
Indexing Methods for Moving Object Databases:
Games and Other Applications

Hanan Samet Jagan Sankaranarayanan∗ Michael Auerbach

{hjs,jagan,mikea}@cs.umd.edu

Department of Computer Science

Center for Automation Research

Institute for Advanced Computer Studies

University of Maryland

College Park, MD 20742, USA

∗
Currently at NEC Labs America.

Indexing Methods for Moving Object Databases: Games and Other Applications – p.1/27

Overview
Problem domain: Database of objects moving at unknown velocities

Object positions change over time, possibly obtained from sensors
Objects have extent (not point objects)
Example applications: games, traffic, interactive vlsi design, etc.

Goal: Spatial index that supports interactive motion updates of position and
of the index so queries/operations can take place at interactive rates

Results:
Use a loose quadtree (cover fieldtree), associating objects with their
minimum enclosing expanded quadtree cell with expansion parameter p

Show that for suitably chosen value of p, the width of the expanded cell
is independent of the object’s position

Depends only on p and the object’s size
For appropriate value of p, at most 2 possible cell widths, usually 1
Results in constant time O(1) lookup and updates
· Optimal value of p=0.999 for queries/operations

Experiments show most object motions don’t require index updates
Somewhat analogous to balance and reduced splitting/merging due
to node overflow/underflow in B-tree insertions due to node being
50% full

Indexing Methods for Moving Object Databases: Games and Other Applications – p.2/27

Object Representations

1. Represent objects using an object hierarchy
Use minimum bounding hypercube boxes (e.g., R-tree) to speed up
process of detecting if objects are present or overlap other objects
Drawbacks:

Non-disjoint decomposition makes point location need multiple
search paths

2. Use recursive decomposition of underlying space into cells based on a
bound on the number of objects per cell

Drawback: May break objects into pieces

3. Use a hierarchy of congruent cells while still not decomposing the objects
Associate each object with its minimum enclosing quadtree cell
Examples include MX-CIF quadtree, multilayer grid file, R-file, filter
tree, SQ histogram, loose quadtree and equivalent cover fieldtree

Differentiated by the access structures used to resolve collisions in
sense of many objects with same minimum enclosing quadtree cell

Drawbacks
Many objects have same minimum enclosing quadtree cell
Size of minimum enclosing quadtree cell depends on position of
object and less on its size

Indexing Methods for Moving Object Databases: Games and Other Applications – p.3/27

MX-CIF Quadtree

1. Collections of small rectangles for VLSI ap-
plications

2. Each rectangle is associated with its mini-
mum enclosing quadtree block

3. Like hashing: quadtree blocks serve as
hash buckets

YA

YG
10
YI

2

YJ

YH

6
YL

8
XA

XH
9

XJ
7

XI

XG

(a) (b)

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

(a)

(b)

Indexing Methods for Moving Object Databases: Games and Other Applications – p.4/27

MX-CIF Quadtree

1. Collections of small rectangles for VLSI ap-
plications

2. Each rectangle is associated with its mini-
mum enclosing quadtree block

3. Like hashing: quadtree blocks serve as
hash buckets

4. Collision = more than one rectangle in a
block

resolve by using two one-dimensional
MX-CIF trees to store the rectangle
intersecting the lines passing through
each subdivision point

YA

YG
10
YI

2

YJ

YH

6
YL

8
XA

XH
9

XJ
7

XI

XG

(a) (b)

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

(a)

(b)

Indexing Methods for Moving Object Databases: Games and Other Applications – p.4/27

MX-CIF Quadtree

1. Collections of small rectangles for VLSI ap-
plications

2. Each rectangle is associated with its mini-
mum enclosing quadtree block

3. Like hashing: quadtree blocks serve as
hash buckets

4. Collision = more than one rectangle in a
block

resolve by using two one-dimensional
MX-CIF trees to store the rectangle
intersecting the lines passing through
each subdivision point
one for y-axis

YA

YG
10
YI

2

YJ

YH

6
YL

8
XA

XH
9

XJ
7

XI

XG

(a) (b)

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

(a)

(b)

Indexing Methods for Moving Object Databases: Games and Other Applications – p.4/27

MX-CIF Quadtree

1. Collections of small rectangles for VLSI ap-
plications

2. Each rectangle is associated with its mini-
mum enclosing quadtree block

3. Like hashing: quadtree blocks serve as
hash buckets

4. Collision = more than one rectangle in a
block

resolve by using two one-dimensional
MX-CIF trees to store the rectangle
intersecting the lines passing through
each subdivision point
one for y-axis
if a rectangle intersects both x and y
axes, then associate it with the y axis

YA

YG
10
YI

2

YJ

YH

6
YL

8
XA

XH
9

XJ
7

XI

XG

(a) (b)

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

(a)

(b)

Indexing Methods for Moving Object Databases: Games and Other Applications – p.4/27

MX-CIF Quadtree

1. Collections of small rectangles for VLSI ap-
plications

2. Each rectangle is associated with its mini-
mum enclosing quadtree block

3. Like hashing: quadtree blocks serve as
hash buckets

4. Collision = more than one rectangle in a
block

resolve by using two one-dimensional
MX-CIF trees to store the rectangle
intersecting the lines passing through
each subdivision point
one for y-axis
if a rectangle intersects both x and y
axes, then associate it with the y axis
one for x-axis

YA

YG
10
YI

2

YJ

YH

6
YL

8
XA

XH
9

XJ
7

XI

XG

(a) (b)

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B

C

E

D

F

(a)

(b)

Indexing Methods for Moving Object Databases: Games and Other Applications – p.4/27

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that only the minimum width w
of the minimum enclosing quadtree cell of object o is a function of o’s size

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Indexing Methods for Moving Object Databases: Games and Other Applications – p.5/27

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that only the minimum width w
of the minimum enclosing quadtree cell of object o is a function of o’s size

Instead, the maximum width w depends on both the size and position of
the centroid of o and is unbounded

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Indexing Methods for Moving Object Databases: Games and Other Applications – p.5/27

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that only the minimum width w
of the minimum enclosing quadtree cell of object o is a function of o’s size

Instead, the maximum width w depends on both the size and position of
the centroid of o and is unbounded

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Indexing Methods for Moving Object Databases: Games and Other Applications – p.5/27

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that only the minimum width w
of the minimum enclosing quadtree cell of object o is a function of o’s size

Instead, the maximum width w depends on both the size and position of
the centroid of o and is unbounded
Solution: expand size of space
spanned by each quadtree cell of width
w by expansion factor p (p > 0) so ex-
panded cell is of width (1 + p)w

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Indexing Methods for Moving Object Databases: Games and Other Applications – p.5/27

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that only the minimum width w
of the minimum enclosing quadtree cell of object o is a function of o’s size

Instead, the maximum width w depends on both the size and position of
the centroid of o and is unbounded
Solution: expand size of space
spanned by each quadtree cell of width
w by expansion factor p (p > 0) so ex-
panded cell is of width (1 + p)w

1. p = 0.3

{11,12}

{7,8,10}
{2,9}

{2,6,7,8,9,10}

{11}

{3,4,5}

{1}

A

B

E

C D

F
{6}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Indexing Methods for Moving Object Databases: Games and Other Applications – p.5/27

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that only the minimum width w
of the minimum enclosing quadtree cell of object o is a function of o’s size

Instead, the maximum width w depends on both the size and position of
the centroid of o and is unbounded
Solution: expand size of space
spanned by each quadtree cell of width
w by expansion factor p (p > 0) so ex-
panded cell is of width (1 + p)w

1. p = 0.3
2. p = 1.0

A

B{}

E

C{2,9}

{2,4}
{5} {3} {6} {9} {7} {8} {10}

D

F

{11} {12}

{}

{1}

{7,8,10}
{11,12}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Indexing Methods for Moving Object Databases: Games and Other Applications – p.5/27

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that only the minimum width w
of the minimum enclosing quadtree cell of object o is a function of o’s size

Instead, the maximum width w depends on both the size and position of
the centroid of o and is unbounded
Solution: expand size of space
spanned by each quadtree cell of width
w by expansion factor p (p > 0) so ex-
panded cell is of width (1 + p)w

1. p = 0.3
2. p = 1.0

First formulated by Frank for spatial ap-
plications terming it cover fieldtree

Ulrich devised it for game applications
and called it a loose quadtree

Ulrich sought the range of object sizes
that can be associated with a cell

not very useful

Want inverse: which range of cell sizes
can be associated with an object?

A

B{}

E

C{2,9}

{2,4}
{5} {3} {6} {9} {7} {8} {10}

D

F

{11} {12}

{}

{1}

{7,8,10}
{11,12}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Indexing Methods for Moving Object Databases: Games and Other Applications – p.5/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree cell
for rectangle o is bounded by 8 times the maximum extent r of o

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree cell
for rectangle o is bounded by 8 times the maximum extent r of o

o

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree cell
for rectangle o is bounded by 8 times the maximum extent r of o

o

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree cell
for rectangle o is bounded by 8 times the maximum extent r of o

o

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree cell
for rectangle o is bounded by 8 times the maximum extent r of o

r
o

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree cell
for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-
tree when p =1/4, and thus partition
fieldtree is superior to the cover field-
tree when p <1/4

r
o

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree cell of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree
cells at successive levels of the subdivision by one half of the width of the
cell that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree cell
for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-
tree when p =1/4, and thus partition
fieldtree is superior to the cover field-
tree when p <1/4

Summary: cover fieldtree expands
the width of the quadtree cells while
the partition fieldtree shifts the posi-
tions of their centroids

r
o

Indexing Methods for Moving Object Databases: Games and Other Applications – p.6/27

Range of Object Sizes Associated with a Quadtree Cell

w(1+p)

w w

w

w

w

w

Key is to vary the position of the centroid
of the object vis-a-vis the expanded cell

Indexing Methods for Moving Object Databases: Games and Other Applications – p.7/27

Range of Object Sizes Associated with a Quadtree Cell

w(1+p)

w w

w

w

w

w

Key is to vary the position of the centroid
of the object vis-a-vis the expanded cell

The width of the object is maximized when
its centroid is coincident with the centroid
of the cell

Indexing Methods for Moving Object Databases: Games and Other Applications – p.7/27

Range of Object Sizes Associated with a Quadtree Cell

w(1+p)

w w

w

w

w

w

pw/4

Key is to vary the position of the centroid
of the object vis-a-vis the expanded cell

The width of the object is maximized when
its centroid is coincident with the centroid
of the cell

The width of the object is minimized when as much of the object as
possible lies in the expanded area of the cell

Occurs when the centroid of object is coincident with a corner of cell

Indexing Methods for Moving Object Databases: Games and Other Applications – p.7/27

Range of Object Sizes Associated with a Quadtree Cell

w(1+p)

w w

w

w

w

w

pw/4

Key is to vary the position of the centroid
of the object vis-a-vis the expanded cell

The width of the object is maximized when
its centroid is coincident with the centroid
of the cell

The width of the object is minimized when as much of the object as
possible lies in the expanded area of the cell

Occurs when the centroid of object is coincident with a corner of cell
Object cannot be too big so that it would belong to the parent of the
expanded cell

Indexing Methods for Moving Object Databases: Games and Other Applications – p.7/27

Range of Object Sizes Associated with a Quadtree Cell

w(1+p)

w w

w

w

w

w

pw/4

Key is to vary the position of the centroid
of the object vis-a-vis the expanded cell

The width of the object is maximized when
its centroid is coincident with the centroid
of the cell

The width of the object is minimized when as much of the object as
possible lies in the expanded area of the cell

Occurs when the centroid of object is coincident with a corner of cell
Object cannot be too big so that it would belong to the parent of the
expanded cell
Object cannot be too small so that it would belong to a child of
expanded cell

Indexing Methods for Moving Object Databases: Games and Other Applications – p.7/27

Quadtree Cell Sizes Associated with an Object

2r

Indexing Methods for Moving Object Databases: Games and Other Applications – p.8/27

Quadtree Cell Sizes Associated with an Object

w

w
w

w

ww

2r

Width w of cell c is minimized when
centroid of object with radius r is
coincident with centroid of c and object fits
in the expanded cell of c

2r ≤ (1 + p)w or w ≥ 2r/(1 + p)

(attainable) or 1/(1 + p) ≤ w/2r

Indexing Methods for Moving Object Databases: Games and Other Applications – p.8/27

Quadtree Cell Sizes Associated with an Object

w w w

w
w

w

2r

Width w of cell c is minimized when
centroid of object with radius r is
coincident with centroid of c and object fits
in the expanded cell of c

2r ≤ (1 + p)w or w ≥ 2r/(1 + p)

(attainable) or 1/(1 + p) ≤ w/2r

Width w of cell c is maximized when cen-
troid of object with radius r is coincident
with a corner of c AND

1. The cell is just big enough so that the object does not overlap the
expanded part of c so that it would require a cell of width 2w, while

r ≤ pw/2 or w ≥ 2r/p (attainable) or w/2r ≥ 1/p

Indexing Methods for Moving Object Databases: Games and Other Applications – p.8/27

Quadtree Cell Sizes Associated with an Object

pw/4pw/4

w w w

w

w

w

2r

Width w of cell c is minimized when
centroid of object with radius r is
coincident with centroid of c and object fits
in the expanded cell of c

2r ≤ (1 + p)w or w ≥ 2r/(1 + p)

(attainable) or 1/(1 + p) ≤ w/2r

Width w of cell c is maximized when cen-
troid of object with radius r is coincident
with a corner of c AND

1. The cell is just big enough so that the object does not overlap the
expanded part of c so that it would require a cell of width 2w, while

r ≤ pw/2 or w ≥ 2r/p (attainable) or w/2r ≥ 1/p

2. The cell is just large enough so that object is too large to fit in the
expanded child cell of c

r > pw/4 or w < 4r/p (attainable) or w/2r < 2/p

Indexing Methods for Moving Object Databases: Games and Other Applications – p.8/27

Quadtree Cell Sizes Associated with an Object

pw/4pw/4

w w w

w

w

w

2r

Width w of cell c is minimized when
centroid of object with radius r is
coincident with centroid of c and object fits
in the expanded cell of c

2r ≤ (1 + p)w or w ≥ 2r/(1 + p)

(attainable) or 1/(1 + p) ≤ w/2r

Width w of cell c is maximized when cen-
troid of object with radius r is coincident
with a corner of c AND

1. The cell is just big enough so that the object does not overlap the
expanded part of c so that it would require a cell of width 2w, while

r ≤ pw/2 or w ≥ 2r/p (attainable) or w/2r ≥ 1/p

2. The cell is just large enough so that object is too large to fit in the
expanded child cell of c

r > pw/4 or w < 4r/p (attainable) or w/2r < 2/p

We have proved, Theorem 3.1: 2r/(1 + p) ≤ w < 4r/p or
1/(1 + p) ≤ w/2r < 2/p

Retain 2r/(1 + p) instead of 2r/p as a lower bound on w as both are
attainable and 2r/(1 + p) < 2r/p

Indexing Methods for Moving Object Databases: Games and Other Applications – p.8/27

Loose Quadtree Insertion

Definition: Loose quadtree associates an object o with the smallest
expanded quadtree cell c containing all of o’s minimum bounding
hypercube b in its entirety

No need to start search at root
Instead search at largest possible quadtree cell that can contain o

c always contains the centroid of b (and without loss of generality o) as
otherwise a smaller expanded quadtree cell contains b

Insertion algorithm need only search for smallest quadtree cell that
contains the centroid of b and whose expanded cell also contains b

Indexing Methods for Moving Object Databases: Games and Other Applications – p.9/27

Mechanics of Loose Quadtree Insertion

Theorem 3.1: 1/(1 + p) < w/2r ≤ 2/p shows given a minimum bounding
hypercube with radius r, width w of associated loose quadtree cell c lies
within a small range of values thereby limiting number of possible cells
needing testing for the inclusion of b and no need to start the search at the
root of the loose quadtree as is the case for the MX-CIF quadtree

Let M(x) = 2k, s.t. 2k−1 < x ≤ 2k

w is always a power of 2 and use the ceiling power of 2 for w/2r so that
Theorem 3.1 can be expressed in terms of levels

Let w = 2r: means minimum bounding box b is always a quadtree cell
Not critical but ensures objects can always make small motions in the
expanded quadtree cell containing them without needing reinsertion
Explanation for optimal behavior at p=0.999 vis-a-vis p = 1

V = log2(M(2/p)) − log2(M(1/(p + 1))) is an upper bound on the number
of levels which might contain the expanded minimum containing quadtree
cell of the object and these are the levels that must be searched

Example: V = 3 for p = 1/4, V = 2 for p = 1/2, V = 2 for p = 1, V = 1

for p = 2, V = 2 for p = 3, etc.

Indexing Methods for Moving Object Databases: Games and Other Applications – p.10/27

Experimental Evaluation

Linux (2.6.18) quad 1.86 GHz Xeon server with four gigabyte of RAM

Algorithms implemented using GNU C++

Many of the experiments used a collection of random rectangles obtained
by generating their centroid and extents are random

Same method used by Ulrich in his tests
Objects stored using a Morton representation indexed by a B-tree
Updates are efficient as only need to update the index if the object’s
associated expanded quadtree cell changes
Compare with other indexes such as the R-tree which usually require
a complete rebuild when the positions of the objects changes

Indexing Methods for Moving Object Databases: Games and Other Applications – p.11/27

Reinsertion Rates - Random Data

Vary p, maximum translation s, and fixed relative object sizes δ

Uniformly varying translation (Same results for fixed)

 75
 50

 25

 10

 5

 1

 0.5

 5 2 1 0.5 0.2 0.1

%
 R

ei
ns

er
tio

ns
 (

lo
g

sc
al

e)

Looseness Factor p (log scale)

Regular

 5

 4

 3

 2

 1.5
 1.3

 1
 0.9
 0.8

 5 2 1 0.5 0.2 0.1

N
or

m
al

iz
ed

 R
ei

ns
er

tio
ns

 (
lo

g
sc

al
e)

Looseness Factor p (log scale)

s=0.40%
s=1.00%
s=2.00%
s=4.00%
s=10.0%
s=50.0%
s=100.%

Normalized wrt p=0.999

Number requiring reinsertion increases with s (as expected) and p

Increasing p enables objects to be associated with expanded quadtree
cells with smaller widths thereby reducing the area in which the object can
move without requiring reinsertion

Increase up to p = 0.5 and then a precipitous drop to a minimum at
p=0.999 where result is comparable to p = 0 and followed by a significant
gain at p = 1 and rest recapture any earlier drops

Indexing Methods for Moving Object Databases: Games and Other Applications – p.12/27

Rationale for Sweet Spot at p=0.999

0.5 <= p < 1

0.25 <= p < 0.5

1 <= p < 2

2w 2w

2w

2w

2w

2w

2w 2w

2w

2w

2w

2w

4w

4w
w w w

w

w

w

w w w

w

w

w

w w w

w

w

ww

Object

wQuadtree
 block

Quadtree
Loose

 block

Legend:

0.5w

0.5w

(a)(b)

(b)

(b)

(c)

(c)(d)

w(1+p)

2r

Given an object o of a particular size, the range of sizes of the blocks that
contain it is 2 for both p=0.999 and p = 1 but the area spanned by the
largest expanded quadtree cell that contains o for p=0.999 is

Indexing Methods for Moving Object Databases: Games and Other Applications – p.13/27

Rationale for Sweet Spot at p=0.999

0.5 <= p < 1

0.25 <= p < 0.5

1 <= p < 2

2w 2w

2w

2w

2w

2w

2w 2w

2w

2w

2w

2w

4w

4w
w w w

w

w

w

w w w

w

w

w

w w w

w

w

ww

Object

wQuadtree
 block

Quadtree
Loose

 block

Legend:

0.5w

0.5w

(a)(b)

(b)

(b)

(c)

(c)(d)

w(1+p)

2r

Given an object o of a particular size, the range of sizes of the blocks that
contain it is 2 for both p=0.999 and p = 1 but the area spanned by the
largest expanded quadtree cell that contains o for p=0.999 is four times the
corresponding expanded quadtree cell for p = 1

Indexing Methods for Moving Object Databases: Games and Other Applications – p.13/27

Rationale for Sweet Spot at p=0.999

0.5 <= p < 1

0.25 <= p < 0.5

1 <= p < 2

2w 2w

2w

2w

2w

2w

2w 2w

2w

2w

2w

2w

4w

4w
w w w

w

w

w

w w w

w

w

w

w w w

w

w

ww

Object

wQuadtree
 block

Quadtree
Loose

 block

Legend:

0.5w

0.5w

(a)(b)

(b)

(b)

(c)

(c)(d)

w(1+p)

2r

Given an object o of a particular size, the range of sizes of the blocks that
contain it is 2 for both p=0.999 and p = 1 but the area spanned by the
largest expanded quadtree cell that contains o for p=0.999 is four times the
corresponding expanded quadtree cell for p = 1

Implies much larger area for p=0.999 in which object can move without
needing reinsertion and also less work in updating so greater update rate

Reinsertion rate decreases from p ≥ 0.5 as width of expanded quadtree
cells is increasing

Indexing Methods for Moving Object Databases: Games and Other Applications – p.13/27

Update Rate Performance - Random Data

 0.1

 1

 10

 5 2 1 0.5 0.2 0.1

U
pd

at
es

 (
m

ill
io

ns
/s

ec
on

d)

Looseness Factor p (log scale)

s=0.40%
s=1.00%
s=2.00%
s=4.00%
s=10.0%
s=50.0%
s=100.%

Regular

 0

 2

 4

 6

 8

 10

 12

 5 2 1 0.5 0.2 0.1

N
or

m
al

iz
ed

 U
pd

at
es

Looseness Factor p (log scale)

s=0.40%
s=1.00%
s=2.00%
s=4.00%
s=10.0%
s=50.0%
s=100.%

Normalized wrt p = 0

Update rate decreases as s increases while little variation with p

Normalize with result for p = 0 to show the effect of reduced cost of
insertion as new cell can be determined in far fewer lookups (2 for p = 1)
resulting in more updates for all but large s

Assume fixed translation with similar result for uniform translations

Indexing Methods for Moving Object Databases: Games and Other Applications – p.14/27

Effect of Object Size - Random Data

 10

 5

 1

 1 10 100 1000

%
 R

ei
ns

er
tio

ns
 (

lo
g

sc
al

e)

δ (log scale)

% Reinsertion

 5

 2

 1
 0.8
 0.5

 0.2

 0.1
 1 10 100 1000

U
pd

at
es

 m
ill

io
ns

/s
ec

δ (log scale)

p=0.0
p=0.1
p=0.5
p=.99
p=1.0
p=1.5
p=2.0
p=3.0
p=5.0

Update Rate

Percent needing reinsertion and update rate are independent of relative
object size

Percent needing reinsertion decreased with increasing p

Update rate decreases with increasing p and the percent needing
reinsertion increases with increasing p

Indexing Methods for Moving Object Databases: Games and Other Applications – p.15/27

Reinsertion and Updates - Real Data

 75
 50

 25

 10

 5

 1

 0.5

 5 2 1 0.5 0.2 0.1

%
 R

ei
ns

er
tio

ns
 (

lo
g

sc
al

e)

Looseness Factor p (log scale)

% Reinsertion

 0

 5

 10

 15

 20

 25

 5 2 1 0.5 0.2 0.1

U
pd

at
es

 (
m

ill
io

ns
/s

ec
on

d)

Looseness Factor p (log scale)

s=0.40%
s=1.00%
s=2.00%
s=4.00%
s=10.0%
s=50.0%
s=100.%

Update Rate

Uniform translation - similar for fixed translation

Update rate soars at p=0.999 due to drop in reinsertions

Lowest variation in translation s has best performance in reinsertion (low)
and update (high)

Indexing Methods for Moving Object Databases: Games and Other Applications – p.16/27

N-Body Simulation Experiments

Designed to replicate common conditions for object dimension, object
placement, and object movement based on modern video games using an
N-body simulation

Consists of insertion, deletion, update, range, and collision detection
queries on the data structure that stores them

Record time needed to render a fixed number of frames, as well as
operation statistics for different numbers of objects and values of p

During each frame, objects are allowed to move, receive force from
external sources and collide with each other

Every object is processed in physics engine and objects are stored using a
loose quadtree with values of expansion factor p ranging from 0 to 1.0

Physics engine: processes every object in the simulation in every frame

If an object is moving, then engine performs a range query on the area
occupied by object’s bounding hypercube box to return a list of hit objects

Each hit object is then entered into a physics equation and the object’s
velocities and positions (i.e., trajectories) are updated

At any given time, about 50% of the objects are moving over an entire 1
kilometer squared game universe

Indexing Methods for Moving Object Databases: Games and Other Applications – p.17/27

Computing Environment

Windows 7 enterprise quad core 2.6GHz I7 workstation with eight
gigabytes of 1600MHz DDR3 RAM and an Nvidia GT650m discrete GPU

Compiled simulation and related code using Microsoft Visual Studio
2010’s integrated 32 bit compiler

Compared the MX-CIF quadtree (p = 0) with variants of the loose
quadtree for a few values of p (p = 0.5, p=0.999 and p = 1).

Used a pointer-based quadtree implementation

Simplifies algorithms as main focus was evaluating the efficacy of
loose quadtree for moving object applications such as, but not limited
to, video games
Pointer-based environment enables all execution to occur in main
memory which is the environment used in video games

Indexing Methods for Moving Object Databases: Games and Other Applications – p.18/27

N-Body Simulation Details

Two-dimensional objects that interact with one another

Each object exerts a force on all the other objects in scene and
consequently each object moves due to the resulting force that is applied
to it

Computing force interaction between objects is single most
time-consuming operation

Periodically, a large radial force is exerted on system

Resulting explosions are designed to simulate common game play cases
where movement of many objects occurs in only a subset of the game
universe

However, since all objects move by varying amounts, updating the spatial
data structure that indexes objects can be a significant bottleneck

Indexing Methods for Moving Object Databases: Games and Other Applications – p.19/27

Insertion and N-Body Simulation Costs

One half order of magnitude difference in total N-body simulation
execution times between p = 0 and p=0.999.

Savings in insertion costs (≈ 7 seconds) account for difference between
total time for N-body simulation with p=0.999 vs: p = 0

Indexing Methods for Moving Object Databases: Games and Other Applications – p.20/27

Number of Reinsertions vs: Number of Objects

Relatively large reduction in number of objects requiring reinsertion for
p=0.999 vs: p = 0 (2 orders of magnitude difference)

Motion of objects is very small and sensitivity of p=0 and p=0.5 to position
result in large number of reinsertions vis-a-vis p=0.999 and p=1

Log plots all show a linear relationship which means a power law of the
form y = axb where a and b constants with 1.60 < b < 1.75

30% difference in insertions and time spent doing it, and 10% difference in
execution time of simulation for p=0.999 vs: p = 1.0 which is less as
simulation is much more complex than insertion

Indexing Methods for Moving Object Databases: Games and Other Applications – p.21/27

Query Performance and Scalability

Motivation: showing that the good update performance (i.e., minimization
of reinsertions upon object motion) does not come at expense of query
performance, and that it scales

1. Measure time to perform different queries
2. Record number of blocks and objects visited by each query
3. Examine performance on simulations with varying sizes of objects

Show loose quadtree can scale to really large simulations way beyond
limitations of MX-CIF quadtree (i.e., a loose quadtree with p = 0)

Recreate a game environment to simulate a complex 3D scene

Objects do not exert force on one another but move due to gravity

Bottleneck is not computing inter-object forces but rather capturing the
interactions between objects as they collide

Need to know which objects are in close proximity

All objects are updated dynamically using a physics simulation solver

Must render scene which requires applying geometrical operations such
as ray tracing (RAY), view frustum culling (FRUS), nearest neighbor
search (NN), and window queries for large (WIN-L) and small (WIN-S)
windows on the spatial data structures.

Indexing Methods for Moving Object Databases: Games and Other Applications – p.22/27

Example

Query Times Number of Blocks and Objects Visited

14,000 objects

Loose quadtree always better than MX-CIF quadtree and by as much as
43%

p=0.999 always better than p = 0 and also better than p = 1 (not shown)

Both p=0.999 and 1 visit more blocks than p = 0 and less objects as
sensitivity to position means larger blocks (but fewer) for p = 0 while
visiting many more objects

Factors tend to negate each other but loose quadtree still better

Indexing Methods for Moving Object Databases: Games and Other Applications – p.23/27

Example: Rendering and Data Structure Update

Loose quadtree renders frames 2–5 times faster than the MX-CIF
quadtree

For 100,000 moving objects: loose quadtree can render 5 fps (210
ms/frame) in contrast to MX-CIF quadtree at 0.7 fps (1.4 sec/frame)
Current commercially available games typically do not involve more
than 15,000 moving objects

Time to update MX-CIF quadtree is at least 3 times more expensive when
compared to updating loose quadtree with p ≈ 1

Clearly loose quadtree scales significantly vis-a-vis state of the art
Indexing Methods for Moving Object Databases: Games and Other Applications – p.24/27

R-tree

Used Hilbert R-tree as easy to build

Batched updates as otherwise reinserting one object at a time was several
orders of magnitude slower than one at a time

For 14,000 objects, 107 ms for updating R-tree vs: 22.11 ms for
p=0.999 (five times faster) and 82.26 ms for p = 0 (25% slower)

Window Queries

Structure WIN-L WIN-S
R-tree 167 ns 142 ns
MX-CIF (p = 0) 128 ns 113 ns
Loose Quadtree p=0.999 98 ns 73 ns

Indexing Methods for Moving Object Databases: Games and Other Applications – p.25/27

Concluding Remarks

Showed a variant of a data structure that associates an object with its
minimum enclosing expanded quadtree cell such that the size of the cell is
independent of the position of the object and only dependent on the
object’s size and the expansion factor

Implies no search for the cell

Enables representing a database of moving objects so that motion of the
object usually does not require the index to be updated as the associated
expanded cell is often the same

Shown optimal behavior when expansion factor is 0.999

Indexing Methods for Moving Object Databases: Games and Other Applications – p.26/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?
1. TODS 2006: Proof of position independence - not enough! Need

experiments

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?
1. TODS 2006: Proof of position independence - not enough! Need

experiments
2. TODS 2007: Added applets showing functioning - not enough! Want

experiments

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?
1. TODS 2006: Proof of position independence - not enough! Need

experiments
2. TODS 2007: Added applets showing functioning - not enough! Want

experiments
3. VLDB 2008: Trivial - proof just used high school math

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?
1. TODS 2006: Proof of position independence - not enough! Need

experiments
2. TODS 2007: Added applets showing functioning - not enough! Want

experiments
3. VLDB 2008: Trivial - proof just used high school math
4. SIGMOD 2009: Ulrich did it!

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?
1. TODS 2006: Proof of position independence - not enough! Need

experiments
2. TODS 2007: Added applets showing functioning - not enough! Want

experiments
3. VLDB 2008: Trivial - proof just used high school math
4. SIGMOD 2009: Ulrich did it!
5. SIGMOD 2010: Already in Samet’s book - can’t counter due to double

blind reviewing

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?
1. TODS 2006: Proof of position independence - not enough! Need

experiments
2. TODS 2007: Added applets showing functioning - not enough! Want

experiments
3. VLDB 2008: Trivial - proof just used high school math
4. SIGMOD 2009: Ulrich did it!
5. SIGMOD 2010: Already in Samet’s book - can’t counter due to double

blind reviewing
6. SIGMOD 2011: Detailed experiments and p=0.999 - wanted R-tree

comparison

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?
1. TODS 2006: Proof of position independence - not enough! Need

experiments
2. TODS 2007: Added applets showing functioning - not enough! Want

experiments
3. VLDB 2008: Trivial - proof just used high school math
4. SIGMOD 2009: Ulrich did it!
5. SIGMOD 2010: Already in Samet’s book - can’t counter due to double

blind reviewing
6. SIGMOD 2011: Detailed experiments and p=0.999 - wanted R-tree

comparison
7. ICDE 2011: ...

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?
1. TODS 2006: Proof of position independence - not enough! Need

experiments
2. TODS 2007: Added applets showing functioning - not enough! Want

experiments
3. VLDB 2008: Trivial - proof just used high school math
4. SIGMOD 2009: Ulrich did it!
5. SIGMOD 2010: Already in Samet’s book - can’t counter due to double

blind reviewing
6. SIGMOD 2011: Detailed experiments and p=0.999 - wanted R-tree

comparison
7. ICDE 2011: ...
8. VLDB 2012: Claim that good update at expense of query performance

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

Postmortem

Moral: If at first, don’t succeed try again! How many times?
1. TODS 2006: Proof of position independence - not enough! Need

experiments
2. TODS 2007: Added applets showing functioning - not enough! Want

experiments
3. VLDB 2008: Trivial - proof just used high school math
4. SIGMOD 2009: Ulrich did it!
5. SIGMOD 2010: Already in Samet’s book - can’t counter due to double

blind reviewing
6. SIGMOD 2011: Detailed experiments and p=0.999 - wanted R-tree

comparison
7. ICDE 2011: ...
8. VLDB 2012: Claim that good update at expense of query performance
9. SIGMOD 2013: N-body game simulation example - BINGO!

Indexing Methods for Moving Object Databases: Games and Other Applications – p.27/27

	Overview
	Object Representations
	MX-CIF Quadtree
	Loose Quadtree (Octree)/Cover Fieldtree
	Partition Fieldtree
	Range of Object Sizes Associated with a Quadtree Cell
	Quadtree Cell Sizes Associated with an Object
	Loose Quadtree Insertion
	Mechanics of Loose Quadtree Insertion
	Experimental Evaluation
	Reinsertion Rates - Random Data
	Rationale for Sweet Spot at p=0.999
	Update Rate Performance - Random Data
	Effect of Object Size - Random Data
	Reinsertion and Updates - Real Data
	N-Body Simulation Experiments
	Computing Environment
	N-Body Simulation Details
	Insertion and N-Body Simulation Costs
	Number of Reinsertions vs: Number of Objects
	Query Performance and Scalability
	Example
	Example: Rendering and Data Structure Update
	R-tree
	Concluding Remarks
	Postmortem

