
Sorting in Space: Multidimensional Data Structures for
Computer Graphics and Vision Applications

Hanan Samet
hjs@cs.umd.edu

http://www.cs.umd.edu/˜hjs

Department of Computer Science

University of Maryland

College Park, MD 20742, USA

Unless explicitly stated otherwise, the upper-left corner of

each slide indicates the page numbers in Foundations of

Multidimensional and Metric Data Structures by H. Samet,

Morgan-Kaufmann, San Francisco, 2006, where more

details on the topic can be found

Copyright c 2016 Hanan Samet Sorting in Space – p.1/3

TITLE:

Sorting in Space: Multidimensional Data Structures for Computer Graphics and
Vision Applications

Hanan Samet
Computer Science Department
Center for Automation Research
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
e-mail: hjs@cs.umd.edu
url: http://www.cs.umd.edu/~hjs

SUMMARY STATEMENT:

We show how to represent spatial data using techniques that sort it. They include quadtrees, octrees,
and bounding volume hierarchies and are rooted in the intersection between computer vision and
graphics. We focus on building these representations and on nding nearest neighbors which is
critical when using machine learning methods.

COURSE ABSTRACT:

The representation of spatial data is important in game programming, computer graphics, visu-
alization, solid modeling, computer vision and geographic information systems (GIS). They are
rooted in the intersection of computer vision and graphics. Recently, there has been much interest
in hierarchical representations such as quadtrees, octrees, and pyramids which are based on image
hierarchies, as well methods that use bounding boxes which are based on object hierarchies. Their
advantage is that they provide a way to index into space. In fact, they are little more than multidi-
mensional sorts. They save space as well as time and also facilitate operations such as search. In
addition, we introduce methods for dealing with recognizing textual speci cations of spatial data
such as locations in news articles.

This course provides a brief overview of hierarchical spatial data structures and related algo-
rithms that make use of them. We describe hierarchical representations of points, lines, collections
of small rectangles, regions, surfaces, and volumes. For region data, we point out the dimension-
reduction property of the region quadtree and octree, as how to navigate between nodes in the
same tree, thereby leading to the popularity of these representations in ray tracing applications. We
also demonstrate how to use these representations for both raster and vector data. We also In the
case of nonregion data, we show how these data structures can be used to nd nearest neighbors
which is critical when using machine learning techniques. We also show how to do it in an in-
cremental fashion so that the number of objects need not be known in advance. In addition, the
SAND spatial browser based on the SAND spatial database system, the VASCO JAVA applet il-
lustrating these methods (www.cs.umd.edu/ hjs/quadtree/index.html), and the NewsStand system
(newsstand.umiacs.umd.edu) will be demonstrated.

1

PREREQUISITE:

A familiarity with computer terminology and some programming experience.

COURSE LEVEL:

Beginner

INTENDED AUDIENCE:

Practitioners working in computer graphics and computer vision will be given a different perspective
on data structures found to be useful in most applications. Game developers and technical managers
will appreciate the presentation and methods described herein.

COURSE SYLLABUS:

The representation of spatial data is an important issue in game programming, computer graphics,
visualization, solid modeling, and related areas including computer vision and geographic informa-
tion systems (GIS). It has also taken on an increasing level of importance as a result of the popularity
of web-based mapping services such as Bing Maps, Google Maps, Google Earth, and Yahoo Maps,
as well as the increasing importance of location-based services. Operations on spatial data are fa-
cilitated by building an index on it. The traditional role of the index is to sort the data, which means
that it orders the data. However, since no ordering exists in dimensions greater than 1 without a
transformation of the data to one dimension, the role of the sort process is one of differentiating
between the data, and what is usually done is to sort (i.e., order) the spatial objects with respect to
the space that they occupy (e.g., Warnock’s algorithm, back-to-front and front-to-back display al-
gorithms, BSP trees for visibility determination, acceleration of ray tracing, bounding box/volume
hierarchies that sort the space on the basis of whether it is occupied). The resulting ordering is
usually implicit rather than explicit so that the data need not be resorted (i.e., the index need not be
rebuilt) when the queries change (e.g., the query reference objects).

There are many representations (i.e., indexes) currently in use. Recently, there has been much
interest in hierarchical data structures such as quadtrees, octrees, and pyramids, which are based on
image hierarchies, as well methods that make use of bounding boxes or volumes, which are based
on object hierarchies. They are rooted in the intersection of computer vision and graphics. The key
advantage of these representations is that all of them provide a way to index into space. They are
compact and depending on the nature of the spatial data, they save space as well as time and also
facilitate operations such as search.

In this course we provide a brief overview of hierarchical spatial data structures and related
algorithms that make use of them. We describe hierarchical representations of points, lines, col-
lections of small rectangles, regions, surfaces, and volumes. For region data, we point out the
dimension-reduction property of the region quadtree and octree, as how to navigate between nodes
in the same tree, thereby leading to the popularity of these representations in ray tracing applica-
tions. We also demonstrate how to use these representations for both raster and vector data. In
the case of nonregion data, we show how these data structures can be used to nd nearest neigh-

2

bors which is critical when using machine learning techniques. We also show how to do it in an
incremental fashion so that the number of objects need not be known in advance. We point out that
these algorithms can also be used in an environment where the distance is measured along a spatial
network rather than being constrained to “as the crow ies” (i.e., the Euclidean distance). We also
review a number of different tessellations and show why hierarchical decomposition into squares
instead of triangles or hexagons is preferred. In addition, we brie y show how to represent data
that lies only in a metric space rather than a vector space and point out the relationship of these
representations to those that assume that the data lies in a vector space. In particular, we show that
the difference is that the partitions are implicit in the metric space in contrast to being explicit in
the vector space. We conclude with a demonstration of the SAND spatial browser based on the
SAND spatial database system and of the VASCO JAVA applet illustrating these methods (found at
http://www.cs.umd.edu/ hjs/quadtree/index.html). We conclude with a demonstration of the SAND
spatial browser based on the SAND spatial database system, the VASCO JAVA applet illustrat-
ing these methods (found at http://www.cs.umd.edu/~hjs/quadtree/index.html), and the
NewsStand system (http://newsstand.umiacs.umd.edu) for recognizing textual speci cations of spa-
tial data such as locations in news articles.

COURSE SCHEDULE:

0:00-0:15 Introduction
0:15-0:25 Points
0:25-0:30 Lines
0:30-0:35 Regions
0:35-0:45 Bounding Box Hierarchies
0:45-0:55 Rectangles and Moving Object Representations
0:55-1:05 Metric Space Data Structures
1:05-1:15 Incremental Nearest Neighbor Finding
1:15-1:25 Nearest Neighbor Finding in Spatial Networks
1:25-1:40 Demos
1:40-1:45 Questions

COURSE TOPICS

1. Introduction

(a) Sorting de nition

(b) Sample queries

(c) Spatial Indexing

(d) Sorting approach

(e) Minimum bounding rectangles (e.g., R-tree)

(f) Disjoint cells (e.g., R+-tree, k-d-B-tree)

(g) Uniform grid

(h) Region quadtree

(i) Space ordering methods

3

(j) Pyramid

(k) Region quadtrees vs: pyramids

2. Points

(a) Point quadtree

(b) PR quadtree

(c) Sorting points

(d) K-d tree

(e) PR k-d tree

3. Lines

(a) Strip tree

(b) MX quadtree for regions

(c) PM1 quadtree

(d) PM2 quadtree

(e) PM3 quadtree

(f) PMR quadtree

(g) Triangulations

4. Regions

(a) Region quadtree

(b) Dimension reduction

(c) Tessellations

(d) BSP tree

5. Bounding Box Hierarchies

(a) Overview

(b) Minimum bounding rectangles (e.g., R-trees)

(c) Searching in an R-tree

(d) Node over ows

6. Rectangles

(a) MX-CIF quadtree

(b) Loose quadtree or coverage eldtree

(c) Partition eldtree

7. Surfaces and Volumes

(a) Region octree

(b) PM octree

8. Operations

4

(a) Incremental nearest object location

(b) Incremental nearest object location in spatial networks

9. Demos

(a) SAND Internet browser

(b) JAVA spatial data applets

(c) NewsStand spatiotextual news retrieval

COURSE MATERIALS:

Participants receive a copy of the slides. In addition, there is a web site at
http://www.cs.umd.edu/~hjs/quadtree/index.htmlwhere applets demonstrating much of
the material in the course are available. In order to run these applets you must deal with Java
Security. For Windows: 1)Open FireFox 2)Update Java 3)Control panel-¿ Java-¿Security-¿ Add
“http://donar.umiacs.umd.edu/” to the exception site list. For MAC: 1)Open Firefox 2)Update Java
3)System Preferences -¿ Java Control Panel -¿ Security -¿ Add “http://donar.umiacs.umd.edu/”
to exception site list. Participants are referred to the text: H.Samet, Foundations of Mul-
tidimensional and Metric Data Structures, Morgan-Kaufmann, San Francisco, 2006. Partic-
ipants also have the opportunity to obtain the book at a discount of 30% as re ected at
http://www.cs.umd.edu/~hjs/multidimensional-book-flyer.pdf or simply go to the
publisher’s website and use code COMP316

SPEAKER BIOGRAPHY:

Hanan Samet (http://www.cs.umd.edu/~hjs/) received the BS. degree in engineering from the
University of California, Los Angeles, and the M.S. Degree in operations research and the M.S. and
Ph.D. degrees in computer science from Stanford University, Stanford, CA. His Ph.D. dissertation
founded the eld of compiler translation validation and the related concept of proof-carrying code.
He is a Fellow of the IEEE, ACM, IAPR (International Association for Pattern Recognition), AAAS,
and UCGIS (University Consortium for Geographic Science), an ACM Distinguished Speaker, and
was also elected to the ACM Council in 1989-1991 where he served as the Capital Region Repre-
sentative. He is the recipient of the 2009 UCGIS Research Award, the 2010 University of Maryland
College of Computer, Mathematical and Physical Sciences Board of Visitors Distinguished Fac-
ulty Award, 2011 ACM Paris Kanellakis Theory and Practice Award, 2014 IEEE Computer Society
Wallace McDowell Award, and a Science Foundation of Ireland (SFI) Walton Visitor Award at the
Centre for Geocomputation at the National University of Ireland at Maynooth (NUIM).

In 1975 he joined the Computer Science Department at the University of Maryland, College
Park, where he is now a Distinguished Professor.. He has held visiting positions at the National
University of Singapore, University of Genoa, Genoa (Italy), University of Pavia (Italy), University
of Paris (France), Hebrew University of Jerusalem (Israel), and at NTT Basic Research Lab (Japan).

At the University of Maryland he is a member of the Computer Vision Laboratory of the Cen-
ter for Automation Research and also has an appointment in the University of Maryland Institute
for Advanced Computer Studies. At the Computer Vision Laboratory he leads a number of re-
search projects on the use of hierarchical data structures for geographic information systems. His

5

research group has developed the QUILT system which is a GIS based on hierarchical spatial data
structures such as quadtrees and octrees, the SAND system which integrates spatial and non-spatial
data, the SAND Browser (http://www.cs.umd.edu/~brabec/sandjava) which enables brows-
ing through a spatial database using a graphical user interface, the VASCO spatial indexing applet
(found at http://www.cs.umd.edu/~hjs/quadtree/index.html), a symbolic image database
system, and the STEWARD system for spatio-textual retrieval of documents on the web as well as
the NewsStand and TwitterStand systems for news and Twitter tweets, respectively. He is the found-
ing chair of the ACM Special Interest Group on Spatial Information (SIGSPATIAL). He has served
as the co-general chair of the 15th ACM International Conference on Advances in Geographic In-
formation Systems (ACMGIS’07) and the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (ACMGIS’08).

His research interests include data structures, computer graphics, geographic in-
formation systems, computer vision, robotics, and database management systems,
and is the author of over 300 publications on these topics. He is the author of
the recent book titled ”Foundations of Multidimensional and Metric Data Structures”
(http://www.cs.umd.edu/~hjs/multidimensional-book-flyer.pdf) published by
Morgan-Kaufmann, an imprint of Elsevier, in 2006, an award winner in the 2006 best book in
Computer and Information Science competition of the Professional and Scholarly Publishers
(PSP) Group of the American Publishers Association (AAP), and of the rst two books on spatial
data structures titled ”Design and Analysis of Spatial Data Structures”, and ”Applications of
Spatial Data Structures: Computer Graphics, Image Processing, and GIS”, both published by
Addison-Wesley in 1990. He is the Founding Editor-In-Chief of the ACM Transactions on Spatial
Algorithms and Systems (TSAS) and the founding chair of ACM SIGSPATIAL. He is an Area
Editor of ”Graphical Models”, and on the Editorial Board of ”Image Understanding”, ”Journal of
Visual Languages”, and ”GeoInformatica”. He received best paper awards in the 2007 Computers
& Graphics Journal, the 2008 ACM SIGMOD and SIGSPATIAL ACMGIS Conferences, the 2012
SIGSPATIAL MobiGIS Workshop, and the 2013 SIGSPATIAL GIR Workshop, as well as a best
demo award at the 2011 SIGSPATIAL ACMGIS’11 Conference. His paper at the 2009 IEEE
International Conference on Data Engineering (ICDE) was selected as one of the best papers for
publication in the IEEE Transactions on Knowledge and Data Engineering. He was elected to
the ACM Council as the Capitol Region Representative for the term 1989-1991, and is an ACM
Distinguished Speaker. He holds several patents in the spatial and location-based services space.

6

Sorting in Space

Hanan Samet

hjs@cs.umd.edu

Department of Computer Science

Institute for Advanced Computer Studies

Center for Automation Research

University of Maryland

College Park, MD 20742, USA
Flyer

Sorting in Space – p.1/1

Outline

1. Introduction

2. Points

3. Lines

4. Regions

5. Bounding Box Hierarchies

6. Rectangles and Moving Object Representations

7. Volumes and Surfaces

8. Metric Data Structures

9. Operations

10. Demos

Copyright c 2016 Hanan Samet Sorting in Space – p.2/3

Why Sorting of Spatial Data is Important

Most operations invariably involve search

Search is sped up by sorting the data

sort - De nition: verb
1. to put in a certain place or rank according to kind, class, or nature
2. to arrange according to characteristics

Examples
1. Warnock algorithm: sorting objects for display

vector: hidden-line elimination
raster: hidden-surface elimination

2. Back-to-front and front-to-back algorithms
3. BSP trees for visibility determination
4. Accelerating ray tracing and ray casting by nding ray-object

intersections
5. Bounding box hierarchies arrange space according to whether

occupied or unoccupied

Copyright 2012 by Hanan Samet

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and nd
closest in weight to Bill and can
also nd closest in weight to Larry

sort cities by distance from Chicago
and nd closest to Chicago but can-
not nd closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist
unless a dominance relation holds

point a = {ai|1 i d} dominates point b = {bi|1 i d} if
ai bi, 1 i d.

a does not dominate b but dominates c

3. Only solution is to linearize data as in a space- lling curve

sort is explicit

need implicit sort so no need to resort if reference point changes

Copyright 2012 by Hanan Samet

Map of Prince George’s County

Copyright 2010: Hanan Samet Location, Location, Location – p.2/30

Example Queries in Line Segment Databases

1. Queries about line segments
All segments that intersect a given point or set of points
All segments that have a given set of endpoints
All segments that intersect a given line segment
All segments that are coincident with a given line segment

2. Proximity queries
The nearest line segment to a given point
All segments within a given distance from a given point (also known as
a range or window query)

3. Queries involving attributes of line segments
Given a point, nd the closest line segment of a particular type
Given a point, nd the minimum enclosing polygon whose constituent
line segments are all of a given type
Given a point, nd all the polygons that are incident on it

Copyright 2010: Hanan Samet Location, Location, Location – p.7/30

What Makes Continuous Spatial Data Different?

1. Spatial extent of the objects is the key to the difference

2. A record in a DBMS may be considered as a point in a multidimensional space
A line can be transformed (i.e., represented) as a
point in 4-d space with (x1 , y1 , x2 , y2)
Good for queries about the line segments
Not good for proximity queries since points outside
the object are not mapped into the higher dimen-
sional space
Representative points of two objects that are physi-
cally close to each other in the original space (e.g.,
2-d for lines) may be very far from each other in the
higher dimensional space (e.g., 4-d)

(x1,y1)

(x2,y2)

A

B

Problem is that the transformation only transforms the space occupied by
the objects and not the rest of the space (e.g., the query point)
Can overcome by projecting back to original space

3. Use an index that sorts based upon spatial occupancy (i.e., extent of the ob-
jects)

Copyright 2010: Hanan Samet Location, Location, Location – p.8/30

Spatial Indexing Requirements

1. Compatibility with the data being stored

2. Choose an appropriate zero or reference point

3. Need an implicit rather than an explicit index
a. impossible to foresee all possible queries in advance
b. cannot have an attribute for every possible spatial relationship

i. derive adjacency relations
ii. 2-d strings capture a subset of adjacencies

A. all rows
B. all columns

c. implicit index is better as an explicit index which, for example, sorts
two-dimensional data on the basis of distance from a given point is
impractical as it is inapplicable to other points

d. implicit means that don’t have to resort the data for queries other than
updates

Copyright 2010: Hanan Samet Location, Location, Location – p.9/30

gs11

SORTING ON THE BASIS OF SPATIAL OCCUPANCY

• Decompose the space from which the data is drawn into
regions called buckets (like hashing but preserves order)

• Interested in methods that are designed specifically for
the spatial data type being stored

• Basic approaches to decomposing space

1. minimum bounding rectangles

• e.g., R-tree or AABB (axis-aligned) and OBB
(arbitrary orientation)

• good at distinguishing empty and non-empty
space

• drawbacks:

a. non-disjoint decomposition of space

• may need to search entire space

b. inability to correlate occupied and unoccupied
space in two maps

2. disjoint cells

• drawback: objects may be reported more than once

• uniform grid

a. all cells the same size

b. drawback: possibility of many sparse cells

• adaptive grid — quadtree variants

a. regular decomposition

b. all cells of width power of 2

• partitions at arbitrary positions

a. drawback: not a regular decomposition

b. e.g., R+-tree

• Can use as approximations in filter/refine query
processing strategy

Copyright 2008 by Hanan Samet

2
6

4
-2

6
5

-H
ie

ra
rc

h
ic

a
l o

b
je

c
t re

p
e

s
e

n
ta

tio
n

 o
v
e

rv
ie

w

MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g

h

i

1

b

Order (m,M) R-tree

1. between m M/2 and M entries in each node
except root

2. at least 2 entries in root unless a leaf node

Copyright © 2007 by Hanan Samet

7

2

r

R3

R4

R5
R6

ic feba hgd

hi31

R3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

7

3

z

R4R3 R6R5

R1

R2

hi31

R2:R1:

Copyright © 2007 by Hanan Samet

7

4

g

R2R1

hi31

R0:

R0

Copyright © 2007 by Hanan Samet

7

2
7

0
-2

9
6

-R
-tre

e

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1

b

ba hgd ic fe

R2R1

R4R3 R6R5

a

b

c

d

e

f

g

h

i

R3

R4

R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2007 by Hanan Samet

8

hi32

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

8

hi32

Q can be in both R1 and R2

3

r

Copyright © 2007 by Hanan Samet

8

hi324

z

Searching R1 first means that R4 is searched but this
leads to failure even though Q is part of i which is in R4

Copyright © 2007 by Hanan Samet

8

hi325

g

Searching R2 finds that Q can only be in R5

Copyright © 2007 by Hanan Samet

8

2
7

0
-2

9
6

-R
-tre

e

hi33
DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a

b

c

d

e

f

g

h

i

1

b

Q

Copyright © 2007 by Hanan Samet

9

hi332

r

R3

R4

R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

9

hi333

z

R4R3 R6R5

R1

R2

R1: R2:

Copyright © 2007 by Hanan Samet

9

hi334

g

R2R1R0:

R0

Copyright © 2007 by Hanan Samet

9

3
1

1
-R

-+
-tre

e

hi33.1
K-D-B-TREES

a

b

c

d

e

f

g

h

i

1

b

Q

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes

• Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2007 by Hanan Samet

hi33.12

r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2007 by Hanan Samet

hi33.13

z

R4R3 R6R5

R1 R2

R1: R2:

Copyright © 2007 by Hanan Samet

hi33.14

g

R2R1R0:

R0

Copyright © 2007 by Hanan Samet

3
0

4
-3

1
1

-K
-d

-B
-tre

e

UNIFORM GRID

Ideal for uniformly distributed data

Supports set-theoretic operations

Spatial data (e.g., line segment data) is rarely uniformly
distributed

hi34

Copyright © 2007 by Hanan Samet 10

2
1

0
-U

n
ifo

rm
 g

rid

hi35

QUADTREES

• Hierarchical variable resolution data structure based on
regular decomposition

• Many different decomposition schemes and applicable
to different data types:

1. points
2. lines
3. regions
4. rectangles
5. surfaces
6. volumes
7. higher dimensions including time

• changes meaning of nearest
a. nearest in time, OR

b. nearest in distance

• Can handle both raster and vector data as just a spatial
index

• Shape is usually independent of order of inserting data

• Ex: region quadtree

• A decomposition into blocks
— not necessarily a tree!

Copyright © 2007 by Hanan Samet 11

2
1

1
-R

e
g

io
n

 q
u

a
d

tre
e

hi36

REGION QUADTREE

• Repeatedly subdivide until obtain homogeneous region

• For a binary image (BLACK ≡ 1 and WHITE ≡ 0)

• Can also use for multicolored data (e.g., a landuse
class map associating colors with crops)

• Can also define data structure for grayscale images

• A collection of maximal blocks of size power of two
and placed at predetermined positions

1. could implement as a list of blocks each of which
has a unique pair of numbers:
• concatenate sequence of 2 bit codes correspond-

ing to the path from the root to the block’s node
• the level of the block’s node

2. does not have to be implemented as a tree
• tree good for logarithmic access

• A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

A

B C D E

NW

NE SW

SE

F G H I J L M N O Q

K P

37 38 39 40 57 5859 60

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

1

1

1

1

0

0

1

1

1

1

1

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

B

60

37

L

J

Q

GF

H

N

I

O

M
57 58

59

4039

38

Copyright © 2007 by Hanan Samet 12

2
1

1
-R

e
g

io
n

 q
u

a
d

tre
e

Ordering Space

Many ways of laying

out the addresses cor-
responding to the lo-

cations in space of the
cells each having its

own mapping function

Can use one of many

possible space-filling
curves

Important to dis-
tinguish between
address and location
or cell

Address of a location

or cell

� physical lo-

cation (e.g., in mem-

ory, on disk, etc.), if

any, where some of

the information asso-
ciated with the loca-
tion or cell is stored

row order row-prime order morton order

peano-hilbert order cantor-diagonal order spiral order

gray code double gray order u order
Chapter 2: Copyright 2007 Hanan Samet

1
9

9
-2

0
1

--S
p

a
c
e

 o
rd

e
rin

g
 m

e
th

o
d

s

bg4

CONVERTING BETWEEN POINTS AND CURVES

• Need to know size of image for all but the Morton
order

• Relatively easy for all but the Peano-Hilbert order
which is difficult (although possible) to decode
and encode to obtain the corresponding x and y
coordinate values

• Morton order

1. use bit interleaving of binary representation of
the x and y coordinates of the point

2. also known as Z-order

0 0 1

1 1 0

y

x

3. Ex: Atlanta (6,1) 0 1 0 1 1 0 = 22

Copyright © 2008 by Hanan Samet

bg51

b

STABILITY OF SPACE ORDERING METHODS

• An order is stable if the relative order of the individual
pixels is maintained when the resolution (i.e., the size of
the space in which the cells are embedded) is doubled or
halved

• Morton order is stable while the Peano-Hilbert order is not

• Ex:

 Morton: Peano-Hilbert:

1

32

0 1

23

0

Copyright © 2008 by Hanan Samet

bg5

1215 1011

2

r

• Result of doubling the resolution (i.e., the coverage)

1

32

0

9

1110

8
13

1514

12

5

76

4
3

21

0

1314 9
8

5

6
7

4

Copyright © 2008 by Hanan Samet

bg53

z

in which case the circled points do not maintain the same
relative order in the Peano-Hilbert order while they do in
the Morton order

Copyright © 2008 by Hanan Samet

bg6

DESIRABLE PROPERTIES OF SPACE FILLING CURVES

1. Pass through each point in the space once and only
once

2. Two points that are neighbors in space are neighbors
along the curve and vice versa

• impossible to satisfy for all points at all resolutions

3. Easy to retrieve neighbors of a point

4. Curve should be stable as the space grows and
contracts by powers of two w ith the same origin

• yes for Morton and Cantor orders

• no for row, row-prime, Peano-Hilbert, and spiral
orders

5. Curve should be admissible

• at each step at least one horizontal and one vertical
neighbor must have already been encountered

• used by active border algorithms - e.g., connected
component labeling algorithm

• row, Morton, and Cantor orders are admissible

• Peano-Hilbert order is not admissible

• row-prime and spiral orders are admissible if permit
the direction of the horizontal and vertical neighbors
to vary from point to point

6. Easy to convert between two-dimensional data and the
curve and vice-versa

• easy for Morton order

• difficult for Peano-Hilbert order

• relatively easy for row, row-prime, Cantor, and spiral
orders

Copyright 2008 by Hanan Samet

1
9

9
-2

0
1

--S
p

a
c
e

 o
rd

e
rin

g
 m

e
th

o
d

s

hi37

PYRAMID

• Internal nodes contain summary of information in
nodes below them

• Useful for avoiding inspecting nodes where there could
be no relevant information

c1

c2

c3

c4

c5

c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}

Copyright © 2007 by Hanan Samet 13

2
6

6
-2

7
0

-P
y
ra

m
id

hi38

QUADTREES VS. PYRAMIDS

• Quadtrees are good for location-based queries

1. e.g., what is at location x?

2. not good if looking for a particular feature as have to
examine every block or location asking “are you the
one I am looking for?”

• Pyramid is good for feature-based queries — e.g.,

1. does wheat exist in region x?
• if wheat does not appear at the root node, then

impossible to find it in the rest of the structure and
the search can cease

2. report all crops in region x — just look at the root

3. select all locations where wheat is grown
• only descend node if there is possibility that wheat is

in one of its four sons — implies little wasted work

• Ex: truncated pyramid where 4 identically-colored sons
are merged

c1

c2

c3

c4

c5

c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}

{c2,c3,c5} {c1,c2,c3,c5}

• Can represent as a list of leaf and nonleaf blocks (e.g.,
as a linear quadtree)

Copyright © 2007 by Hanan Samet 14

2
6

6
-2

7
0

-P
y
ra

m
id

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2008 Hanan Samet Sorting in Space – p.2/3

POINT QUADTREE (Finkel/Bentley)
1 hp4
b

• Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp4

(52,10)

Mobile

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp4

(62,77)

Toronto

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp4

(82,65)

Buffalo

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp4

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

6

g
hp4

(27,35)

Omaha

Omaha

Copyright © 2007 by Hanan Samet

7

v
hp4

(85,15)

Atlanta

Atlanta

Copyright © 2007 by Hanan Samet

8

z
hp4

(90,5)

Miami

Miami

Copyright © 2007 by Hanan Samet

0
2

8
-0

3
7
--P

o
in

t q
u

a
d
tre

e

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point

Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

Copyright © 2007 by Hanan Samet

2

r
hp9

(52,10)

Mobile

Copyright © 2007 by Hanan Samet

3

z
hp9

(62,77)

Toronto

Copyright © 2007 by Hanan Samet

4

g
hp9

(82,65)

Buffalo

Copyright © 2007 by Hanan Samet

5

v
hp9

(5,45)

Denver

Copyright © 2007 by Hanan Samet

6

g
hp9

(27,35)

Omaha

Copyright © 2007 by Hanan Samet

7

z
hp9

(85,15)

Atlanta

Copyright © 2007 by Hanan Samet

8

r
hp9

(90,5)

Miami

Copyright © 2007 by Hanan Samet

0
4

2
-0

4
7
--P

R
 q

u
a

d
tre

e

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4

5

876

2

r

5

v

p

4

g

3

z

Copyright 2008 by Hanan Samet

0
4

2
-0

4
7

--P
R

 q
u

a
d

tre
e

zk24
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1

b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2007 by Hanan Samet

zk242

r

1. start at block 2 and compute distance to P from A

Copyright © 2007 by Hanan Samet

zk243

z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2007 by Hanan Samet

zk244

g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 2007 by Hanan Samet

zk245

v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 2007 by Hanan Samet

zk246

z

5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A

Copyright © 2007 by Hanan Samet

zk247

r

• If F was moved, a better order would have started with
block 11, the southern neighbor of 1, as it is closest

new F

Copyright © 2007 by Hanan Samet

0
4

2
-0

4
7
--P

R
 q

u
a

d
tre

e

K-D TREE (Bentley)

• Test one attribute at a time instead of all simultaneously
as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the
data is encountered

1 hp15
b

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

2

r
hp15

(52,10)

Mobile

Mobile

x test

Copyright © 2007 by Hanan Samet

3

z
hp15

(62,77)

Toronto

Toronto

y test

Copyright © 2007 by Hanan Samet

4

g
hp15

(82,65)

Buffalo

Buffalo

x test

Copyright © 2007 by Hanan Samet

5

v
hp15

(5,45)

Denver

Denver

Copyright © 2007 by Hanan Samet

6

g
hp15

(27,35)

Omaha

Omaha

Copyright © 2007 by Hanan Samet

7

r
hp15

(85,15)

Atlanta

Atlanta

y test

Copyright © 2007 by Hanan Samet

8

v
hp15

(90,5)

Miami

Miami

Copyright © 2007 by Hanan Samet

0
4

8
-0

5
7
--K

-d
 tre

e

PR K-D TREE (Knowlton)

• A region contains at most one data point

• Analogous to EXCELL with bucket size of 1

1 hp19
b

(0,100) (100,100)

(100,0)(0,0)

Copyright © 2007 by Hanan Samet

2

r
hp19

(35,42)

Chicago

Chicago

Copyright © 2007 by Hanan Samet

3

z
hp19

(52,10)

Mobile

MobileChicago

Copyright © 2007 by Hanan Samet

4

g
hp19

(62,77)

Toronto

Mobile Toronto

Copyright © 2007 by Hanan Samet

5

v
hp19

(82,65)

Buffalo

BuffaloToronto

Copyright © 2007 by Hanan Samet

6

z
hp19

(5,45)

Denver

Chicago

Denver

Copyright © 2007 by Hanan Samet

7

g
hp19

(27,35)

Omaha

ChicagoOmaha

Copyright © 2007 by Hanan Samet

8

r
hp19

(85,15)

Atlanta

Mobile

Atlanta

Copyright © 2007 by Hanan Samet

(90,5)

Miami

9

v
hp19

MiamiAtlanta

Copyright © 2007 by Hanan Samet

0
7

1
-0

7
2

--P
R

 k
-d

 tre
e

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2008 Hanan Samet Sorting in Space – p.2/3

STRIP TREE (Ballard, Peucker)
cd4

Top-down hierarchical curve approximation

Assume curve is continuous

Ex:

Rectangle strips of arbitrary orientation

1

b

P

Q

Copyright © 2007 by Hanan Samet

Contact points = where the curve touches the box

not tangent points1.
curve need not be differentiable - just continuous2.

2

r

WL

WR

LEFT
SON

RIGHT
SON

WRWLYQXQYPXP

cd4

Copyright © 2007 by Hanan Samet

3

z

A

B

A B

cd4

Copyright © 2007 by Hanan Samet

4

g

C

D

C D

cd4

Copyright © 2007 by Hanan Samet

5

v

cd4

Terminate when all rectangles are of width W

Copyright © 2007 by Hanan Samet

3
8

2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

SPECIAL CASES
cd5

Closed curve1.

Curve extends beyond its endpoints2.

1

b

Copyright © 2007 by Hanan Samet

cd52

r

enclosed by a rectangle

Copyright © 2007 by Hanan Samet

cd53

z

split into two rectangular strips

Copyright © 2007 by Hanan Samet

3
8

2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

APPLICATIONS
cd6

Curve intersection1.

Union of two curves2.

Others3.

length

1

b

area of a closed curve

intersection of curves with areas

etc.

or

Copyright © 2007 by Hanan Samet

cd62

r

NULL CLEAR POSSIBLE

Copyright © 2007 by Hanan Samet

cd63

z

Copyright © 2007 by Hanan Samet

cd64

g

not possible as the result may fail to be continuous

Copyright © 2007 by Hanan Samet

3
8

2
-3

8
6
--S

trip
 tre

e
, a

rc
 tre

e
, B

S
P

R

MX QUADTREE FOR REGIONS (Hunter)

• Represent the boundary as a sequence of BLACK
pixels in a region quadtree

• Useful for a simple digitized polygon (i.e., non-
intersecting edges)

• Three types of nodes

1. interior - treat like WHITE nodes

2. exterior - treat like WHITE nodes

3. boundary - the edge of the polygon passes
through them and treated like BLACK nodes

• Disadvantages

1. a thickness is associated with the line segments

2. no more than 4 lines can meet at a point

hp131

b
hp132

r

Copyright 2008 by Hanan Samet

3
5

7
-3

5
9

--M
X

 q
u

a
d

tre
e

cd32

a

PM1 QUADTREE

1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

cd32

b

2

r

Copyright © 2007 by Hanan Samet

cd323

z

c

Copyright © 2007 by Hanan Samet

cd324

g

d

Copyright © 2007 by Hanan Samet

cd325

v

e

Copyright © 2007 by Hanan Samet

cd32

f

6

r

Copyright © 2007 by Hanan Samet

cd327

z

g

Copyright © 2007 by Hanan Samet

cd32

h

8

g

Copyright © 2007 by Hanan Samet

cd32

i

9

v

Copyright © 2007 by Hanan Samet

3
6

5
-3

6
9

-P
M

 q
u

a
d

tre
e

a

PM2 QUADTREE

1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r

cd33

Copyright © 2007 by Hanan Samet

c

3

z

cd33

Copyright © 2007 by Hanan Samet

d

4

g

cd33

Copyright © 2007 by Hanan Samet

e

5

v

cd33

Copyright © 2007 by Hanan Samet

f

6

r

cd33

Copyright © 2007 by Hanan Samet

g

7

z

cd33

Copyright © 2007 by Hanan Samet

h

8

g

cd33

Copyright © 2007 by Hanan Samet

9

v

i

cd33

Copyright © 2007 by Hanan Samet

3
6

5
-3

6
9

-P
M

 q
u

a
d

tre
e

a

PM3 QUADTREE

1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

b

2

r
cd34

Copyright © 2007 by Hanan Samet

c

3

z
cd34

Copyright © 2007 by Hanan Samet

d

4

g
cd34

Copyright © 2007 by Hanan Samet

e

5

v
cd34

Copyright © 2007 by Hanan Samet

f

6

r
cd34

Copyright © 2007 by Hanan Samet

g

7

z
cd34

Copyright © 2007 by Hanan Samet

h

8

g
cd34

Copyright © 2007 by Hanan Samet

9

v

i

cd34

Copyright © 2007 by Hanan Samet

3
6

5
-3

6
9

-P
M

 q
u

a
d

tre
e

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based

• Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments

• Splitting threshold is not the same as bucket capacity

• Shape depends on order of insertion

Ex: N = 2

Copyright © 2007 by Hanan Samet

cd352

r

b

Copyright © 2007 by Hanan Samet

cd353

z

c

Copyright © 2007 by Hanan Samet

cd35

d

4

g

Copyright © 2007 by Hanan Samet

cd355

v

e

Copyright © 2007 by Hanan Samet

cd35

f

6

r

Copyright © 2007 by Hanan Samet

cd35

g

7

z

Copyright © 2007 by Hanan Samet

cd35

h

8
g

Copyright © 2007 by Hanan Samet

cd35

i

9
v

Copyright © 2007 by Hanan Samet

3
7

4
-3

7
7

-P
M

R
 q

u
a

d
tre

e

Triangulations

PM2 quadtree is quite useful vis-a-vis PM1 quadtree

Given a triangle table, only need to store at most a single vertex with each

cell and can reconstruct mesh with the aid of clipping

Example triangular mesh

PM1 quadtree PM2 quadtree

Can also formulate a PM-triangle quadtree variant

Copyright 2008 by Hanan Samet

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2008 Hanan Samet Sorting in Space – p.2/3

hi36

REGION QUADTREE

• Repeatedly subdivide until obtain homogeneous region

• For a binary image (BLACK ≡ 1 and WHITE ≡ 0)

• Can also use for multicolored data (e.g., a landuse
class map associating colors with crops)

• Can also define data structure for grayscale images

• A collection of maximal blocks of size power of two
and placed at predetermined positions

1. could implement as a list of blocks each of which
has a unique pair of numbers:
• concatenate sequence of 2 bit codes correspond-

ing to the path from the root to the block’s node
• the level of the block’s node

2. does not have to be implemented as a tree
• tree good for logarithmic access

• A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

A

B C D E

NW

NE SW

SE

F G H I J L M N O Q

K P

37 38 39 40 57 5859 60

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

1

1

1

1

0

0

1

1

1

1

1

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

B

60

37

L

J

Q

GF

H

N

I

O

M
57 58

59

4039

38

Copyright © 2007 by Hanan Samet
12

2
1

1
-R

e
g

io
n

 q
u

a
d

tre
e

bg7
SPACE REQUIREMENTS

1. Rationale for using quadtrees/octrees is not so much
for saving space but for saving execution time

2. Execution time of standard image processing
algorithms that are based on traversing the entire
image and performing a computation at each image
element is proportional to the number of blocks in the
decomposition of the image rather than their size

• aggregation of space leads directly to execution
time savings as the aggregate (i.e., block) is visited
just once instead of once for each image element
(i.e., pixel, voxel) in the aggregate (e.g., connected
component labeling)

3. If want to save space, then, in general, statistical
image compression methods are superior

• drawback: statistical methods are not progressive
as need to transmit the entire image whereas
quadtrees lend themselves to progressive
approximation

• quadtrees, though, do achieve compression as a
result of use of common subexpression elimination
techniques

a. e.g., checkerboard image

b. see also vector quantization

4. Sensitive to positioning of the origin of the
decomposition

• for an n x n image, the optimal positioning requires
an O(n 2 log2n) dynamic programming algorithm
(Li, Grosky, and Jain)

Copyright © 2007 by Hanan Samet

3
5

7
-3

5
9

-M
X

-q
u

a
d

tre
e

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 2007 by Hanan Samet

bg82
r

Copyright © 2007 by Hanan Samet

bg83

z

Copyright © 2007 by Hanan Samet

bg84

g

Copyright © 2007 by Hanan Samet

bg85

r

• easy to see dependence on perimeter as decomposition
only takes place on the boundary as the resolution
increases

Copyright © 2007 by Hanan Samet

3
5

7
-3

5
9

-M
X

-q
u

a
d

tre
e

tl1
ALTERNATIVE DECOMPOSITION METHODS

• A planar decomposition for image representation should be:

1. infinitely repetitive

2. infinitely decomposable into successively finer patterns

• Classification of tilings (Bell, Diaz, Holroyd, and Jackson)

1. isohedral — all tiles are equivalent under the symmetry
group of the tiling (i.e., when stand in one tile and look
around, the view is independent of the tile)

1

b

B A

1
2

3

[36]

[34.6]

[33.42]

[32.4.3.2]

[3.4.6.4]

[3.6.3.6]

[3.122]

[44]

[4.6.12]

[63]

[4.82]

2. regular — each tile is a regular polygon

• There are 81 types if classify by their symmetry groups

• Only 11 types if classify by their adjacency structure

• [3.122] means 3 edges at the first vertex of the polygonal
tile followed by 12 edges at the next two vertices

Copyright © 2007 by Hanan Samet

tl12

r

YESNO

Copyright © 2007 by Hanan Samet

1
9

6
-1

9
8
--T

ilin
g

 m
e
th

o
d
s

tl21

b

• Limited ≡ NOT similar (i.e., cannot be decomposed
infinitely into smaller tiles of the same shape)

• Unlimited: each edge of each tile lies on an infinitely
straight line composed entirely of edges

• Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

• Two additional hierarchies:

 Note: [4.82] and [4.6.12] are not regular

rotation of 135° between levels reflection between levels

[4.82] [4.6.12]

[63] [44] [36]

PROPERTIES OF TILINGS — SIMILARITY

• Similarity — a tile at level k has the same shape as a tile
at level 0 (basic tile shape)

Copyright © 2007 by Hanan Samet

tl22

r

YES YES NO

Copyright © 2007 by Hanan Samet

1
9

6
-1

9
8
--T

ilin
g

 m
e
th

o
d
s

tl3
PROPERTIES OF TILINGS — ADJACENCY

• Adjacency — two tiles are neighbors if they are adjacent
along an edge or at a vertex

• Uniform adjacency ≡ distances between the centroid of
one tile and the centroids of all its neighbors are the same

• Adjacency number of a tiling (A) ≡ number of different
adjacency distances

1

b

[36] [44] [63]

Copyright © 2007 by Hanan Samet

tl32

r

A=1 A=2 A=3

Copyright © 2007 by Hanan Samet

1
9

6
-1

9
8
--T

ilin
g

 m
e
th

o
d
s

tl4

[44] [63] [36]

PROPERTIES OF TILINGS — UNIFORM ORIENTATION

• Uniform orientation

• All tiles with the same orientation can be mapped into
each other by translations of the plane which do not
involve rotation for reflection

1

b

Conclusion:

• [44] has a lower adjacency number than [63]

• [44] has a uniform orientation while [63] does not

• [44] is unlimited while [36] is limited

Use [44]!

Copyright © 2007 by Hanan Samet

tl42

r

YES NO YES

Copyright © 2007 by Hanan Samet

1
9

6
-1

9
8
--T

ilin
g

 m
e
th

o
d
s

Bintree

Regular decomposition k-d tree

Cycle through attributes

A1

A2 A3

C3

C1

C2

B2

B1

W3

W7

W4 W5

W6

W8

W9

W2

W1

W8 C1 W9 C2

C3

W7

A2 W4 A3 W5

W6

W1

W2 B1

B2

W3

A1

west east

north south

west east

Chapter 2: Copyright 2007 Hanan Samet

2
2

1
-2

2
2

--B
in

tre
e

Generalized Bintree

Regular decomposition k-d tree but no need to cycle through attributes

Need to record identity of partition axis at each nonleaf node

A1

A2

C2C1

B2
B1

W3

W6
W4

W5 W7

W2

W1

W7 C1

C2

W6

A2 W4

W5

W1

W2 B1

B2

W3

A1

y:

x: x:

y: y: y:

x:

x:

y: x:

y: x:

Chapter 2: Copyright 2007 Hanan Samet

2
2

1
-2

2
2

--B
in

tre
e

X-Y Tree, Treemap, and Puzzletree

Split into two or more parts at each partition step

Implies no two successive partitions along the same attribute as they are
combined

Implies cycle through attributes in two dimensions

A1

C1

B1

W4

W1

W2

B2
W3

1

B1W3

6

B2

C1

2 6

W4

5

W1A1

4 5

W2

y: y:

y:

x:

x:

Chapter 2: Copyright 2007 Hanan Samet

2
2

5
-2

3
0

--X
-Y

 tre
e

, tre
e

m
a

p
, a

n
d

 p
u

z
z
le

tre
e

Three-Dimensional X-Y Tree, Treemap, and Puzzletree

No longer require cycling through dimensions as this results in losing

some perceptually appealing block combinations

G

x

y

z

1

BA

4 5

C

x:

z:

1 3

G

y:

D F

1 3x:

H J

1 3x:

6 7

K

z: 6 7z:

L

D

F

J

B
A

C

Chapter 2: Copyright 2007 Hanan Samet

2
2

5
-2

3
0

--X
-Y

 tre
e

, tre
e

m
a

p
, a

n
d

 p
u

z
z
le

tre
e

Bintree compared with X-Y Tree, Treemap, Puzzletree

Much more decomposition in bintree

Bintree

A1 A3 W5 B2 B3W7 C3 C1

W3 W8

W2

A2
B1

C2

W10
W6

W9
W4

W1

X-Y Tree

W2

3

A3

x:

W1

4 5

A2

y:

C3

13

W10

x:

W9

4 5

C2

y:

6x:

W4

3 4

B1

y:

7 8 10

B2 W6W5 B3 W7

1 4 5 11 12 15

A1 C1W8W3

x:

Chapter 2: Copyright 2007 Hanan Samet

2
2

5
-2

3
0

--X
-Y

 tre
e

, tre
e

m
a

p
, a

n
d

 p
u

z
z
le

tre
e

ar2

BSP TREES (Fuchs, Kedem, Naylor)

• Like a bintree except that the decomposition lines are
at arbitrary orientations (i.e., they need not be parallel
or orthogonal)

• For data of arbitrary dimensions

• In 2D (3D), partition along the edges (faces) of a
polygon (polyhedron)

• Ex: arrows indicate direction of positive area

B

C

A

2

3

4

5

1

D

B

C

A

2 3

4 51

D

• Usually used for hidden-surface elimination

1. domain is a set of polygons in three dimensions

2. position of viewpoint determines the order in which
the BSP tree is traversed

• A polygon’s plane is extended infinitely to partition the
entire space

Copyright © 2007 by Hanan Samet

2
3

3
-2

3
7
--B

S
P

 tre
e

ar3
DRAWBACKS OF BSP TREES

• A polygon may be included in both the left and right
subtrees of node

• Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

• Shape of the BSP tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

• Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

• Ex: use line segments
in two dimensions

1

b

C
D

A
B

Copyright © 2007 by Hanan Samet

ar32

r

1. partition
induced by
choosing B as
the root

B

C D

A D

3 4 1 2

5 6 C

D

A
B

1

2

3

4
5

6

Copyright © 2007 by Hanan Samet

ar33

z

2. partition
induced by
choosing C as
the root

C

D

A
B

1
4

5
2

3

C

D

B

1 2

3

A

4 5

Copyright © 2007 by Hanan Samet

2
3

3
-2

3
7
--B

S
P

 tre
e

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2008 Hanan Samet Sorting in Space – p.2/3

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding

hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2008 by Hanan Samet

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding

hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2008 by Hanan Samet

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding

hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2008 by Hanan Samet

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding

hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2008 by Hanan Samet

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding

hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2008 by Hanan Samet

Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)

Arbitrary orientation for bounding

hyperrectangles

3. Minimum bounding hyperspheres

(sphere tree, SS-tree)

4. Combination of hyperspheres and

hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)

Copyright 2008 by Hanan Samet

rc13

1. between m M/2 and M entries in each node
except root

MINIMUM BOUNDING RECTANGLES

• Rectangle has single bounding rectangle, yet area it
spans may be included in several bounding rectangles

• Drawback: not a disjoint decomposition of space

• May have to visit several rectangles to determine the
presence/absence of a rectangle

1

b

• Order (m,M) R-tree

2. at least 2 entries in root unless a leaf node

• Ex: order (2,3) R-tree

• Rectangles grouped into hierarchies, stored in another
structure such as a B-tree

A

E
3

G

2 F

D

C1

B

Copyright © 2007 by Hanan Samet

rc132

r

3ER3: R4: R5: R6:

R3

R4

R5

R6

1A GF2DCB

Copyright © 2007 by Hanan Samet

rc133

z

R2:R1: R6R5R4R3

R1

R2

Copyright © 2007 by Hanan Samet

rc134

g

R0: R2R1

R0

Copyright © 2007 by Hanan Samet

2
7

0
-2

9
6
--R

-tre
e

rc15SEARCHING FOR A RECTANGLE
CONTAINING A POINT IN AN R-TREE

1

b

• Drawback is that may have to examine many nodes
since a rectangle can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., D in R0, R1, R2, R3, and R5)

 Ex: Search for the rectangle containing point Q

A

E 3

G

2 F

D

C1

B

3ER3: R4: R5: R6:1A GF2DCB

R2:R1: R6R5R4R3

R0: R2R1

R3

R4

R5

R6

R1

R2

Q

Copyright © 2007 by Hanan Samet

rc15

Q is in R0

2

v

Copyright © 2007 by Hanan Samet

rc15

Q can be in both R1 and R2

3

r

Copyright © 2007 by Hanan Samet

rc154

z

Searching R1 first means that R3 is searched but this leads
to failure even though Q is in a part of D which is in R3

Copyright © 2007 by Hanan Samet

rc155

g

Searching R2 finds that Q can only be in R5

Copyright © 2007 by Hanan Samet

2
7

0
-2

9
6
--R

-tre
e

Dynamic R-Tree Construction

Differ by how to split overflowing node p upon insertion

Conflicting goals

1. Reduce likelihood that each node q is visited by the search

achieve by minimizing total area spanned by bounding box of q

(coverage)

2. minimize number of children of p that must be visited by search
operations
achieve by minimizing area common to children so that the area that

they span is not visited a multiple number of times (overlap)

Rectangles Goal 1 Goal 2
Copyright 2008 by Hanan Samet

2
7

0
-2

9
6

--R
-tre

e

vr8

EXAMPLE DYNAMIC SPLITTING METHODS

1. Methods based on reducing coverage:

• exhaustive search

• quadratic

• linear

2. R*-tree

• minimize overlap in leaf nodes

• Minimize coverage in nonleaf nodes

• also reduces coverage by minimizing perimeter of
bounding boxes of resulting nodes when effect on
coverage is the same

• when node overflows, first see if can avoid
problem by reinserting a fraction of the nodes (e.g.,
30%)

3. Ang/Tan: linear with focus on reduction of overlap

4. Packed methods that make use of an ordering

• usually order centroids of bounding boxes of
objects and build a B+-tree

a. Hilbert packed R-tree: Peano-Hilbert order

b. Morton packed R-tree: Morton order

• node overflow

a. goals of minimizing coverage or overlap are not
part of the splitting process

b. do not make use of spatial extent of bounding
boxes in determining how to split a node

Copyright 2008 by Hanan Samet

2
7

0
-2

9
6

--R
-tre

e

rc16

R-TREE OVERFLOW NODE SPLITTING POLICIES

• Could use exhaustive search to look at all possible
partitions

• Usually two stages:

1. pick a pair of bounding boxes to serve as seeds for
resulting nodes (‘seed-picking’)

2. redistribute remaining nodes with goal of minimizing
the growth of the total area (‘seed-growing’)

• Different algorithms of varying time complexity

1. quadratic:

• find two boxes j and k that would waste the most
area if they were in the same node

• for each remaining box i, determine the increase in
area dij and dik of the bounding boxes of j and k
resulting from the addition of i and add the box r for
which |drj – drk| is a maximum to the node with the
smallest increase in area

• rationale: find box with most preference for one of j, k

2. linear:

• find two boxes with greatest normalized separation
along all of the dimensions

• add remaining boxes in arbitrary order to box
whose area is increased the least by the addition

3. linear (Ang/Tan)

• minimizes overlap

• for each dimension, associate each box with the
closest face of the box of the overflowing node

• pick partition that has most even distribution
a. if a tie, minimize overlap
b. if a tie, minimize coverage

Copyright © 2007 by Hanan Samet

2
7
0
-2
9
6
--R
-tre
e

rc17

R*-TREE

• Tries to minimize overlap in case of leaf nodes and
minimize increase in area for nonleaf nodes

• Changes from R-tree:

1. insert into leaf node p for which the resulting
bounding box has minimum increase in overlap with
bounding boxes of p’s brothers

• compare with R-tree where insert into leaf node for
which increase in area is a minimum (minimizes
coverage)

2. in case of overflow in p, instead of splitting p as in R-
tree, reinsert a fraction of objects in p
• known as ‘forced reinsertion’ and similar to

‘deferred splitting’ or ‘rotation’ in B-trees

• how do we pick objects to be reinserted? possibly
sort by distance from center of p and reinsert
furthest ones

3. in case of true overflow, use a two-stage process

• determine the axis along which the split takes place
a. sort bounding boxes for each axis to get d lists
b. choose the axis having the split value for which

the sum of the perimeters of the bounding boxes
of the resulting nodes is the smallest while still
satisfying the capacity constraints (reduces
coverage)

• determine the position of the split
a. position where overlap between two nodes is

minimized
b. resolve ties by minimizing total area of bounding

boxes (reduces coverage)

• Works very well but takes time due to reinsertion

Copyright © 2007 by Hanan Samet

2
7
0
-2
9
6
--R
-tre
e

rc18

EXAMPLE OF R-TREE NODE SPLITTING POLICIES

• Sample collection of 1700 lines using m=20 and M=50

Collection of lines R*-tree

Linear Quadratic

Copyright © 2007 by Hanan Samet

2
7
0
-2
9
6
--R
-tre
e

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2008 Hanan Samet Sorting in Space – p.2/3

hp14
MX-CIF QUADTREE (Kedem)

1

b

Collections of small rectangles for VLSI applications

Each rectangle is associated with its minimum
enclosing quadtree block

Like hashing: quadtree blocks serve as hash buckets

1.

2.

3.

1

2

3

4
5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

Copyright © 2007 by Hanan Samet 24

hp142

r

Collision = more than one rectangle in a block

resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

Copyright © 2007 by Hanan Samet 24

hp14

one for y-axis

Binary tree for y-
axis through A

Y1

Y2
10

Y4

2

Y5

Y3

6
Y7

8

Y6

3

g

Copyright © 2007 by Hanan Samet 24

hp14

if a rectangle intersects both x and y axes, then
associate it with the y axis

4

v

Copyright © 2007 by Hanan Samet 24

hp145

z

one for x-axis

Binary tree for x-
axis through A

X1

X3
9

X5

7

X4

X2

X6

Copyright © 2007 by Hanan Samet 24

4
6

6
-4

7
4

-M
X

-C
IF

 q
u

a
d

tre
e

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum

enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)

so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

Maximum w (i.e., minimum depth of

minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

A

B{}

E

C{2,9}

{2,4}

{5} {3} {6} {9} {7} {8} {10}

D

F

{11} {12}

{}

{1}

{7,8,10}

{11,12}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2008 by Hanan Samet

4
6

6
-4

7
4

-M
X

-C
IF

 q
u

a
d

tre
e

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition

fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet

4
6

6
-4

7
4

-M
X

-C
IF

 q
u

a
d

tre
e

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2008 Hanan Samet Sorting in Space – p.2/3

sf2

HIERARCHICAL RECTANGULAR DECOMPOSITION

• Similar to triangular decomposition

• Good when data points are the vertices of a
rectangular grid

• Drawback is absence of continuity between adjacent
patches of unequal width (termed the alignment
problem)

• Overcoming the presence of cracks

1. use the interpolated point instead of the true point
(Barrera and Hinjosa)

2. triangulate the squares (Von Herzen and Barr)

• can split into 2, 4, or 8 triangles depending on how
many lines are drawn through the midpoint

• if split into 2 triangles, then cracks still remain

• no cracks if split into 4 or 8 triangles

Copyright © 2007 by Hanan Samet 25

4
0

2
-4

0
8

-H
ie

ra
rc

h
ic

a
l re

c
ta

n
g

u
la

r s
u

rfa
c
e

 d
e

c
o

m
p

o
s
itio

n

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1

 Note: also used in finite element analysis to adptively
refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2007 by Hanan Samet 26

sf32
r

Copyright © 2007 by Hanan Samet 26

sf33

z

• 8-triangle decomposition rule

1. decompose each block into 8 triangles (i.e., 2 triangles
per edge)

2. unless the edge is shared by a larger block

3. in which case only 1 triangle is formed

Copyright © 2007 by Hanan Samet 26

sf34

g

• 4-triangle decomposition rule

1. decompose each block into 4 triangles (i.e., 1 triangle
per edge)

2. unless the edge is shared by a smaller block

3. in which case 2 triangles are formed along the edge

Copyright © 2007 by Hanan Samet 26

sf3

• Prefer 8-triangle rule as it is better for display applications
(shading)

5

v

Copyright © 2007 by Hanan Samet 26

4
0

2
-4

0
8

-H
ie

ra
rc

h
ic

a
l re

c
ta

n
g

u
la

r s
u

rfa
c
e

 d
e

c
o

m
p

o
s
itio

n

td3

OCTREES

1. Interior (voxels)

• analogous to region quadtree

• approximate object by aggregating similar voxels

• good for medical images but not for objects with
planar faces

Ex:

1 2 3 4 13 14 15

12111098765

B

A
14 15

4
9 10

6

1 2

13

1211

5

2. Boundary (PM octrees)

• adaptation of PM quadtree to three-dimensional
data

• decompose until each block contains

a. one face

b. more than one face but all meet at same edge

c. more than one edge but all meet at same
vertex

• impose spatial index on a boundary model (BRep)

Copyright 2008 by Hanan Samet

3
6

9
-3

7
0

--P
M

 o
c
tre

e

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2008 Hanan Samet Sorting in Space – p.2/3

Basic Definitions

1. Often only information available is a distance function indicating degree of

similarity (or dis-similarity) between all pairs of N data objects

2. Distance metric d: objects must reside in finite metric space (S, d) where

for o1, o2, o3 in S, d must satisfy

d(o1, o2) = d(o2, o1) (symmetry)

d(o1, o2) ≥ 0, d(o1, o2) = 0 iff o1 = o2 (non-negativity)

d(o1, o3) ≤ d(o1, o2) + d(o2, o3) (triangle inequality)

3. Triangle inequality is a key property for pruning search space

Computing distance is expensive

4. Non-negativity property enables ignoring negative values in derivations

Copyright 2008: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.2/3

5
9

8
-6

0
0

--D
is

ta
n

c
e

-b
a

s
e

d
 in

d
e

x
in

g

Pivots
Identify a distinguished object or subset of the objects termed pivots or
vantage points

1. sort remaining objects based on

a. distances from the pivots, or
b. which pivot is the closest

2. and build index
3. use index to achieve pruning of other objects during search

Given pivot p ∈ S, for all objects o ∈ S′ ⊆ S, we know:

1. exact value of d(p, o),

2. d(p, o) lies within range [rlo, rhi] of values (ball partitioning) or

drawback is asymmetry of partition as outer shell is usually narrow

3. o is closer to p than to some other object p2 ∈ S (generalized hyperplane

partitioning)

Distances from pivots are useful in pruning the search

S1

p r

S2

p

p2

Copyright 2008: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.3/3

5
9

8
-6

0
0

--D
is

ta
n

c
e

-b
a

s
e

d
 in

d
e

x
in

g

vp-Tree (Metric Tree; Uhlmann|Yianilos)

Ball partitioning method

Pick � from

�

and let � be median of distances of other objects from �

Partition

�

into two sets

��� and

��� where:

�� � �
	 � � � � �
� � � ��� 	 � � �

�� � �
	 � � � � �
� � � ��� 	 � � �

Apply recursively, yielding a binary tree with pivot and radius values at

internal nodes

Choosing pivots

1. simplest is to pick at random

2. choose a random sample and then select median

S1

p r

S2

p

S1 S2

<r ≥r

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.35/113

6
0

4
-6

0
7

--P
iv

o
t-b

a
s
e

d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

vp-Tree Example

e

t

k

u l
v

m

b

n

f

ds

j

r

i

a

h

q

c

p

o

g

n f

bv

we

c

g k

o

{} m

h

a q

j

d r

s

t u

p

i

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.36/113

6
0

4
-6

0
7

--P
iv

o
t-b

a
s
e

d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (v

p
-tre

e
)

gh-Tree (Metric Tree; Uhlmann)

Generalized hyperplane partitioning method

Pick �� and �� from

�

and partition

�

into two sets

�� and

�� where:

�� � �
� � � � � �� � �� !" # $ �� � � % & # $ �� � � % !

�� � �
� � � � � �� � �� !" # $ �� � � % ' # $ �� � � % !

Objects in

�� are closer to � � than to �� (or equidistant from both), and
objects in

�� are closer to �� than to � �

hyperplane corresponds to all points � satisfying

$ � � � � % � # $ �� � � %

can also “move” hyperplane, by using
$ � � � � % � # $ �� � � % ()

Apply recursively, yielding a binary tree with two pivots at internal nodes

p1

p2

S1 S2

p1 p2

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.39/113

6
1

3
-6

1
6

--C
lu

s
te

r-b
a

s
e

d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

gh-Tree Example

(a) (b)

b

a

d

c

k

l

j
i

e

f

h

g

m

n

t

u

v

s

r

q
p

o

{o,p} {q} {r} {s} {t} {u} {v}

g h i j k l m n

e fc d

a b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.40/113

6
1

3
-6

1
6

--C
lu

s
te

r-b
a

s
e

d
 d

is
ta

n
c
e

 in
d

e
x
in

g
 (g

h
-tre

e
)

mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (

C

) PR k-d tree as split whenever region has

C,D E
objects but

region partitions are implicit (defined by pivot objects) instead of explicit

(a) (b)

e b

e

t
k

u l

vm

b

n

f

d
s

j

r

i

a
h

q

c p

og

a b

b

a

c a

a

c

e

b

o c

c

o

a d
d

a

e u

e

u

b v

v

b

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.44/113

6
1

8
-6

2
2

--M
b

-tre
e

Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree

Partition of
underlying
space
analogous

to that of
BSP tree
for points

mb-tree

(100,100)(0,100)

y

(0,0) x (100,0)

(35,42)
Chicago

Mobile
(52,10)

(62,77)
Toronto

(82,65)
Buffalo

Toronto Buffalo

Denver
(5,45) Denver

Omaha
(27,35)

ChicagoOmaha

Mobile

(85,15)
Atlanta

Miami
(90,5)

Atlanta Miami

MiamiAtlanta

-Miami

(90,5)
Miami

Mobile

-Atlanta

Atlanta

(85,15)
Atlanta

Omaha -

Omaha Chicago

(27,35)
Omaha

BuffaloToronto

-Buffalo

(82,65)
Buffalo

-Denver

Denver Chicago

(5,45)
Denver

(62,77)
Toronto

Toronto

Toronto

Chicago

-Mobile

Chicago - Mobile

(52,10)
Mobile

(35,42)
Chicago

Chicago

(0,100) (100,100)

(100,0)(0,0)

y

x
Copyright 2008 Hanan Samet SIGGRAPH 2008 –

6
1

8
-6

2
2

 -- M
b

-tre
e

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2008 Hanan Samet Sorting in Space – p.2/3

Incremental Nearest Neighbors (Hjaltason/Samet)

Motivation

1. often don’t know in advance how many neighbors will need

2. e.g., want nearest city to Chicago with population > 1 million

Several approaches

1. guess some area range around Chicago and check populations of

cities in range

if find a city with population > 1 million, must make sure that there
are no other cities that are closer with population > 1 million

inefficient as have to guess size of area to search

problem with guessing is we may choose too small a region or too
large a region

a. if size too small, area may not contain any cities with right
population and need to expand the search region

b. if size too large, may be examining many cities needlessly

2. sort all the cities by distance from Chicago

impractical as we need to re-sort them each time pose a similar
query with respect to another city

also sorting is overkill when only need first few neighbors

3. find F closest neighbors and check population condition

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.98/113

4
9

0
-4

9
9

--In
c
re

m
e

n
ta

l n
e

a
re

s
t n

e
ig

b
h

o
r fin

d
in

g

Mechanics of Incremental Nearest Neighbor Algorithm

Make use of a search hierarchy (e.g., tree) where

1. objects at lowest level

2. object approximations are at next level (e.g., bounding boxes in an

R-tree)

3. nonleaf nodes in a tree-based index

Traverse search hierarchy in a “best-first” manner similar to A*-algorithm

instead of more traditional depth-first or breadth-first manners

1. at each step, visit element with smallest distance from query object
among all unvisited elements in the search hierarchy

i.e., all unvisited elements whose parents have been visited

2. use a global list of elements, organized by their distance from query
object

use a priority queue as it supports necessary insert and delete
minimum operations
ties in distance: priority to lower type numbers

if still tied, priority to elements deeper in search hierarchy

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.99/113

4
9

0
-4

9
9

--In
c
re

m
e

n
ta

l n
e

a
re

s
t n

e
ig

b
h

o
r fin

d
in

g

Incremental Nearest Neighbor Algorithm

Algorithm:

INCNEAREST(G , H , I)

1 J K NEWPRIORITYQUEUE()

2 LNMOK root of the search hierarchy induced by G , H , and I

3 ENQUEUE(J , LPM , 0)

4 while not ISEMPTY(J) do

5 LNMQK DEQUEUE(J)

6 if RTS U then /* L M is an object */

7 Report L M as the next nearest object

8 else

9 for each child element L MWV of LNM do

10 ENQUEUE(J , L MXV , Y MWV[Z G]\ L MXV_^)
1. Lines 1-3 initialize priority queue with root

2. In main loop take element L`M closest to G off the queue

report LPM as next nearest object if L`M is an object

otherwise, insert child elements of LaM into priority queue

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.100/113

4
9

0
-4

9
9

--In
c
re

m
e

n
ta

l n
e

a
re

s
t n

e
ig

b
h

o
r fin

d
in

g

Example of INCNEAREST

Initially, algorithm descends tree to leaf

node containing q

expand n

expand n f

Start growing search region

expand n g

report e as nearest neighbor

n

g

a

q

e

d

c

b
i

f

h

n

n1

n2n3

n

n1 n2

n3

queue

front

expand

n2

n3

n1
front

expand

c
a
d
n2

n3
front

expand

h
b
c
a
d
n2

e front

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.101/113

4
9

0
-4

9
9

--In
c
re

m
e

n
ta

l n
e

a
re

s
t n

e
ig

b
h

o
r fin

d
in

g

VASCO Spatial Applet

http://www.cs.umd.edu/˜hjs/quadtree/index.html

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.102/113

4
9

0
-4

9
9

--In
c
re

m
e

n
ta

l n
e

a
re

s
t n

e
ig

b
h

o
r fin

d
in

g

Complexity Analysis

Algorithm is I/O optimal

no nodes outside search region are accessed

better pruning than branch and bound algorithm

Observations for finding h nearest neighbors for uniformly-distributed

two-dimensional points

expected # of points on priority queue: i jlk hnm
expected # of leaf nodes intersecting search region: i j hpo k hqm

In worst case, priority queue will be as large as entire data set

e.g., when data objects are all nearly

equidistant from query object

probability of worst case very low, as it

depends on a particular configuration of

both the data objects and the query object

(but: curse of dimensionality!)

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.103/113

4
9

0
-4

9
9

--In
c
re

m
e

n
ta

l n
e

a
re

s
t n

e
ig

b
h

o
r fin

d
in

g

Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”

2. Precompute and store shortest paths between all vertices in network

Reduce cost of storing shortest paths between all

pairs of N vertices from O(N3) to O(N1.5) using

path coherence of destination vertices

Can reduce to O(N) by also using path coherence

of source vertices

3. Decouple domain S of query objects (q) and objects from which neighbors are

drawn from domain V of vertices of network

Implies no need to recompute shortest paths
each time q or S change

4. Avoids Dijkstra’s algorithm which visits too many vertices

Ex: Dijkstra’s algorithm visits 3191 out of the 4233 ver-

tices in network to identify a 76 edge path from X to V

5. Instead, only visit vertices on shortest paths to nearest
neighbors

Scalable Network Distance Browsing in Spatial Databases – p.2/15

95

Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s

Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

network distance ordering O D N M G (Error: +26 miles)

trafficability ordering O D G N M (Error: +32 minutes)

Challenge: Real time + exact queries

Scalable Network Distance Browsing in Spatial Databases – p.3/15

96

Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as

the crow flies” used by Google) and by the network distance (used by us)

5

5.3m E

A:11.5m

8

5.3m SE

B:14.4m
7

C:14.3m

5.6m SE

D:11.4m 4
5.8m E

2

7.7m NE

E:10.6m

1 F:10.5m

7.9m NE

G:11.3m
3

8.0m NE

6
H:13.4m

9.9m NE Notice difference in the ordering

Goal: Instant answers as well as accurate answers

Scalable Network Distance Browsing in Spatial Databases – p.4/15

97

SILC: Using Path Coherence to Encode Shortest Paths

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-
tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.5/15

98

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.6/15

99

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

n
0.5

n
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

N
u

m
b

e
r

o
f

M
o

rt
o

n
 b

lo
c
k
s

(m
)

(l
o

g
 s

c
a

le
)

Number of Vertices (n) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.7/15

100

Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ut ds
s

d

t

u

Retrieve the shortest-path quadtree Qs corresponding to s

Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t

Find the colored region that contains d in Qt

Retrieve the vertex u connected to t in the region containing d in Qt

Entire shortest path can be retrieved in size-of-path steps

Network distance between s and d is immediately obtained from shortest path
Scalable Network Distance Browsing in Spatial Databases – p.8/15

101

Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block

Refinement involves finding the next link in the shortest path

Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Mainz

Hanover

[10,20] [15,30]

Berlin

Munich

Mainz

Munich BremenBremen

Hanover [12,18] [17,20]

Berlin [13,15] [18,19]

Munich is closer as distance interval via Berlin does not intersect distance
interval to Bremen via Berlin Scalable Network Distance Browsing in Spatial Databases – p.9/15

102

Properties of a Non-Incremental kNN Algorithm

Neighbors produced in increasing order of distance from q

Use a priority queue Q of objects and blocks

Q contains network distance interval [δ−, δ+] of objects from q

Additional information stored with each object o in Q

1. An intermediate vertex u in shortest path from q to u

2. network distance d from q to u

Uses another priority queue L in addition to Q

Stores k objects found so far in increasing order of δ+

Dk is the maximum of the distance interval of the kth element in L

Idea: Prune elements e from Q such that δ−e ≥ Dk

Elements are removed from Q in increasing order of the minimum of their

distance interval δ− from q

Objects may be reinserted in Q if δ− < Dk

Terminate when δ− ≥ Dk

Advantages over Incremental best-first kNN (INN)

Smaller size of Q

Faster than INN
Scalable Network Distance Browsing in Spatial Databases – p.10/15

103

kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance

from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for

which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for

which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions

with the current top element of Q

A collision occurs if the distance interval of p intersects the distance
interval of the current top element in Q

Collision:
Remove p from L if δ+ ≤ Dk

Apply refinement to improve distance interval of p and reinsert p in

L if δ+ ≤ Dk and in Q if δ− < Dk and go to Step 2

No collision: p is already one of k nearest neighbors in L (Theorem 1)

and go to Step 2

Scalable Network Distance Browsing in Spatial Databases – p.11/15

104

Example of a Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.
Update D k.

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue

front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

Refine and Reinsert g into Queue and L.
7. Process a. No collision of a with g. No need to refine a further.

No need to refine g further. Report L.
8. Process g. No collision of g with e.

(Search radius to first element in Queue)
Example of a best−first nearest neighbor algorithm.

Scalable Network Distance Browsing in Spatial Databases – p.12/15

105

Musings on How Realistic is the Approach

How about a system for the whole US?

24 million vertices x 10 seconds (say) per shortest path

Single machine = 2777 days

Google with 0.5 million machines = 480 seconds

Modest Cluster of 2000 machines = 1 day, 10 hours

Storage shown to be cN
√

N Morton Blocks

N = 24 million vertices, 8 bytes per Morton block, c = 2 from empirical
analysis = 1.8 TB

Easily Parallelizable: data parallelism

Mostly a one-time effort (decoupling)

Open Challenge: Updates!

Changes to spatial network (e.g., road closure)

Dynamic traffic information

Strategy: How to localize changes to minimize recomputation?

Approximation Strategies: location based services

Shortest-path quadtree on proximal vertices only (say, 100 miles around a

vertex)

Multiresolution spatial networks
Full resolution around a source vertex that gets sparse gradually

Scalable Network Distance Browsing in Spatial Databases – p.13/15

106

Path Coherence Beyond SILC

The SILC framework captures the path coherence in the shortest paths

Captured: single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

A new framework: Path Coherent Pairs (PCP)

Example of a path coherent pair denoted by: (A, B, v)

A is a set of source vertices
B is a set of destination vertices
v is a common vertex to all pairs of shortest paths

Scalable Network Distance Browsing in Spatial Databases – p.14/15

107

Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

Anyone driving from “North-East” to “North-West” US uses I-80W

Capture shortest paths from one million (say) sources in “North-East” to one

million (say) destinations in “North-West” using O(1) storage

Intuition: Sources “sufficiently far” from destinations share common vertices in

their shortest paths

Decompose road network into PCPs:

Any vertex pair is contained in

exactly one set in the shape of a
dumbbell

All N2 shortest paths are captured

using O(sdN) storage where s is a

small constant

I−80W

P

S

L
D

N

B

Key idea is the analogy to the well-separated pairs in computational geometry

Scalable Network Distance Browsing in Spatial Databases – p.15/15

108

tf1
SET OPERATIONS ON QUADTREES

1
b

UNION(S,T) : traverse S and T in tandem

1. GRAY(S) :

GRAY(T) : recursively process subtrees and
 merge if all resulting sons are BLACK

BLACK(T) : result is T
WHITE(T) : result is S

2. BLACK(S) : result is S
3. WHITE(S) : result is T

Copyright © 2007 by Hanan Samet

tf1

B

A

2

r

2

4

1

3

8

10

7

9
6

5

5

1 2 3 4

6

7 8 9 10

C

Copyright © 2007 by Hanan Samet

tf13

g

c

12

14

11

13

16

18

15

17

19 20

D

E
19 20

11 12 13 14 15 16 17 18

F

Copyright © 2007 by Hanan Samet

tf14

z

Copyright © 2007 by Hanan Samet

tf15

v

INTERSECTION: interchange roles of BLACK and WHITE in
UNION

Copyright © 2007 by Hanan Samet

tf16

r

Execution time is bounded by sum of nodes in two input
trees but may be less if don't create a new copy as really
just the sum of the minimum of the number of nodes at
corresponding levels of the two quadtrees

Copyright © 2007 by Hanan Samet

tf17

z

More efficient than vectors as make use of global data
1. vectors require a sort for efficiency
2. region quadtree is already sorted

Copyright © 2007 by Hanan Samet

S
e

c
tio

n
-6

.3
.2

-A
p

p
lic

a
tio

n
s
 o

f S
p

a
tia

l D
a

ta
 S

tru
c
tu

re
s

nf11

b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that

1. is position-independent

2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

A 1
3 24

5

A has neighbors5

Copyright © 2007 by Hanan Samet

nf12

r

6

6

Copyright © 2007 by Hanan Samet

nf13

z

7

7

Copyright © 2007 by Hanan Samet

nf14

g

8

8

Copyright © 2007 by Hanan Samet

nf15

v

• Some block configurations are impossible, thereby
simplifying a number of algorithms

1. impossible for a node A to have
two larger neighbors B and C
on directly opposite sides or
touching corners

2. partial overlap of two blocks B
and C with A is impossible
since a quadtree is constructed
by recursively splitting blocks
into blocks that have side
lengths that are powers of 2

A

A

Copyright © 2007 by Hanan Samet

nf16

r

C

B

C
B

Copyright © 2007 by Hanan Samet

2
1

7
-Q

u
a

d
tre

e
 n

e
ig

h
b

o
r fin

d
in

g

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1

b

A

D

C E

G

FB

Copyright © 2007 by Hanan Samet

nf22

r

1

2

3 4

5

6

NE

NE

NW

NW

NE

NW

Copyright © 2007 by Hanan Samet

nf23

z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 2007 by Hanan Samet

nf24

b

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);

/* Find = size neighbor of P in direction D */

begin

 value pointer node P;

 value direction D;

 return(SON(if ADJ(D,SONTYPE(P)) then

 EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)

 else FATHER(P),

 REFLECT(D,SONTYPE(P))));

end;

Copyright © 2007 by Hanan Samet

nf25

r

P D

NW

T

F

F

T

NE

T

T

F

F

SW

F

F

T

T

SE

F

T

T

F

ADJ(A,B)

N

E

S

W

A
B

Copyright © 2007 by Hanan Samet

nf26

z

P D

Copyright © 2007 by Hanan Samet

nf27

g

NW

SW

NE

SW

NE

NE

SE

NW

SE

NW

SW

NW

SE

NW

SE

SE

NE

SW

NE

SW

REFLECT(A,B)

N

E

S

W

A
B

Copyright © 2007 by Hanan Samet

2
1

7
-Q

u
a

d
tre

e
 n

e
ig

h
b

o
r fin

d
in

g

nf4
ANALYSIS OF NEIGHBOR FINDING

1. Bottom-up random image model where each pixel
has an equal probability of being black or white

• probability of the existence of a 2x2 block at a
particular position is 1/8

• OK for a checkerboard image but inappropriate for
maps as it means that there is a very low probability
of aggregation

• problem is that such a model assumes
independence

• in contrast, a pixel’s value is typically related to that
of its neighbors

2. Top-down random image model where the probability
of a node being black or white is p and 1-2p for being
gray

• model does not make provisions for merging

• uses a branching process model and analysis is in
terms of extinct branching processes

3. Use a model based on positions of the blocks in the
decomposition

• a block is equally likely to be at any position and
depth in the tree

• compute an average case based on all the possible
positions of a block of size 1x1, 2x2, 4x4, etc.

• 1 case at depth 0, 4 cases at depth 1, 16 cases at
depth 2, etc.

• this is not a realizable situation but in practice does
model the image accurately

Copyright © 2007 by Hanan Samet

2
1

7
-Q

u
a

d
tre

e
 n

e
ig

h
b

o
r fin

d
in

g

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1

b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 2007 by Hanan Samet

nf52

r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 2007 by Hanan Samet

nf53

z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 2007 by Hanan Samet

nf54

g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 2007 by Hanan Samet

nf55

v

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n

–i·(2n

–i

 –1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n

–i rows

2n

–i

 –1 adjacencies per row
2n

–i

 ·20 have NCA at level n
2n

–i

 ·21 have NCA at level n –1
…
2n

–i

 ·2n

–i

–1 have NCA at level i +1

Copyright © 2007 by Hanan Samet

nf56

b

• For node A at level i, direction D, and the NCA

at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 2007 by Hanan Samet

nf57

z

A

i

j

i

Copyright © 2007 by Hanan Samet

nf58

g

 nodes are visited on the average ≤ 4

2n− i
⋅ 2n − j

⋅ 2 ⋅(j − i)
j = i +1

n

∑
i =0

n−1

∑

2n − i
⋅ (2n− i

− 1)
i =0

n−1

∑

Copyright © 2007 by Hanan Samet

2
1

7
-Q

u
a

d
tre

e
 n

e
ig

h
b

o
r fin

d
in

g

Outline

1. Introduction

2. Points

3. Lines

4. Regions, Volumes, and Surfaces

5. Bounding Box Hierarchies

6. Rectangles

7. Surfaces and Volumes

8. Metric Data

9. Operations

10. Example system

Copyright c©2008 Hanan Samet Sorting in Space – p.2/3

VASCO Spatial Applet

http://www.cs.umd.edu/˜hjs/quadtree/index.html

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications – p.102/113

4
9

0
-4

9
9

--In
c
re

m
e

n
ta

l n
e

a
re

s
t n

e
ig

b
h

o
r fin

d
in

g

SAND Internet Browser

http://www.cs.umd.edu/~brabec/sandjava/
Copyright 2008 by Hanan Samet

Sorting in Words

Hanan Samet∗

hjs@cs.umd.edu

Department of Computer Science

Institute for Advanced Computer Studies

Center for Automation Research

University of Maryland

College Park, MD 20742, USA

for Video click here or go to https://vimeo.com/106352925

∗
Based on Joint Work with Marco D. Adelfio, Brendan C. Fruin, Jack Lotkowski, Michael D. Lieberman, Daniele Panozzo, Jagan

Sankaranarayanan, Jon Sperling, and Ben E. Teitler

Copyright 2015: Hanan Samet Sorting in Words – p.1/24

https://vimeo.com/106352925
https://vimeo.com/106352925

NewsStand:Spatio-Textual Aggregation of News and Display

1. Crawls the web looking for news sources and feeds
Indexing 10,000 news sources
About 50,000 news articles per day

2. Aggregate news articles by both content similarity and location
Articles about the same event are grouped into clusters

3. Rank clusters by importance which is based on:
Number of articles in cluster
Number of unique newspapers in cluster
Event’s rate of propagation to other newspapers

4. Associate each cluster with its geographic focus or foci

5. Display each cluster at the positions of the geographic foci

6. Other options:
Category (e.g., General, Business, SciTech, Entertainment, Health,
Sports)
Image and video galleries
Map stories by disease, brands, people, etc.
User-generated news (e.g., Social networks such as Twitter)

Copyright 2015: Hanan Samet Sorting in Words – p.2/24

NewsStand: Map Mode

NewsStand is at http://newsstand.umiacs.umd.edu/

Query: What is happening at location Y?
Copyright 2015: Hanan Samet Sorting in Words – p.3/24

http://newsstand.umiacs.umd.edu/
http://newsstand.umiacs.umd.edu/

NewsStand: Top Stories Mode

NewsStand is at http://newsstand.umiacs.umd.edu/

Query: Where is topic X occurring (spatial data mining)?
Copyright 2015: Hanan Samet Sorting in Words – p.4/24

http://newsstand.umiacs.umd.edu/
http://newsstand.umiacs.umd.edu/

Geotagging
Geotagging: Understanding textual references to spatial data
1. Identifying or recognizing
2. Classifying (is “Michigan” a state or a lake?)
3. Disambiguating or resolving
4. Localizing (geocoding to GPS coordinates)

Context of textual references
1. Queries - use prior queries and location

Ex: Query “Alexandria” when in “College Park, MD”
2. Underlying data being queried - need context

Apple iOS5
Maps by
Google

iOS Maps by
Google

Android
Maps by
Google

Here Maps
on Windows

Phone

Apple iOS6
and iOS7

Maps

Copyright 2015: Hanan Samet Sorting in Words – p.5/24

Mechanics of Geotagging

1. Goal: high recall in toponym recognition (i.e., not missing toponyms) at
expense of precision

Rectify by subsequent use of toponym resolution which can (and will)
also be used to filter erroneous location interpretations

2. Toponym recognition: 2 stages
Finding toponyms
Filtering toponyms: postprocessing to remove errors in recognition

3. Toponym resolution
Use local lexicons containing locations that can be specified without all
of their containers (derived from articles from a particular news
source) to determine spatial reader scopes for particular sources

E.g., "Dublin" implies “Dublin, Ohio” for readers of a news source in
“Columbus, Ohio”

Use Wikipedia articles to find concepts related to particular locations
so that the presence of these concepts in conjunction with an
ambiguous reference to a location can be properly resolved

E.g., mention of “White House” in conjunction with “Washington” to
provide evidence for resolving as “Washington, D.C.”

Copyright 2015: Hanan Samet Sorting in Words – p.6/24

Local Lexicon Example

Copyright 2015: Hanan Samet Sorting in Words – p.7/24

Sorting in Space References

1. H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan-Kaufmann, San Francisco, 2006. (Translated to Chinese ISBN
978-7-302-22784-7).

2. H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990.

3. H. Samet. Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Addison-Wesley, Reading, MA, 1990.

4. H. Samet. A sorting approach to indexing spatial data. International
Journal on Shape Modeling, 14(1):15–37, June 2008.

5. H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. In Proceedings of the ACM
SIGMOD Conference, pages 43–54, Vancouver, Canada, June 2008.
(2008 ACM SIGMOD Best Paper Award).

6. J. Sankaranarayanan and H. Samet. Distance oracles for spatial
networks. In Proceedings of the 25th IEEE International Conference on
Data Engineering, pages 652–663, Shanghai, China, April 2009.

7. J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for spatial
networks. PVLDB, 2(1):1210–1221, August 2009. Also Proceedings of
the 35th International Conference on Very Large Data Bases (VLDB).

Copyright 2015: Hanan Samet Sorting in Words – p.8/24

Sorting in Space References (Continued)

8. J. Sankaranarayanan and H. Samet. Query processing using distance
oracles for spatial networks. IEEE Transactions on Knowledge and Data
Engineering, 22(8):1158–1175, August 2010. (Best Papers of ICDE 2009
Special Issue).

Copyright 2015: Hanan Samet Sorting in Words – p.9/24

VASCO References

1. F. Brabec and H. Samet. The VASCO R-tree JAVATM applet. In Visual
Database Systems (VDB4). Proceedings of the IFIP TC2//WG2.6 Fourth
Working Conference on Visual Database Systems, Y. Ioannidis and
W. Klas, eds., pages 147–153, Chapman and Hall, L’Aquila, Italy, May
1998.

2. F. Brabec, H. Samet, and C. Yilmaz. VASCO: visualizing and animating
spatial constructs and operations. In Proceedings of the 19th Annual
Symposium on Computational Geometry, pages 374–375, San Diego, CA,
June 2003.

3. F. Brabec and H. Samet. Visualizing and animating R-trees and spatial
operations in spatial databases on the worldwide web. In Visual Database
Systems (VDB4). Proceedings of the IFIP TC2//WG2.6 Fourth Working
Conference on Visual Database Systems, Y. Ioannidis and W. Klas, eds.,
pages 123–140, Chapman and Hall, L’Aquila, Italy, May 1998.

4. F. Brabec and H. Samet. Visualizing and animating spatial decompositions
and operations in spatial databases on the worldwide web. In Proceedings
of Visual Database Systems, L’Aquila, Italy, May 1998.

Copyright 2015: Hanan Samet Sorting in Words – p.10/24

VASCO References (Continued)

5. F. Brabec and H. Samet. Visualizing and animating search operations on
quadtrees on the worldwide web. In Proceedings of the 16th European
Workshop on Computational Geometry, K. Kedem and M. Katz, eds.,
pages 70–76, Eilat, Israel, March 2000.

Copyright 2015: Hanan Samet Sorting in Words – p.11/24

QUILT References

1. H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. A geographic
information system using quadtrees. Pattern Recognition, 17(6):647–656,
November/December 1984.

2. H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. Quadtree region
representation in cartography: experimental results. In Proceedings of
Computer Vision and Pattern Recognition’83, pages 176–177,
Washington, DC, June 1983. Also expanded version in IEEE Transactions
on Systems, Man, and Cybernetics, 13(6):1148–1154,
November/December 1983.

3. H. Samet, C. A. Shaffer, R. C. Nelson, Y.-G. Huang, K. Fujimura, and
A. Rosenfeld. Recent developments in linear quadtree-based geographic
information systems. Image and Vision Computing, 5(3):187–197, August
1987.

4. C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a geographic
information system based on quadtrees. International Journal of
Geographical Information Systems, 4(2):103–131, April–June 1990. Also
University of Maryland Computer Science Technical Report TR–1885.1,
July 1987.

Copyright 2015: Hanan Samet Sorting in Words – p.12/24

SAND Internet Browser References

1. F. Brabec and H. Samet. Client-based spatial browsing on the world wide
web. IEEE Internet Computing, 11(1):52–59, January/February 2007.

2. C. Esperança and H. Samet. Experience with SAND/Tcl: a scripting tool
for spatial databases. Journal of Visual Languages and Computing,
13(2):229–255, April 2002.

3. H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R. Hjaltason, F. Morgan,
and E. Tanin. Use of the SAND spatial browser for digital government
applications. Communications of the ACM, 46(1):63–66, January 2003.

4. H. Samet, A. Phillippy, and J. Sankaranarayanan. Knowledge discovery
using the SAND spatial browser. In Proceedings of the 7th National
Conference on Digital Government Research, pages 284–285,
Philadelphia, PA, May 2007.

Copyright 2015: Hanan Samet Sorting in Words – p.13/24

Sorting on Words Project References

1. A. Abdelrazek, E. Hand, and H. Samet. Brands in NewsStand:
Spatio-temporal browsing of business news. In Proceedings of the 23rd
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, M. Ali, M. Gertz, Y. Huang, M. Renz, and
J. Sankaranarayanan, eds., Seattle, WA, November 2015. Article 97.

2. M. D. Adelfio and H. Samet. GeoWhiz: Using common categories for
toponym resolution. In Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, C. A. Knoblock, P. Kröger, J. C. Krumm, M. Schneider, and
P. Widmayer, eds., pages 542–545, Orlando, FL, November 2013.

3. M. D. Adelfio and H. Samet. Structured toponym resolution using
combined hierarchical place categories. In Proceedings of 7th ACM
SIGSPATIAL Workshop on Geographic Information Retrieval (GIR’13),
R. Purves and C. Jones, eds., pages 49–56, Orlando, FL, November 2013.

4. M. D. Adelfio and H. Samet. Automated tabular itinerary visualization. In
Proceedings of the 22nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, Y. Huang, M. Gertz, J. C.
Krumm, J. Sankaranarayanan, and M. Schneider, eds., pages 593–596,
Dallas, TX, November 2014.

Copyright 2015: Hanan Samet Sorting in Words – p.14/24

Sorting on Words Project References (Continued)

5. M. D. Adelfio and H. Samet. Itinerary retrieval: Travelers, like traveling
salesmen, prefer efficient routes. In Proceedings of 8th ACM SIGSPATIAL
Workshop on Geographic Information Retrieval (GIR’14), R. Purves and
C. Jones, eds., pages 1:1–1:8, Dallas, TX, November 2014.

6. B. C. Fruin, H. Samet, and J. Sankaranarayanan. Tweetphoto: photos
from news tweets. In Proceedings of the 20th ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, I. Cruz, C. A. Knoblock, P. Kröger, E. Tanin, and P. Widmayer,
eds., pages 582–585, Redondo Beach, CA, November 2012.

7. C. Fu, J. Sankaranarayanan, and H. Samet. Weibostand: Capturing
Chinese breaking news using Weibo. In Proceedings of the 6th ACM
SIGSPATIAL International Workshop on Location-Based Social Networks
(LBSN’14), A. Pozdnukhov and S. Xu, eds., pages 41–48, Dallas, TX,
November 2014.

8. N. Gramsky and H. Samet. Seeder finder - identifying additional needles
in the Twitter haystack. In Proceedings of the 5th ACM SIGSPATIAL
International Workshop on Location-Based Social Networks (LBSN’13),
A. Pozdnukhov, ed., pages 44–53, Orlando, FL, November 2013.

Copyright 2015: Hanan Samet Sorting in Words – p.15/24

Sorting on Words Project References (Continued)

9. S.-S. Ho, M. D. Lieberman, P. Wang, and H. Samet. Mining future
spatiotemporal events and their sentiment from online news articles for
location-aware recommendation system. In Proceedings of the 1st ACM
SIGSPATIAL International Workshop on Mobile Geographic Information
Systems (MobiGIS 2012), pages 25–32, Redondo Beach, CA, November
2012.

10. A. Jackoway, H. Samet, and J. Sankaranarayanan. Identification of live
news events using Twitter. In Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on Location-Based Social Networks (LBSN’11),
Y. Zheng and M. F. Mokbel, eds., pages 25–32, Chicago, November 2011.

11. Y. Kanza and H. Samet. An online marketplace for geosocial data. In
Proceedings of the 23rd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, M. Ali, M. Gertz, Y. Huang,
M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.
Article 10.

12. R. Lan, M. D. Adelfio, and H. Samet. Spatio-temporal disease tracking
using news articles. In Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on the Use of GIS in Public Health (HealthGIS
2014), pages 31–38, Dallas, TX, November 2014.

Copyright 2015: Hanan Samet Sorting in Words – p.16/24

Sorting on Words Project References (Continued)

13. R. Lan, M. D. Lieberman, and H. Samet. The picture of health:
map-based, collaborative spatio-temporal disease tracking. In
Proceedings of the 1st ACM SIGSPATIAL International Workshop on the
Use of GIS in Public Health (HealthGIS 2012), pages 27–35, Redondo
Beach, CA, November 2012.

14. J. L. Leidner and M. D. Lieberman. Detecting geographical Project
References in the form of place names and associated spatial natural
language. SIGSPATIAL Special, 3(2):5–11, 2011.

15. H. Li, S. Peng, and H. Samet. Streaming news image summarization. In
Proceedings of the 27th International Conference on Pattern Recognition,
Cancun, Mexico, December 2016.

16. M. D. Lieberman and H. Samet. Multifaceted toponym recognition for
streaming news. In Proceedings of the 34th International Conference on
Research and Development in Information Retrieval (SIGIR’11), pages
843–852, Beijing, China, July 2011.

17. M. D. Lieberman and H. Samet. Adaptive context features for toponym
resolution in streaming news. In Proceedings of the 35th International
Conference on Research and Development in Information Retrieval
(SIGIR’12), pages 731–740, Portland, OR, August 2012.
Copyright 2015: Hanan Samet Sorting in Words – p.17/24

Sorting on Words Project References (Continued)

18. M. D. Lieberman and H. Samet. Supporting rapid processing and
interactive map-based exploration of streaming news. In Proceedings of
the 20th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, I. Cruz, C. A. Knoblock, P. Kröger,
E. Tanin, and P. Widmayer, eds., pages 179–188, Redondo Beach, CA,
November 2012.

19. M. D. Lieberman, H. Samet, and J. Sankaranarayanan. Geotagging:
Using proximity, sibling, and prominence clues to understand comma
groups. In Proceedings of 6th Workshop on Geographic Information
Retrieval, R. Purves, C. Jones, and P. Clough, eds., Zurich, Switzerland,
February 2010. Article 6.

20. M. D. Lieberman, H. Samet, and J. Sankaranarayanan. Geotagging with
local lexicons to build indexes for textually-specified spatial data. In
Proceedings of the 26th IEEE International Conference on Data
Engineering, pages 201–212, Long Beach, CA, March 2010.

21. M. D. Lieberman, H. Samet, J. Sankaranarayanan, and J. Sperling.
STEWARD: architecture of a spatio-textual search engine. In Proceedings
of the 15th ACM International Symposium on Advances in Geographic
Information Systems, H. Samet, M. Schneider, and C. Shahabi, eds.,
pages 186–193, Seattle, WA, November 2007.
Copyright 2015: Hanan Samet Sorting in Words – p.18/24

Sorting on Words Project References (Continued)

22. M. D. Lieberman, H. Samet, J. Sankaranarayanan, and J. Sperling.
Spatio-textual spreadsheets: Geotagging via spatial coherence. In
Proceedings of the 17th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, D. Agrawal, W. G. Aref,
C.-T. Lu, M. F. Mokbel, P. Scheuermann, C. Shahabi, and O. Wolfson,
eds., pages 524–527, Seattle, WA, November 2009.

23. M. D. Lieberman, J. Sankaranarayanan, H. Samet, and J. Sperling.
Augmenting spatio-textual search with an infectious disease ontology. In
Proceedings of the Workshop on Information Integration Methods,
Architectures, and Systems (IIMAS08) (ICDE Workshops 2008), pages
266–269, Cancun, Mexico, April 2008.

24. C. Liu, B. C. Fruin, and H. Samet. Sac: Semantic adaptive caching for
spatial mobile applications. In Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, C. A. Knoblock, P. Kröger, J. C. Krumm, M. Schneider, and
P. Widmayer, eds., pages 184–193, Orlando, FL, November 2013.

Copyright 2015: Hanan Samet Sorting in Words – p.19/24

Sorting on Words Project References (Continued)

25. G. Quercini and H. Samet. Uncovering the spatial relatedness in
Wikipedia. In Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, Y. Huang,
M. Gertz, J. C. Krumm, J. Sankaranarayanan, and M. Schneider, eds.,
pages 153–162, Dallas, TX, November 2014.

26. G. Quercini, H. Samet, J. Sankaranarayanan, and M. D. Lieberman.
Determining the spatial reader scopes of news sources using local
lexicons. In Proceedings of the 18th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, A. El
Abbadi, D. Agrawal, M. Mokbel, and P. Zhang, eds., pages 43–52, San
Jose, CA, November 2010.

27. H. Samet. Using minimaps to enable toponym resolution with an effective
100% rate of recall. In Proceedings of 8th ACM SIGSPATIAL Workshop on
Geographic Information Retrieval (GIR’14), R. Purves and C. Jones, eds.,
pages 9:1–9:8, Dallas, TX, November 2014.

28. H. Samet. Location specification and representation in multimedia
databases. In Proceedings of the IEEE International Symposium on
Multimedia (ISM2015), Miami, FL, December 2015. To appear.

Copyright 2015: Hanan Samet Sorting in Words – p.20/24

Sorting on Words Project References (Continued)

29. H. Samet, M. D. Adelfio, B. C. Fruin, M. D. Lieberman, and
J. Sankaranarayanan. PhotoStand: a map query interface for a database
of news photos. PVLDB, 6(12):1350–1353, August 2013. Also
Proceedings of the 39th International Conference on Very Large Data
Bases (VLDB).

30. H. Samet, M. D. Adelfio, B. C. Fruin, M. D. Lieberman, and B. E. Teitler.
Porting a web-based mapping application to a smartphone app. In
Proceedings of the 19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, D. Agrawal, I. Cruz, C. S.
Jensen, E. Ofek, and E. Tanin, eds., pages 525–528, Chicago, November
2011.

31. H. Samet, B. C. Fruin, and S. Nutanong. Duking it out at the smartphone
mobile app mapping API corral: Apple, Google, and the competition. In
Proceedings of the 1st ACM SIGSPATIAL International Workshop on
Mobile Geographic Information Systems (MobiGIS 2012), Redondo
Beach, CA, November 2012.

32. H. Samet, B. C. Fruin, and S. Nutanong. Presentation consistency issues
in smartphone mapping apps. Technical report, Computer Science
Department, University of Maryland, College Park, MD, November 2015.

Copyright 2015: Hanan Samet Sorting in Words – p.21/24

Sorting on Words Project References (Continued)

33. H. Samet, M. D. Lieberman, J. Sankaranarayanan, and J. Sperling.
STEWARD: Demo of spatio-textual extraction on the web aiding the
retrieval of documents. In Proceedings of the 7th National Conference on
Digital Government Research, pages 300–301, Philadelphia, PA, May
2007.

34. H. Samet, S. Nutanong, and B. C. Fruin. Dynamic presentation
consistency issues in smartphone mapping apps. Communications of the
ACM, 59(9):58–67, September 2016.

35. H. Samet, S. Nutanong, and B. C. Fruin. Static presentation consistency
issues in smartphone mapping apps. Communications of the ACM,
59:88–98, May 2016.

36. H. Samet, J. Sankaranarayanan, M. D. Lieberman, M. D. Adelfio, B. C.
Fruin, J. M. Lotkowski, D. Panozzo, J. Sperling, and B. E. Teitler. Reading
news with maps by exploiting spatial synonyms. Communications of the
ACM, 57(10):64–77, October 2014. Also see video at
https://vimeo.com/106352925.

Copyright 2015: Hanan Samet Sorting in Words – p.22/24

https://vimeo.com/106352925

Sorting on Words Project References (Continued)

37. H. Samet, B. E. Teitler, M. D. Adelfio, and M. D. Lieberman. Adapting a
map query interface for a gesturing touch screen interface. In Proceedings
of the Twentieth International Word Wide Web Conference (Companion
Volume), S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra,
E. Bertino, and R. Kumar, eds., pages 257–260, Hyderabad, India,
March-April 2011.

38. J. Sankaranarayanan and H. Samet. Images in news. In Proceedings of
the 24th International Conference on Pattern Recognition, pages
3240–3243, Istanbul, Turkey, August 2010.

39. J. Sankaranarayanan, H. Samet, B. Teitler, M. D. Lieberman, and
J. Sperling. TwitterStand: News in tweets. In Proceedings of the 17th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, D. Agrawal, W. G. Aref, C.-T. Lu, M. F. Mokbel,
P. Scheuermann, C. Shahabi, and O. Wolfson, eds., pages 42–51, Seattle,
WA, November 2009.

Copyright 2015: Hanan Samet Sorting in Words – p.23/24

Sorting on Words Project References (Continued)

40. B. Teitler, M. D. Lieberman, D. Panozzo, J. Sankaranarayanan, H. Samet,
and J. Sperling. NewsStand: A new view on news. In Proceedings of the
16th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, W. G. Aref, M. F. Mokbel, H. Samet,
M. Schneider, C. Shahabi, and O. Wolfson, eds., pages 144–153, Irvine,
CA, November 2008. (2008 ACM GIS Best Paper Award).

41. B. E. Teitler, J. Sankaranarayanan, H. Samet, and M. D. Adelfio. Online
document clustering using GPUs. In Proceedings of the Second
International ADBIS Workshop on GPUs in Databases (GID 2013),
Genoa, Italy, September 2013. Also University of Maryland Computer
Science TR 4970, August 2010.

42. F. Wajid and H. Samet. Crimestand: Spatial tracking of criminal activity. In
Proceedings of the 24th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, M. Ali, S. Newsma,
S. Ravada, M. Renz, and G. Trajcevski, eds., San Francisco, November
2016.

Copyright 2015: Hanan Samet Sorting in Words – p.24/24

	siggraph2016-tutorial-cumul-updated_part1
	siggraph2016-tutorial-cumul-updated_part2
	LargeFont {NewsStand}:{scriptsize LargeFont {S}patio-LargeFont {T}extual LargeFont {A}ggregation of LargeFont {N}ews and LargeFont {D}isplay}
	href {http://newsstand.umiacs.umd.edu/}{NewsStand: Map Mode}
	href {http://newsstand.umiacs.umd.edu/}{NewsStand: Top Stories Mode}
	Geotagging
	Mechanics of Geotagging
	Local Lexicon Example
	Sorting in Space References
	Sorting in Space References (Continued)
	VASCO References
	VASCO References (Continued)
	QUILT References
	SAND Internet Browser References
	Sorting on Words Project References
	Sorting on Words Project References (Continued)
	Sorting on Words Project References (Continued)
	Sorting on Words Project References (Continued)
	Sorting on Words Project References (Continued)
	Sorting on Words Project References (Continued)
	Sorting on Words Project References (Continued)
	Sorting on Words Project References (Continued)
	Sorting on Words Project References (Continued)
	Sorting on Words Project References (Continued)
	Sorting on Words Project References (Continued)

