 nearest objects. An alternative approach is incremental and makes use of a

priority queue [24, 25, 26] so that there is no need to look again for the neighboring objects that have been

reported so far.

There are many other applications where the sorting of objects is useful, and below we review a few

that arise in computer graphics. For example, sorting forms the basis of all operations on z buffers, visibility

calculations (e.g., BSP trees [21]), as well as back-to-front and front-to-back display algorithms. It also forms

the basis of Warnock’s hidden-line [59] and hidden-surface [60] algorithms that repeatedly subdivide the

picture area into successively smaller blocks while simultaneously searching it for areas that are sufficiently

simple to be displayed. It is also used to accelerate ray tracing by finding ray-object intersections (e.g., [7]).

4 Concluding Remarks

An overview has been given of the rationale for sorting spatial objects in order to be able to index them

thereby facilitating a number of operations involving search in the multidimensional domain. A distinction

has been made between spatial objects that could be represented by traditional methods that have been applied

to point data and those that have extent thereby rendering the traditional methods inapplicable.

Sorting is also used as the basis of an index in an environment where the data is drawn from a metric

space rather than a vector space. In this case, the only information that we have is a distance function d (often

a matrix) that indicates the degree of similarity (or dissimilarity) between all pairs of objects, given a set of N

objects. Usually, it is required that d obey the triangle inequality, be nonnegative, and be symmetric, in which

case it is known as a metric and also referred to as a distance metric. Indexes in such an environment are based

on either picking one distinguished object p and a value r, and then recursively subdividing the remaining

objects into two classes depending on a comparison of their distance from p with r, or by choosing two

distinguished objects p1 and p2 and recursively subdividing the remaining objects into two classes depending

on which of p1 or p2 is closer (e.g., [47, 56]). The difference between these methods and those for data that

lies in a vector space is that the subdivision lines in the embedding space from which the objects are drawn

are explicit for the vector space while they are implicit for the metric space (see [47] for more details).

The functioning of these various spatial sorting methods can be experienced by trying VASCO [12, 13,

14], a system for Visualizing and Animating Spatial Constructs and Operations. VASCO consists of a set of

spatial index JAVATM (e.g., [6]) applets that enable users on the worldwide web to experiment with a number

of hierarchical representations (e.g., [44, 45, 47]) for different spatial data types, and see animations of how

they support a number of search queries (e.g., nearest neighbor and range queries). The VASCO system can

be found at http://cs.umd.edu/~hjs/quadtree/.

Acknowledgments

I am deeply grateful to Jagan Sankaranarayanan for help with the figures and preparation for publication.

References

[1] D. J. Abel and J. L. Smith. A data structure and algorithm based on a linear key for a rectangle retrieval

problem. Computer Vision, Graphics, and Image Processing, 24(1):1–13, October 1983.

11

471

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

[2] D. J. Abel and J. L. Smith. A data structure and query algorithm for a database of areal entities.

Australian Computer Journal, 16(4):147–154, November 1984.

[3] A. Aboulnaga and J. F. Naughton. Accurate estimation of the cost of spatial selections. InProceedings of

the 16th IEEE InternationalConference on Data Engineering, pages 123–134, San Diego, CA, February

2000.

[4] W. G. Aref and H. Samet. Uniquely reporting spatial objects: yet another operation for comparing

spatial data structures. In Proceedings of the 5th International Symposium on Spatial Data Handling,

pages 178–189, Charleston, SC, August 1992.

[5] W. G. Aref and H. Samet. Hashing by proximity to process duplicates in spatial databases. In Proceed-

ings of the 3rd International Conference on Information and Knowledge Management (CIKM), pages

347–354, Gaithersburg, MD, December 1994.

[6] K. Arnold and J. Gosling. The JAVATM Programming Language. Addison-Wesley, Reading, MA, 1996.

[7] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In An Introduction to Ray Tracing,

A. S. Glassner, ed., chapter 6, pages 201–262. Academic Press, New York, 1989.

[8] D. Ayala, P. Brunet, R. Juan, and I. Navazo. Object representation by means of nonminimal division

quadtrees and octrees. ACM Transactions on Graphics, 4(1):41–59, January 1985.

[9] G. Barequet, B. Chazelle, L. J. Guibas, J. S. B. Mitchell, and A. Tal. BOXTREE: a hierarchical rep-

resentation for surfaces in 3D. In Proceedings of the EUROGRAPHICS’96 Conference, J. Rossignac

and F. X. Sillion, eds., pages 387–396, 484, Poitiers, France, August 1996. Also in Computer Graphics

Forum, 15(3):387–396, 484, August 1996.

[10] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: an efficient and robust access

method for points and rectangles. In Proceedings of the ACM SIGMOD Conference, pages 322–331,

Atlantic City, NJ, June 1990.

[11] J. L. Bentley and J. H. Friedman. Data structures for range searching. ACM Computing Surveys,

11(4):397–409, December 1979.

[12] F. Brabec and H. Samet. The VASCO R-tree JAVATM applet. In Visual Database Systems (VDB4).

Proceedings of the IFIP TC2//WG2.6 Fourth Working Conference on Visual Database Systems, pages

147–153, Chapman and Hall, L’Aquila, Italy, May 1998.

[13] F. Brabec and H. Samet. Visualizing and animating R-trees and spatial operations in spatial databases on

the worldwide web. In Visual Database Systems (VDB4). Proceedings of the IFIP TC2//WG2.6 Fourth

Working Conference on Visual Database Systems, pages 123–140, Chapman and Hall, L’Aquila, Italy,

May 1998.

[14] F. Brabec and H. Samet. Visualizing and animating search operations on quadtrees on the worldwide

web. In Proceedings of the 16th European Workshop on Computational Geometry, pages 70–76, Eilat,

Israel, March 2000.

[15] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, June 1979.

[16] L. De Floriani, M. Facinoli, P. Magillo, and D. Dimitri. A hierarchical spatial index for triangulated

surfaces. In Proceedings of the Third International Conference on Computer Graphics Theory and

Applications (GRAPP 2008), J. Braz, N. Jardim Nunes, and J. Madeiras Pereira, eds., pages 86–91,

Funchal, Madeira, Portugal, January 2008.

[17] J.-P. Dittrich and B. Seeger. Data redundancy and duplicate detection in spatial join processing. In

Proceedings of the 16th IEEE International Conference on Data Engineering, pages 535–546, San

Diego, CA, February 2000.

12

472

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

[18] J.-P. Dittrich and B. Seeger. GESS: a scalable similarity-join algorithm for mining large data sets in high

dimensional spaces. In Proceedings of the 7th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, pages 47–56, San Francisco, August 2001.

[19] A. Frank. Problems of realizing LIS: storage methods for space related data: the fieldtree. Technical

Report 71, Institute for Geodesy and Photogrammetry, ETH, Zurich, Switzerland, June 1983.

[20] A. U. Frank and R. Barrera. The Fieldtree: a data structure for geographic information systems.

In Design and Implementation of Large Spatial Databases—1st Symposium, SSD’89, A. Buchmann,

O. Günther, T. R. Smith, and Y.-F. Wang, eds., vol. 409 of Springer-Verlag Lecture Notes in Computer

Science, pages 29–44, Santa Barbara, CA, July 1989.

[21] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a priori tree structures.

Computer Graphics, 14(3):124–133, July 1980. Also in Proceedings of the SIGGRAPH’80 Conference,

Seattle, WA, July 1980.

[22] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: a hierarchical structure for rapid interference

detection. In Proceedings of the SIGGRAPH’96 Conference, pages 171–180, New Orleans, LA, August

1996.

[23] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of the ACM

SIGMOD Conference, pages 47–57, Boston, June 1984.

[24] A. Henrich. A distance-scan algorithm for spatial access structures. In Proceedings of the 2nd

ACM Workshop on Geographic Information Systems, N. Pissinou and K. Makki, eds., pages 136–143,

Gaithersburg, MD, December 1994.

[25] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Advances in Spatial Databases—4th

International Symposium, SSD’95, M. J. Egenhofer and J. R. Herring, eds., vol. 951 of Springer-Verlag

Lecture Notes in Computer Science, pages 83–95, Portland, ME, August 1995.

[26] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transactions on Database

Systems, 24(2):265–318, June 1999. Also University of Maryland Computer Science Technical Report

TR–3919, July 1998.

[27] G. M. Hunter. Efficient computation and data structures for graphics. PhD thesis, Department of

Electrical Engineering and Computer Science, Princeton University, Princeton, NJ, 1978.

[28] A. Hutflesz, H.-W. Six, and P. Widmayer. The R-file: an efficient access structure for proximity queries.

In Proceedings of the 6th IEEE International Conference on Data Engineering, pages 372–379, Los

Angeles, February 1990.

[29] E. Jacox and H. Samet. Spatial join techniques. ACM Transactions on Database Systems, 32(1):7,

March 2007. Also an expanded version in University of Maryland Computer Science Technical Report

TR–4730, June 2005.

[30] N. Katayama and S. Satoh. The SR-tree: an index structure for high-dimensional nearest neighbor

queries. In Proceedings of the ACM SIGMOD Conference, J. Peckham, ed., pages 369–380, Tucson,

AZ, May 1997.

[31] G. Kedem. The quad-CIF tree: a data structure for hierarchical on-line algorithms. In Proceedings of

the 19th Design Automation Conference, pages 352–357, Las Vegas, NV, June 1982. Also University

of Rochester Computer Science Technical Report TR–91, September 1981.

[32] A. Klinger. Patterns and search statistics. In Optimizing Methods in Statistics, J. S. Rustagi, ed., pages

303–337. Academic Press, New York, 1971.

[33] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, vol. 3. Addison-Wesley,

Reading, MA, second edition, 1998.

13

473

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

[34] D. Meagher. Geometric modeling using octree encoding. Computer Graphics and Image Processing,

19(2):129–147, June 1982.

[35] S. M. Omohundro. Five balltree construction algorithms. Technical Report TR–89–063, International

Computer Science Institute, Berkeley, CA, December 1989.

[36] J. A. Orenstein. Multidimensional tries used for associative searching. Information Processing Letters,

14(4):150–157, June 1982.

[37] J. A. Orenstein. Redundancy in spatial databases. In Proceedings of the ACM SIGMOD Conference,

pages 294–305, Portland, OR, June 1989.

[38] J. Ponce and O. Faugeras. An object centered hierarchical representation for 3d objects: the prism tree.

Computer Vision, Graphics, and Image Processing, 38(1):1–28, April 1987.

[39] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New

York, 1985.

[40] D. R. Reddy and S. Rubin. Representation of three-dimensional objects. Computer Science Technical

Report CMU–CS–78–113, Carnegie-Mellon University, Pittsburgh, PA, April 1978.

[41] A. A. G. Requicha and H. B. Voelcker. Solid modeling: a historical summary and contemporary assess-

ment. IEEE Computer Graphics and Applications, 2(2):9–24, March 1982.

[42] J. T. Robinson. The K-D-B-tree: a search structure for large multidimensional dynamic indexes. In

Proceedings of the ACM SIGMOD Conference, pages 10–18, Ann Arbor, MI, April 1981.

[43] J. B. Rothnie Jr. and T. Lozano. Attribute based file organization in a paged memory environment.

Communications of the ACM, 17(2):63–69, February 1974.

[44] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS.

Addison-Wesley, Reading, MA, 1990.

[45] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.

[46] H. Samet. Decoupling partitioning and grouping: overcoming shortcomings of spatial indexing with

bucketing. ACM Transactions on Database Systems, 29(4):789–830, December 2004.

[47] H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan-Kaufmann, San

Francisco, 2006.

[48] H. Samet and J. Sankaranarayanan. Maximum containing cell sizes in cover fieldtrees and loose

quadtrees and octrees. Computer Science Technical Report TR–4900, University of Maryland, Col-

lege Park, MD, October 2007.

[49] H. Samet and R. E. Webber. Storing a collection of polygons using quadtrees. ACM Transactions on

Graphics, 4(3):182–222, July 1985.

[50] B. Seeger and H.-P. Kriegel. Techniques for design and implementation of efficient spatial access meth-

ods. InProceedings of the 14th InternationalConference on Very Large Databases (VLDB), F. Bachillon

and D. J. DeWitt, eds., pages 360–371, Los Angeles, August 1988.

[51] T. Sellis, N. Roussooulos, and C. Faloutsos. The R+-tree: a dynamic index for multi-dimensional

objects. In Proceedings of the 13th International Conference on Very Large Databases (VLDB), pages

71–79, Brighton, United Kingdom, September 1987.

[52] K. Sevcik and N. Koudas. Filter trees for managing spatial data over a range of size granularities. In Pro-

ceedings of the 22nd International Conference on Very Large Data Bases (VLDB), T. M. Vijayaraman,

A. P. Buchmann, C. Mohan, and N. L. Sarda, eds., pages 16–27, Mumbai (Bombay), India, September

1996.

14

474

Appeared in International Journal of Shape Modeling 14, 1(June 2008), pp. 15-37.

[53] H.-W. Six and P. Widmayer. Spatial searching in geometric databases. In Proceedings of the 4th IEEE

International Conference on Data Engineering, pages 496–503, Los Angeles, February 1988.

[54] J.-W. Song, K.-Y. Whang, Y.-K. Lee, M.-J. Lee, and S.-W. Kim. Spatial join processing using corner

transformation. IEEE Transactions on Knowledge and Data Engineering, 11(4):688–695, July/August

1999.

[55] S. L. Tanimoto and T. Pavlidis. A hierarchical data structure for picture processing. Computer Graphics

and Image Processing, 4(2):104–119, June 1975.

[56] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information Process-

ing Letters, 40(4):175–179, November 1991.

[57] T. Ulrich. Loose octrees. In Game Programming Gems, M. A. DeLoura, ed., pages 444–453. Charles

River Media, Rockland, MA, 2000.

[58] W. Wang, J. Yang, and R. Muntz. PK-tree: a spatial index structure for high dimensional point data. In

Proceedings of the 5th International Conference on Foundations of Data Organization and Algorithms

(FODO), pages 27–36, Kobe, Japan, November 1998.

[59] J. E. Warnock. A hidden line algorithm for halftone picture representation. Computer Science Technical

Report TR 4–5, University of Utah, Salt Lake City, UT, May 1968.

[60] J. E. Warnock. A hidden surface algorithm for computer generated half tone pictures. Computer Science

Technical Report TR 4–15, University of Utah, Salt Lake City, UT, June 1969.

[61] D. A. White and R. Jain. Similarity indexing with the SS-tree. In Proceedings of the 12th IEEE

International Conference on Data Engineering, S. Y. W. Su, ed., pages 516–523, New Orleans, LA,

February 1996.

[62] G. Wyvill and T. L. Kunii. A functional model for constructive solid geometry. Visual Computer,

1(1):3–14, July 1985.

15

475

Order from Morgan Kaufmann Publishers and receive 20% off!
Please refer to code 85511.

Mail: Elsevier Science, Order Fulfillment, 11830 Westline Industrial Dr., St. Louis, MO 63146

Phone: US/Canada 800-545-2522, 1-314-453-7010 (Intl.) ƒ Fax: 800-535-9935, 1-314-453-7095 (Intl.)

Email: usbkinfo@elsevier.com ƒ Visit Morgan Kaufmann on the Web: www.mkp.com
Volume discounts available, contact: NASpecialSales@elsevier.com

Foundations of Multidimensional and Metric Data Structures
By Hanan Samet, University of Maryland at College Park 1024 pages

August 2006 ƒ ISBN 0-12-369446-9 ƒ Hardcover ƒ $79.95ƒ £47.99 ƒ €57.95 ƒ $63.96 ƒ £38.39 ƒ €46.36

The field of multidimensional and metric data structures is

large and growing very quickly. Here, for the first time,

is a thorough treatment of multidimensional point data,

object and image-based object representations, intervals

and small rectangles, high-dimensional datasets, as well as datasets

for which we only know that they reside in a metric space.

The book includes a thorough introduction; a comprehensive survey of

multidimensional (including spatial) and metric data structures and algorithms; and

implementation details for the most useful data structures. Along with the hundreds

of worked exercises and hundreds of illustrations, the result is an excellent and

valuable reference tool for professionals in many areas, including computer

graphics and visualization, databases, geographic information systems (GIS), and

spatial databases, game programming, image processing and computer vision,

pattern recognition, solid modelling and computational geometry, similarity retrieval and multimedia databases, and

VLSI design, and search aspects of bioinformatics.

Features

 First comprehensive work on multidimensional and metric data structures available, a thorough and authoritative

treatment.

 An algorithmic rather than mathematical approach, with a liberal use of examples that allows the readers to easily

see the possible implementation and use.

 Each section includes a large number of exercises and solutions to self-test and confirm the reader's understanding

and suggest future directions.

 Written by a well-known authority in the area of multidimensional (including spatial) data structures who has made

many significant contributions to the field.

Hanan Samet is the dean of "spatial indexing"... This book is encyclopedic... this book will be invaluable for those of us who struggle with spatial

data, scientific datasets, graphics, vision problems involving volumetric queries, or with higher dimensional datasets common in data mining.

- From the foreword by Jim Gray, Microsoft Research

Samet's book on multidimensional and metric data structures is the most complete and thorough presentation on this topic. It has broad coverage of

material from computational geometry, databases, graphics, GIS, and similarity retrieval literature. Written by the leading authority on hierarchical

spatial representations, this book is a "must have" for all instructor, researches, and developers working and teaching in these areas.

- Dinesh Manocha, University of North Carolina at Chapel Hill

To summarize, this book is excellent! It’s a very comprehensive survey of spatial and multidimensional data structures and algorithms, which is

badly needed. The breadth and depth of coverage is astounding and I would consider several parts of it required reading for real time graphics and

game developers.

- Bretton Wade, University of Washington and Microsoft Corp.

MORGAN KAUFMANN PUBLISHERS

 20% OFF!

476

Foundations of Multidimensional and Metric Data Structures
By Hanan Samet, University of Maryland at College Park

Available August 2006 • ISBN 0-12-369446-9 • 1024 pages • Hardcover $79.95 • $63.96

Order from Morgan Kaufmann Publishers
To receive 20% off, please refer to code 85511

Mail: Elsevier Science, Order Fulfillment, 11830 Westline Industrial Dr., St. Louis, MO 63146

Phone: US/Canada 800-545-2522, 1-314-453-7010 (Intl.) ƒ Fax: 800-535-9935, 1-314-453-7095 (Intl.)

Email: usbkinfo@elsevier.com ƒ Visit Morgan Kaufmann on the Web: www.mkp.com

Volume discounts available, contact: NASpecialSales@elsevier.com

Table of Contents and Topics

Chapter 1:
Multidimensional Point Data

1.1 Introduction

1.2 Range Trees

1.3 Priority Search Trees

1.4 Quadtrees

1.4.1 Point Quadtrees

1.4.2 Trie-Based Quadtree

1.4.3 Comparison of Point and Trie-Based

Quadtrees

1.5 K-d Trees

1.5.1 Point K-d Trees

1.5.2 Trie-Based K-d Trees

1.5.3 Conjugation Tree

1.6 One-Dimensional Orderings

1.7 Bucket Methods

1.7.1 Tree Directory Methods (K-d-B-Tree,

 Hybrid Tree, LSD Tree, hB-Tree, K-d-B-Trie,

BV-Tree)

1.7.2 Grid Directory Methods (Grid File,

EXCELL, Linear Hashing, Spiral Hashing)

1.7.3 Storage Utilization

1.8 PK-Tree

1.9 Conclusion

Chapter 2
Object-based and Image-based Image
Representations

2.1 Interior-Based Representations

2.1.1 Unit-Size Cells

2.1.2 Blocks (Medial Axis Transform, Region

 Quadtree and Octree, Bintree, X-Y Tree,

 Treemap, Puzzletree)

2.1.3 Nonorthogonal Blocks (BSP Tree,

 Layered DAG)

2.1.4 Arbitrary Objects (Loose Octree, Field

 Tree, PMR Quadtree)

2.1.5 Hierarchical Interior-Based

 Representations (Pyramid, R-Tree,

 Hilbert R-tree, R*-Tree, Packed R-

 Tree,R+-Tree, Cell Tree, Bulk Loading)

2.2 Boundary-Based Representations

2.2.1 The Boundary Model (CSG,BREP,

 Winged Edge, Quad Edge,Lath, Voronoi

 Diagram, Delaunay Triangulation,

 Tetrahedra, Triangle Table, Corner Table

2.2.2 Image-Based Boundary Representations

 (PM Quadtree and Octree, Adaptively

 Sampled Distance Field)

2.2.3 Object-based Boundary Representation

 (LOD, Strip Tree, Simplification)

2.2.4 Surface-Based Boundary Representations

(TIN)

2.3 Difference-Based Compaction Methods

2.3.1 Runlength Encoding

2.3.2 Chain Code

2.3.3 Vertex Representation

2.4 Historical Overview

Chapter 3
Intervals and Small Rectangles

3.1 Plane-Sweep Methods and the Rectangle

Intersection Problem

3.1.1 Segment Tree

3.1.2 Interval Tree

3.1.3 Priority Search Tree

3.1.4 Alternative Solutions and Related

Problems

3.2 Plane-sweep Methods and the Measure Problem

3.3 Point-Based Methods

3.3.1 Representative Points

3.3.2 Collections of Representative Points

3.3.3 LSD Tree

3.3.4 Summary

3.4 Area-Based Methods

 3.4.1 MX-CIF Quadtree

 3.4.2 Alternatives to the MX-CIF Quadtree

 (HV/VH Tree)

3.4.3 Multiple Quadtree Block Representations

Chapter 4
High-Dimensional Data

4.1 Best-First Incremental Nearest Neighbor

Finding (Ranking)

4.1.1 Motivation

4.1.2 Search Hierarchy

4.1.3 Algorithm

4.1.4 Duplicate Objects

4.1.5 Spatial Networks

4.1.6 Algorithm Extensions (Farthest Neighbor,

 Skylines)

4.1.7 Related Work

4.2 The Depth-First K-Nearest Neighbor Algorithm

4.2.1 Basic Algorithm

4.2.2 Pruning Rules

4.2.3 Effects of Clustering Methods on Pruning

4.2.4 Ordering the Processing of the Elements

of the Active List

4.2.5 Improved Algorithm

4.2.6 Incorporating MaxNearestDist in a Best-

First Algorithm

4.2.7 Example

4.2.8 Comparison

4.3 Approximate Nearest Neighbor Finding

4.4 Multidimensional Indexing Methods

4.4.1 X-Tree

4.4.2 Bounding Sphere Methods: Sphere Tree,

SS-Tree, Balltree, and SR-Tree

4.4.3 Increasing the Fanout: TV-Tree, Hybrid

Tree, and A-Tree

4.4.4 Methods Based on the Voronoi Diagram:

OS-Tree

4.4.5 Approximate Voronoi Diagram (AVD)

4.4.6 Avoiding Overlapping All of the Leaf

Blocks

4.4.7 Pyramid Technique

4.4.8 Sequential Scan Methods (VA-File, IQ-

Tree,VA+-File)

4.5 Distance-Based Indexing Methods

4.5.1 Distance Metric and Search Pruning

4.5.2 Ball Partitioning Methods (VP-Tree,

MVP-Tree)

4.5.3 Generalized Hyperplane Partitioning

Methods (GH-Tree, GNAT, MB-Tree)

4.5.4 M-Tree

4.5.5 Sa-Tree

4.5.6 kNN Graph

4.5.7 Distance Matrix Methods

4.5.8 SASH - Indexing Without Using the

Triangle Inequality

4.6 Dimension-Reduction Methods

4.6.1 Searching in the Dimensionally-

Reduced Space

4.6.2 Using Only One Dimension

4.6.3 Representative Point Methods

4.6.4 Transformation into a Different and

Smaller Feature Set (SVD,DFT)

4.6.5 Summary

4.7 Embedding Methods

4.7.1 Introduction

4.7.2 Lipschitz Embeddings

4.7.3 FastMap

4.7.4 Locality Sensitive Hashing (LSH)

Appendix 1: Overview of B-Tbrees

Appendix 2: Linear Hashing

Appendix 3: Spiral Hashing

Appendix 4: Description of Pseudo-Code

Language

Solutions to Exercises

Bibliography

Name and Credit Index

Index

Keyword Index

MORGAN KAUFMANN PUBLISHERS
 an imprint of Elsevier

About the Author
Hanan Samet is Professor in the Department of

Computer Science at the University of Maryland

at College Park, and a member of the Center for

Automation Research and the Institute for

Advanced Computer Studies. He is widely

published in the fields of spatial databases and

data structures, computer graphics, image

databases and image processing, and geographic

information systems (GIS), and is considered an

authority on the use and design of hierarchical

spatial data structures such as the quadtree and

octree for geographic information systems,

image processing, and computer graphics. He is

the author of the first two books on spatial data

structures: The Design and Analysis of Spatial

Data Structures and Applications of Spatial

Data Structures: Computer Graphics, Image

Processing and GIS. He holds a Ph.D. in

computer science from Stanford University

477

	Comparison of mb-tree (BSP tree) and PR k-d tree

