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Key to Nearest Neighbor Finding in Spatial Networks
1. Use distance along a graph rather than “as the crow flies”

2. Precompute and store shortest paths between all vertices in network
Reduce cost of storing shortest paths
between all pairs of N vertices from O(N3) to
O(N1.5) using path coherence of destination
vertices
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3. Decouple domain S of query objects (q) and objects from which neighbors are
drawn from domain V of vertices of netwok

Implies no need to recompute shortest paths
each time q or S change

4. Avoids Dijkstra’s algorithm which visits too many vertices

Ex: Dijkstra’s algorithm visits 3191 out of the 4233 ver-
tices in network to identify a 76 edge path from X to V
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Key to Nearest Neighbor Finding in Spatial Networks
1. Use distance along a graph rather than “as the crow flies”

2. Precompute and store shortest paths between all vertices in network
Reduce cost of storing shortest paths
between all pairs of N vertices from O(N3) to
O(N1.5) using path coherence of destination
vertices

Can reduce to O(N) by also using path coher-
ence of source vertices

3. Decouple domain S of query objects (q) and objects from which neighbors are
drawn from domain V of vertices of netwok

Implies no need to recompute shortest paths
each time q or S change

4. Avoids Dijkstra’s algorithm which visits too many vertices

Ex: Dijkstra’s algorithm visits 3191 out of the 4233 ver-
tices in network to identify a 76 edge path from X to V

5. Instead, only visit vertices on shortest paths to nearest
neighbors
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Finding Nearest Neighbors in Spatial Networks

Spatial Network: graph with spatial components at vertices and/or edges

Involves shortest path computation

1. Growing popularity of online mapping services (e.g., Google Maps,
Microsoft MapPoint) has led to interest in real time query processing

2. Finding nearest objects from a set S (e.g., gas stations, restaurants,
markets, etc.)

3. Should be able to make dynamic changes in query so that once found
shortest path from A to B that passes through C, can change to pass
through D

Most transportation networks can be modeled as spatial networks. e.g.,
Road networks

Each intersection is a vertex of the graph, the position of the
intersection is associated with the vertex
Each edge of the graph corresponds to a road segment. The
weight of an edge corresponds to the cost of travel (i.e., distance or
time) along the corresponding road segment

Airline routes
Waterways
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Application – Find the closest Kinko’s

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G (Error: +26 miles)

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G (Error: +26 miles)
trafficability ordering

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G (Error: +26 miles)
trafficability ordering O

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G (Error: +26 miles)
trafficability ordering O D

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G (Error: +26 miles)
trafficability ordering O D G

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G (Error: +26 miles)
trafficability ordering O D G N

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G (Error: +26 miles)
trafficability ordering O D G N M

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s

Kinko’s
Monroeville

Kinko’s
Oakland

Kinko’s
North Hills

Downtown
Kinko’s

Kinkos
Greentree

Pianos

Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G (Error: +26 miles)
trafficability ordering O D G N M (Error: +32 minutes)

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Application – Find the closest Kinko’s
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Let us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

geodesic ordering M O N D G
network distance ordering O D N M G (Error: +26 miles)
trafficability ordering O D G N M (Error: +32 minutes)

Challenge: Real time + exact queries

Scalable Network Distance Browsing in Spatial Databases – p.6/46



Shortest Path Computation

Shortest path computation is a primitive operation

Usually use Dijkstra’s shortest path algorithm
Not feasible in real time for large spatial networks
Algorithm visits too many vertices during the search process
Ex: Dijkstra’s algorithm visits 3191 out of a total of 4233 vertices in the
spatial network to identify a path comprising 75 vertices between X
and V

Popular solution: Use “crow flying” (geodesic) distance
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Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)
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Proximity Search on “Google Local”
Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)
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7

C:14.3m

5.6m SE

D:11.4m 4
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2

7.7m NE

E:10.6m

1 F:10.5m

7.9m NE

G:11.3m
3

8.0m NE

6
H:13.4m

9.9m NE Notice difference in the ordering

Goal: Instant answers as well as accurate answers
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Precomputation of Shortest Paths

By precomputing and storing all of the shortest paths, nearest neighbor
queries could be answered instantly

How to effectively compute the shortest path?
How to effectively store the shortest path?
Challenge: very large network (approximately 24 million vertices)

Result: Enables decoupling nearest neighbor and shortest path
computation processes

Decouples domain S of query objects and objects from which the
neighbors are drawn from domain V of the vertices of the spatial
network
Implies no need to recompute shortest paths anew each time there
are changes in q or S
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Strategy: Precomputation

Idea: Precompute and store all pairs shortest paths
1. How to compute shortest paths?
2. How to store shortest paths?

Challenge: Very large network (24,000,000 vertices)

Trade-off: Space requirements vs. retrieval time
k=shortest path length n=# vertices m=# edges constants δ > 1 and ǫ > 0

Approach Space
Query Time

Path Distance

Explicit Path Storage O(n3) O(1) O(1)

Next-Hop Storage O(n2) O(k) O(1)

Dijkstra’s Algorithm O(m + n) O(m + n log n) O(m + n log n)

SILC O(n
√

n) O(k log n) Approx: O(log n)

Distance Oracle–1 O(( 1
ǫ
)2n) — ǫ-Approx:O(log n)

Distance Oracle–2 O(( 1
ǫ
)2n log n) — ǫ-Approx:O(1)

Path Oracle O((2 + 1
(δ−1)

)2n) O(k log n) —

Path-Distance Oracle O(max((2 + 1
(δ−1)

)2, 1
ǫ

2
)n) O(k log n) ǫ-Approx:O(log n)
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SILC Path Encoding
The SILC path encoding takes advantage of the path coherence
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SILC Path Encoding
The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on
the shortest path from u

Source vertex u in the spatial
network of Silver Spring, MD

Color remaining vertices based
on which of the six adjacent
vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-
tially contiguous colored regions due to path coherence
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How to Store Colored Regions?

Shortest-path Map
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How to Store Colored Regions?

Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection
of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the
dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is
O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree
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Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a
2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h
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e
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c

d

g
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Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous
regions
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Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous
regions

However, for planar graphs the
shortest-path map of a vertex is
contiguous

Quadtree Complexity Theorem can be
applied to the MX-quadtree for the
polygons containing the regions in the
shortest-path map

Size of shortest-path quadtree is no
more than the MX quadtree as no
need to decompose, to the pixel level,
the empty blocks through which the
boundaries pass

Hence, shortest-path quadtrees are at
worse O(perimeter) i.e., dimension re-
ducing
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices
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Space Complexity Analysis of Shortest-Path Quadtrees
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in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N0.5)
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices
in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic
boundary can be of size O(N)
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices
in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic
boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices
in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic
boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries
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N
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices
in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic
boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is
c
√

N , where c is a function of the outdegree of u
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices
in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic
boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is
c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is
O(N

√
N); closely follows empirical results
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices
in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic
boundary can be of size O(N)

Assumption: Regions of the shortest-path
quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is
c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is
O(N

√
N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on
geometry and independent of topology or
connectivity
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Path Retrieval
Problem: How to retrieve the shortest path from a
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Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ds
s

d

Retrieve the shortest-path quadtree Qs corresponding to s
Find the colored region that contains d in Qs
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Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

t ds
s

d

t

Retrieve the shortest-path quadtree Qs corresponding to s
Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs
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Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t
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Find the colored region that contains d in Qs
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Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ut ds
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Retrieve the shortest-path quadtree Qs corresponding to s
Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t
Find the colored region that contains d in Qt

Retrieve the vertex u connected to t in the region containing d in Qt
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Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ut ds
s

d

t
u

Retrieve the shortest-path quadtree Qs corresponding to s
Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t
Find the colored region that contains d in Qt

Retrieve the vertex u connected to t in the region containing d in Qt

Entire shortest path can be retrieved in size-of-path steps
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Path Retrieval
Problem: How to retrieve the shortest path from a source s to a destination d?

ut ds
s

d

t
u

Retrieve the shortest-path quadtree Qs corresponding to s
Find the colored region that contains d in Qs

Retrieve the vertex t connected to s in the region containing d in Qs

Retrieve the shortest-path quadtree Qt corresponding to t
Find the colored region that contains d in Qt

Retrieve the vertex u connected to t in the region containing d in Qt

Entire shortest path can be retrieved in size-of-path steps

Network distance between s and d is immediately obtained from shortest path
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Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block
Refinement involves finding the next link in the shortest path
Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives
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Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block
Refinement involves finding the next link in the shortest path
Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Munich
Hanover

Mainz

Bremen

Berlin
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Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block
Refinement involves finding the next link in the shortest path
Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Mainz

Hanover

[10,20] [15,30]
Berlin

Munich

Mainz
Munich BremenBremen
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Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block
Refinement involves finding the next link in the shortest path
Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Mainz

Hanover

[10,20] [15,30]
Berlin

Munich
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Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block
Refinement involves finding the next link in the shortest path
Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Mainz

Hanover

[10,20] [15,30]
Berlin
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Mainz
Munich BremenBremen

Hanover [12,18] [17,20]
Berlin [13,15] [18,19]
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Progressive Refinement of Distances

Avoid full shortest path retrievals using progressive refinement

Idea: Use distance intervals instead of the exact distance

Progressive refinement: Improve interval if query cannot be answered

Associate Min/Max distance information with each Morton block
Refinement involves finding the next link in the shortest path
Worst case: retrieve entire shortest path to answer query

Many queries require distance comparison primitives

Example: Is Munich closer to Mainz than Bremen?

Mainz

Hanover

[10,20] [15,30]
Berlin

Munich

Mainz
Munich BremenBremen

Hanover [12,18] [17,20]
Berlin [13,15] [18,19]

Munich is closer as distance interval via Berlin does not intersect distance
interval to Bremen via Berlin Scalable Network Distance Browsing in Spatial Databases – p.18/46
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Foundations of k Nearest Neighbor Finding (kNN)

A non-incremental best-first algorithm
Set of objects (with spatial information)
A spatial data structure (e.g., a quadtree or R-tree) on objects
Shortest-path quadtrees for the spatial network
Note decoupling of data (objects) from domain (spatial network)

Cost Justification for Precomputing: Provision to reuse computations
across queries and across datasets

Primitive operations using Progressive Refinement
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Foundations of k Nearest Neighbor Finding (kNN)

A non-incremental best-first algorithm
Set of objects (with spatial information)
A spatial data structure (e.g., a quadtree or R-tree) on objects
Shortest-path quadtrees for the spatial network
Note decoupling of data (objects) from domain (spatial network)

Cost Justification for Precomputing: Provision to reuse computations
across queries and across datasets

Primitive operations using Progressive Refinement

R
s

R
d

DISTANCE_INTERVAL(object,object)
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Foundations of k Nearest Neighbor Finding (kNN)

A non-incremental best-first algorithm
Set of objects (with spatial information)
A spatial data structure (e.g., a quadtree or R-tree) on objects
Shortest-path quadtrees for the spatial network
Note decoupling of data (objects) from domain (spatial network)

Cost Justification for Precomputing: Provision to reuse computations
across queries and across datasets

Primitive operations using Progressive Refinement

R

R
s

DISTANCE_INTERVAL(object,object)
DISTANCE_INTERVAL(object,Region)
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Type of Input Objects

Types of objects on
spatial networks
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Type of Input Objects

Types of objects on
spatial networks

Vertex object
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Type of Input Objects

Types of objects on
spatial networks

Vertex object
Edge object
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Type of Input Objects

Types of objects on
spatial networks

Vertex object
Edge object
Face object

Scalable Network Distance Browsing in Spatial Databases – p.21/46



Type of Input Objects

Types of objects on
spatial networks

Vertex object
Edge object
Face object
Object with extents
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Type of Input Objects

Types of objects on
spatial networks

Vertex object
Edge object
Face object
Object with extents
Any combination of
the above �������������������
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Properties of kNN Algorithm
Neighbors produced in increasing order of distance from q

Use a priority queue Q of objects and blocks

Q contains network distance interval [δ−, δ+] of objects from q

Additional information stored with each object o in Q

1. An intermediate vertex u in shortest path from q to u

2. network distance d from q to u

Uses another priority queue L in addition to Q

Stores k objects found so far in increasing order of δ+

Dk is the maximum of the distance interval of the kth element in L

Idea: Prune elements e from Q such that δ−e ≥ Dk

Elements are removed from Q in increasing order of the minimum of their
distance interval δ− from q

Objects may be reinserted in Q if δ− < Dk

Terminate when δ− ≥ Dk

Advantages over Incremental best-first kNN (INN)
Smaller size of Q

Faster than INN
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kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > Dk
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kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for
which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk
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kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for
which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from q is < Dk
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kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for
which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions
with the current top element of Q
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kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for
which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions
with the current top element of Q

A collision occurs if the distance interval of p intersects the distance
interval of the current top element in Q
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kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for
which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions
with the current top element of Q

A collision occurs if the distance interval of p intersects the distance
interval of the current top element in Q

Collision:
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kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for
which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions
with the current top element of Q

A collision occurs if the distance interval of p intersects the distance
interval of the current top element in Q

Collision:
Remove p from L if δ+ ≤ Dk

Apply refinement to improve distance interval of p and reinsert p in
L if δ+ ≤ Dk and in Q if δ− < Dk and go to Step 2

No collision:
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kNN Algorithm

1. Initialize priority queue Q by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > Dk

3. If p is a LEAF block, then replace it with all objects contained within it for
which δ− < Dk along with their network distance interval from q

Also enqueue objects in L if δ+ < Dk

4. If p is a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from q is < Dk

5. If p is an OBJECT, then test the distance interval of p for possible collisions
with the current top element of Q

A collision occurs if the distance interval of p intersects the distance
interval of the current top element in Q

Collision:
Remove p from L if δ+ ≤ Dk

Apply refinement to improve distance interval of p and reinsert p in
L if δ+ ≤ Dk and in Q if δ− < Dk and go to Step 2

No collision: p is already one of k nearest neighbors in L (Theorem 1)
and go to Step 2
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Example of an Non-incremental k Neighbor Search
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Example of an Non-incremental k Neighbor Search

f

e f g a b
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n

k = 2

a
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Queue
front

L
n

1. Insert n into Queue.
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Example of an Non-incremental k Neighbor Search
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Queue
front

L

1. Insert n into Queue.

expand

o
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2. Expand n. Insert o,m into Queue.
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Example of an Non-incremental k Neighbor Search
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1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
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3. Expand o. Insert a,b into Queue, L.
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Example of an Non-incremental k Neighbor Search
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Set Dk.

q x
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front
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1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
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3. Expand o. Insert a,b into Queue, L.
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Example of an Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e expand

Set Dk.

q x

Queue
front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.

a

g g
e
g
e

a

f

b

4. Expand m. Insert g,e,f into Queue and g into L.
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Example of an Non-incremental k Neighbor Search
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2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
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4. Expand m. Insert g,e,f into Queue and g into L.
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Example of an Non-incremental k Neighbor Search
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expand

Prune f and b from Queue.

prune
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Update Dk.

Set Dk.

q x

Queue
front
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1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.
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Example of an Non-incremental k Neighbor Search
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5. Process a. Collision of a with g.

ee
gg
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Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue
front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

collision
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Example of an Non-incremental k Neighbor Search

f

e f g a b
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n

k = 2

a

b

g
e

5. Process a. Collision of a with g.

refine

e
a
g

g

a

Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue
front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

collision

Refine a. Reinsert a into Queue and L.
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Example of an Non-incremental k Neighbor Search
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Prune f and b from Queue.Update Dk.
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Queue
front
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1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

collision
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Example of an Non-incremental k Neighbor Search
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6. Process g. Collision of g with a.
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g
e

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue
front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

collision

Refine and Reinsert g into Queue and L.
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Example of an Non-incremental k Neighbor Search
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5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.
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Queue
front
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1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

collision

Refine and Reinsert g into Queue and L.
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Example of an Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.
Update D k.

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue
front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

Refine and Reinsert g into Queue and L.

e
gg

a a

no
collision

report

7. Process a. No collision of a with g. No need to refine a further.
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Example of an Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.
Update D k.

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue
front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

Refine and Reinsert g into Queue and L.
7. Process a. No collision of a with g. No need to refine a further.

g

no collision

report

e
a

g

No need to refine g further. Report L.
8. Process g. No collision of g with e.
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Example of an Non-incremental k Neighbor Search

f

e f g a b

m o

n

k = 2

a

b

g
e

6. Process g. Collision of g with a.
Update D k.

5. Process a. Collision of a with g.
Prune f and b from Queue.Update Dk.

Set Dk.

q x

Queue
front

L

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.
4. Expand m. Insert g,e,f into Queue and g into L.

Refine a. Reinsert a into Queue and L.

Refine and Reinsert g into Queue and L.
7. Process a. No collision of a with g. No need to refine a further.

No need to refine g further. Report L.
8. Process g. No collision of g with e.

(Search radius to first element in Queue)
Example of a best−first nearest neighbor algorithm. 
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Other Nearest Neighbor Methods

1. IER (“Incremental” Euclidean Restriction”) method [Papa03]: not an
incremental network distance algorithm

Use incremental nearest neighbor algorithm to find k nearest
neighbors using Euclidean distance
Find the network distance of these k nearest neighbors using
Dijkstra’s algorithm and sort in increasing order
Apply incremental nearest neighbor algorithm using Euclidean
distance until obtaining an object whose Euclidean distance is greater
than the current network distance to the kth nearest neighbor
Need to apply Dijkstra’s algorithm to obtain network distance to each
additional object until termination

2. INE (“Incremental” Network Expansion) method [Papa03]: k-nearest
neighbor network distance algorithm

Really Dijkstra’s algorithm with a buffer L containing the k nearest
neighbors seen so far in terms of network distance
Halt: current neighbor is farther than current k nearest neighbors in L

3. Advantage of our method is that Dijkstra’s algorithm is only applied once
per vertex in building the shortest-path quadtrees regardless of the
number of queries instead of once for each query
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Worst Case Comparison between INE and kNN

Given a set of objects S on a spatial network
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Worst Case Comparison between INE and kNN

Given a set of objects S on a spatial network

INE’s worst case depends on the distance to the kth nearest neighbor
INE visits every edge e that is closer to q than the kth nearest neighbor
Number of queries to the spatial index is O(M), which can be large

kNN’s worst case is proportional to the number of objects examined and
the number of links on the shortest paths to them from the query object q

kNN’s worst case occurs when data objects are all nearly equidistant
from query object
Probability of worst case is low, as it depends on a particular
configuration of both the data objects and the query object

INE kNN

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

kNN

Scalable Network Distance Browsing in Spatial Databases – p.26/46



Musings on How Realistic is the Approach
How about a system for the whole US?

24 million vertices x 10 seconds (say) per shortest path
Single machine = 2777 days
Google with 0.5 million machines = 480 seconds
Modest Cluster of 2000 machines = 1 day, 10 hours

Storage shown to be cN
√

N Morton Blocks
N = 24 million vertices, 8 bytes per Morton block, c = 2 from empirical
analysis = 1.8 TB

Easily Parallelizable: data parallelism
Mostly a one-time effort (decoupling)

Open Challenge: Updates!
Changes to spatial network (e.g., road closure)
Dynamic traffic information
Strategy: How to localize changes to minimize recomputation?

Approximation Strategies: location based services
Shortest-path quadtree on proximal vertices only (say, 100 miles around a
vertex)
Multiresolution spatial networks

Full resolution around a source vertex that gets sparse gradually
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Path Coherence Beyond SILC

SILC framework focussed on facilitating nearest neighbor computation

Not so efficient for shortest path and network distance as need to refine
distances using an iterative process

SILC captures the path coherence in the shortest paths

Scalable Network Distance Browsing in Spatial Databases – p.28/46



Path Coherence Beyond SILC

SILC framework focussed on facilitating nearest neighbor computation

Not so efficient for shortest path and network distance as need to refine
distances using an iterative process

SILC captures the path coherence in the shortest paths

single source vertex to multiple destination vertices

Scalable Network Distance Browsing in Spatial Databases – p.28/46



Path Coherence Beyond SILC

SILC framework focussed on facilitating nearest neighbor computation

Not so efficient for shortest path and network distance as need to refine
distances using an iterative process

SILC captures the path coherence in the shortest paths

single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

Scalable Network Distance Browsing in Spatial Databases – p.28/46



Path Coherence Beyond SILC

SILC framework focussed on facilitating nearest neighbor computation

Not so efficient for shortest path and network distance as need to refine
distances using an iterative process

SILC captures the path coherence in the shortest paths

single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

Introduce the Path Coherent Pair (PCP) framework
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SILC framework focussed on facilitating nearest neighbor computation

Not so efficient for shortest path and network distance as need to refine
distances using an iterative process

SILC captures the path coherence in the shortest paths

single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

Introduce the Path Coherent Pair (PCP) framework

A PCP is denoted by: (A,B,t)

1. All shortest paths from A to B have either:
one or more vertices t in common, OR t
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SILC framework focussed on facilitating nearest neighbor computation

Not so efficient for shortest path and network distance as need to refine
distances using an iterative process

SILC captures the path coherence in the shortest paths
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Not captured: multiple source vertices to multiple destination vertices

Introduce the Path Coherent Pair (PCP) framework

A PCP is denoted by: (A,B,t)

1. All shortest paths from A to B have either:
one or more vertices t in common, OR
one or more edges in common

t

Scalable Network Distance Browsing in Spatial Databases – p.28/46



Path Coherence Beyond SILC

SILC framework focussed on facilitating nearest neighbor computation

Not so efficient for shortest path and network distance as need to refine
distances using an iterative process

SILC captures the path coherence in the shortest paths
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Not captured: multiple source vertices to multiple destination vertices

Introduce the Path Coherent Pair (PCP) framework

A PCP is denoted by: (A,B,t)

1. All shortest paths from A to B have either:
one or more vertices t in common, OR
one or more edges in common

2. Shortest paths have a range of network dis-
tance values which can be expressed as a
function of some approximation value ǫ

t
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A PCP is denoted by: (A,B,t)

1. All shortest paths from A to B have either:
one or more vertices t in common, OR
one or more edges in common

2. Shortest paths have a range of network dis-
tance values which can be expressed as a
function of some approximation value ǫ

3. Result has a structure of a dumbbell
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Path Coherence Beyond SILC

SILC framework focussed on facilitating nearest neighbor computation

Not so efficient for shortest path and network distance as need to refine
distances using an iterative process

SILC captures the path coherence in the shortest paths

single source vertex to multiple destination vertices

Not captured: multiple source vertices to multiple destination vertices

Introduce the Path Coherent Pair (PCP) framework

A PCP is denoted by: (A,B,t)

1. All shortest paths from A to B have either:
one or more vertices t in common, OR
one or more edges in common

2. Shortest paths have a range of network dis-
tance values which can be expressed as a
function of some approximation value ǫ

3. Result has a structure of a dumbbell

t

Goal: Decompose spatial network into PCPs so that all n2 shortest paths are
captured
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Finding Path Coherent Pairs in Spatial Networks
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Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices:

D
N

B
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Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L)

L
D

N

B

Scalable Network Distance Browsing in Spatial Databases – p.29/46



Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S)
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Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)
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Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

Anyone driving from “North-East” to “North-West” US uses I-80W
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Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

Anyone driving from “North-East” to “North-West” US uses I-80W

Capture shortest paths from one million (say) sources in “North-East” to one
million (say) destinations in “North-West” using O(1) storage

Intuition: Sources “sufficiently far” from destinations share common vertices in
their shortest paths

Decompose road network into PCPs:
Any vertex pair is contained in
exactly one PCP

All n2 shortest paths are captured
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Finding Path Coherent Pairs in Spatial Networks

Source Vertices: Washington, DC (D) , New York (N) , Boston (B)

Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)

Anyone driving from “North-East” to “North-West” US uses I-80W

Capture shortest paths from one million (say) sources in “North-East” to one
million (say) destinations in “North-West” using O(1) storage

Intuition: Sources “sufficiently far” from destinations share common vertices in
their shortest paths

Decompose road network into PCPs:
Any vertex pair is contained in
exactly one PCP

All n2 shortest paths are captured

I−80W

P

S

L
D

N

B

Key idea is the analogy to the well-separated pairs in computational geometry
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Is SILC Still Useful?

1. Type of refinement
Refinement in SILC finds the next intermediate vertex
Refinement in oracles fetches some intermediate vertex

2. Quality of refinement
SILC is superior as the network distance between source and
destination is always expressed as an exact network distance from
source to some intermediate vertex plus the network distance interval
from the intermediate vertex to the destination
While in the case of distance oracles, the network distance between
source and destination is always expressed as the sum of two network
distance intervals
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Outline

1. Overview

2. Spatial Networks

3. Precomputation and storage of shortest paths

4. k Nearest Neighbor Finding Algorithm

5. Experimental evaluation

6. Contributions

7. Future Work
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Experimental Evaluation

Compared kNN with other algorithms including variants of kNN
1. INE: Basically Dijkstra’s algorithm [Papa03]
2. IER: Using Euclidean distance as a filter [Papa03]
3. INN: Incremental variant of kNN which invokes kNN k times

No priority queue, L, or Dk

4. kNN-I: Use L to calculate D0
k using first k objects

Reduce size of Queue by not enqueueing elements with δ− > D0
k

5. kNN-M: Reduce number of refinements by dropping need for total ordering
KMINDIST keeps track of δ− of object corresponding to D0

k

Queue1 contains all objects with δ− ≤ D0
k

Don’t refine objects in Queue1 with δ+ < KMINDIST as automatically in L

Linux (2.4.2 kernel), quad 2.4GHz Xeon server with 1GB of RAM, GNU C++

LRU based cache that can hold 5% of the disk pages in main memory

Test set is important roads on US eastern seaboard consisting of 91,113
vertices and 114,176 edges

S is generated at random and stored in a PMR quadtree

Each query run on at least 50 random input datasets of same size
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kNN and Variants are at least one order of magnitude faster than INE and
IER for small values of k and moderate values of S

INE and IER improve relatively for large values of S as easy to find k

neighbors around q

As k increases, priority queue operations take more time and kNN
performs worse than INE but not so for kNN variants (INN, kNN-I, kNN-M)
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kNN and Variants are at least one order of magnitude faster than INE and
IER for small values of k and moderate values of S

INE and IER improve relatively for large values of S as easy to find k

neighbors around q

As k increases, priority queue operations take more time and kNN
performs worse than INE but not so for kNN variants (INN, kNN-I, kNN-M)

IER always slowest
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Maximum Priority Queue Size
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Compared maximum size of priority queue of kNN and variants with INN
which cannot use Dk to reduce insertions
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35% of INN on the average
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Compared maximum size of priority queue of kNN and variants with INN
which cannot use Dk to reduce insertions

35% of INN on the average

As k increases, savings in maximum queue size vanish
most likely due to an increase in the number of objects having
overlapping distance intervals from q

Results in reducing pruning effectiveness of Dk
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Large reduction for kNN-M which means that at least 30% of refinements
in kNN are devoted to developing a total ordering

Scalable Network Distance Browsing in Spatial Databases – p.35/46



Roles of KMINDIST in Pruning
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Up to 90% of nearest neighbors in kNN-M were pruned against KMINDIST

KMINDIST yields minimum possible distance of kth nearest neighbor

Means any object with δ+ ≤ KMINDIST can be added directly to result
But output is no longer sorted
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Up to 90% of nearest neighbors in kNN-M were pruned against KMINDIST

KMINDIST yields minimum possible distance of kth nearest neighbor

Means any object with δ+ ≤ KMINDIST can be added directly to result
But output is no longer sorted

However, does not eliminate an equivalent number of refinements as most
refinements are usually performed before pruning could take place
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0
k Vis-a-Vis Dk

 80

 100
 120
 140

 0.001  0.01  0.05  0.2%
 Q

ua
lit

y 
of

 e
st

im
at

es
 (

lo
g 

sc
al

e)

Object Distribution (S) (log scale)

Dk
0

KMINDIST

k=10 and varying sizes of S

 60

 100
 140

 10  50  100  150  200  250  300%
 Q

ua
lit

y 
of

 e
st

im
at

es
 (

lo
g 

sc
al

e)

Number of Neighbors (k)

Dk
0

KMINDIST

S = 0.07N and varying k

Scalable Network Distance Browsing in Spatial Databases – p.37/46



Role of KMINDIST and D
0
k Vis-a-Vis Dk

 80

 100
 120
 140

 0.001  0.01  0.05  0.2%
 Q

ua
lit

y 
of

 e
st

im
at

es
 (

lo
g 

sc
al

e)

Object Distribution (S) (log scale)

Dk
0

KMINDIST

20%

k=10 and varying sizes of S

 60

 100
 140

 10  50  100  150  200  250  300%
 Q

ua
lit

y 
of

 e
st

im
at

es
 (

lo
g 

sc
al

e)

Number of Neighbors (k)

Dk
0

KMINDIST

20%

S = 0.07N and varying k

D0
k is about 20% larger than

Scalable Network Distance Browsing in Spatial Databases – p.37/46



Role of KMINDIST and D
0
k Vis-a-Vis Dk

 80

 100
 120
 140

 0.001  0.01  0.05  0.2%
 Q

ua
lit

y 
of

 e
st

im
at

es
 (

lo
g 

sc
al

e)

Object Distribution (S) (log scale)

Dk
0

KMINDIST

20%

k=10 and varying sizes of S

 60

 100
 140

 10  50  100  150  200  250  300%
 Q

ua
lit

y 
of

 e
st

im
at

es
 (

lo
g 

sc
al

e)

Number of Neighbors (k)

Dk
0

KMINDIST

20%

S = 0.07N and varying k

D0
k is about 20% larger than Dk

Scalable Network Distance Browsing in Spatial Databases – p.37/46



Role of KMINDIST and D
0
k Vis-a-Vis Dk

 80

 100
 120
 140

 0.001  0.01  0.05  0.2%
 Q

ua
lit

y 
of

 e
st

im
at

es
 (

lo
g 

sc
al

e)

Object Distribution (S) (log scale)

Dk
0

KMINDIST

20%

k=10 and varying sizes of S

 60

 100
 140

 10  50  100  150  200  250  300%
 Q

ua
lit

y 
of

 e
st

im
at

es
 (

lo
g 

sc
al

e)

Number of Neighbors (k)

Dk
0

KMINDIST

20%

S = 0.07N and varying k

D0
k is about 20% larger than Dk

20% means that Dk does not lead to much more pruning than D0
k

explaining why the maximum sizes of the priority queues for kNN,
kNN-I, and kNN-M are almost identical when compared to that for INN
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D0
k is about 20% larger than Dk

20% means that Dk does not lead to much more pruning than D0
k

explaining why the maximum sizes of the priority queues for kNN,
kNN-I, and kNN-M are almost identical when compared to that for INN

KMINDIST is about 90% of Dk which may explain why many objects in
kNN-M are added directly to the result set without need for further
refinements (said to pruned against KMINDIST)
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Comparison of kNN and variants
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Small value of k, kNN is best
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Small value of k, kNN is best

kNN-PQ: cost of priority queue L and Dk manipulations and is substantial
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Small value of k, kNN is best

kNN-PQ: cost of priority queue L and Dk manipulations and is substantial
As k increases (k > 20), use
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Small value of k, kNN is best

kNN-PQ: cost of priority queue L and Dk manipulations and is substantial
As k increases (k > 20), use kNN-I and
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Small value of k, kNN is best

kNN-PQ: cost of priority queue L and Dk manipulations and is substantial
As k increases (k > 20), use kNN-I and INN as less or no manipulation
of L
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Small value of k, kNN is best

kNN-PQ: cost of priority queue L and Dk manipulations and is substantial
As k increases (k > 20), use kNN-I and INN as less or no manipulation
of L

I/O time dominates total execution time of kNN and variants
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Questions and Comments?

Thank you!
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