SORTING IN SPACE

HANAN SAMET
COMPUTER SCIENCE DEPARTMENT AND
CENTER FOR AUTOMATION RESEARCH AND
INSTITUTE FOR ADVANCED COMPUTER STUDIES
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742-3411 USA

e—-mail: hjs@cs.umd.edu
url: http://www.cs.umd.edu/~hjs

These notes may not be reproduced by any means (mechanical or electronic
or any other) without the express written permission of Hanan Samet

Copyright © 2008 Hanan Samet

e I NP
Foundations of T
Multidimensional~.

> ':\al.‘lgc —
Metric-Data Structu

-.r\’"-. 'ﬂ-.t

- B "..'
.,

o*.r

With applications in computer graphics and visualization, databases,
geographic information systems (GIS) and spatial databases, game
programming, image processing and computer vision, pattern recognition,
\A solid modelling and computational geometry, similarity retrieval and
. multimedia databases, VLS| design, and search aspects of bioinformatics.

Why Sorting of Spatial Data is Important

o

B Most operations invariably involve search
W Search is sped up by sorting the data

W sort - Definition: verb
1. to put in a certain place or rank according to kind, class, or nature

2. to arrange according to characteristics

B Examples
1.

Warnock algorithm: sorting objects for display
® vector: hidden-line elimination
B raster: hidden-surface elimination

Back-to-front and front-to-back algorithms

BSP trees for visibility determination

Accelerating ray tracing and ray casting by finding ray-object
intersections

Bounding box hierarchies arrange space according to whether
occupied or unoccupied

Copyright 2008 by Hanan Samet

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data

M sort people by weight and find b : ®
closest in weight to Bill and can C ¢
also find closest in weight to Larry ¢
W sort cities by distance from Chicago : ¢ C
and find closest to Chicago but can- I g ®
not find closest to New York unless ®----=-==-.

resort

2. Hard for two-dimensions as higher as notion of ordering does not exist
unless a dominance relation holds

B point a = {a;|1 < i < d} dominates point b = {b;|1 < i < d} if
a; <b;,1 < <d.

M 2 does not dominate b but dominates
3. Only solution is to linearize data as in a space-filling curve
M sort is explicit
B need implicit sort so no need to resort if reference point changes

Copyright 2008 by Hanan Samet

hi2g
PRINCE GEORGES COUNTY

S
VT~

L
O e IS /R
} RS

Copyright © 2008 by Hanan Samet

hi27
EXAMPLE QUERIES ON LINE SEGMENT DATABASES

« Queries about line segments

1. All segments that intersect a given point or set of
points

2. All segments that have a given set of endpoints
3. All segments that intersect a given line segment

4. All segments that are coincident with a given line
segment

* Proximity queries
1. The nearest line segment to a given point

2. All segments within a given distance from a given
point (also known as a range or window query)

* Queries involving attributes of line segments

1. Given a point, find the closest line segment of a
particular type

2. Given a point, find the minimum enclosing polygon
whose constituent line segments are all of a given

type

3. Given a point, find all the polygons that are incident
on it

Copyright © 2008 by Hanan Samet

gs10

WHAT MAKES CONTINUOUS SPATIAL DATA
DIFFERENT

1. Spatial extent of the objects is the key to the
difference

2. Arecord in a DBMS may be considered as a point in
a multidimensional space

a line can be transformed (i.e., represented) as a
point in 4-d space with (xq , y1, X2, Vo)

/ (X2, y2)
(X1, 1)

» good for queries about the line segments

 not good for proximity queries since points outside
the object are not mapped into the higher
dimensional space

- representative points of two objects that are
physically close to each other in the original space
(e.g., 2-d for lines) may be very far from each other
in the higher dimensional space (e.g., 4-d)

 Ex:

» problem is that the transformation
only transforms the space occupied '/E:
by the objects and not the rest of the
space (e.g., the query point)

« can overcome by projecting back to original space

A

3. Use an index that sorts based upon spatial
occupancy (i.e., extent of the objects)

Copyright © 2008 by Hanan Samet

hi29.1

SPATIAL INDEXING REQUIREMENTS

1. Compatibility with the data being stored

2. Choose an appropriate zero or reference point
3. Need an implicit rather than an explicit index

« impossible to foresee all possible queries in
advance

« cannot have an attribute for every possible spatial
relationship

a. derive adjacency relations
b. 2-d strings capture a subset of adjacencies
e all rows

« all columns
« implicit index is better as an explicit index which,
for example, sorts two-dimensional data on the

basis of distance from a given point is impractical
as it is inapplicable to other points

« implicit means that don't have to resort the data for
queries other than updates

Copyright © 2008 by Hanan Samet

gs11

SORTING ON THE BASIS OF SPATIAL OCCUPANCY

« Decompose the space from which the data is drawn into
regions called buckets (like hashing but preserves order)

* Interested in methods that are designed specifically for
the spatial data type being stored

» Basic approaches to decomposing space

1. minimum bounding rectangles
« e.g., R-tree
« good at distinguishing empty and non-empty
space
« drawbacks:
a. non-disjoint decomposition of space
* may need to search entire space
b. inability to correlate occupied and unoccupied
space in two maps
2. disjoint cells
« drawback: objects may be reported more than once
« uniform grid
a. all cells the same size
b. drawback: possibility of many sparse cells
 adaptive grid — quadtree variants
a. regular decomposition
b. all cells of width power of 2
* partitions at arbitrary positions
a. drawback: not a regular decomposition
b. e.g., R*-tree

« Can use as approximations in filter/refine query
processing strategy

Copyright © 2008 by Hanan Samet

211

MINIMUM BOUNDING RECTANGLES b

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Drawback: not a disjoint decomposition of space

Object has single bounding rectangle, yet area that it

spans may be included in several bounding rectangles

Examples include the R-tree and the R*-tree

Order (m,M) R-tree

1. between m < [M/2]| and M entries in each node
except root

2. atleast 2 entries in root unless a leaf node

R3

RS
¢) 36 ©

R3:[a]b] Ra:[dJgTh] Rs:[c]i] Re:[e]f]

Copyright © 2008 by Hanan Samet

sl2l1] hi32
SEARCHING FOR A POINT OR LINE rvb
SEGMENT IN AN R-TREE

« Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

RO:EE
N
N\

R3:la|]b R4:1]d]9] h R5:lc | i Re:le] f

e Q can bein both R1 and R2

Copyright © 2008 by Hanan Samet

O DISJOINT CELLS thSSO

* Objects decomposed into disjoint subobjects; each
subobject in different cell

* Techniques differ in degree of regularity

* Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

* R+-tree (also k-d-B-tree) and cell tree are examples

of this technique
b
a
e
i

/X,M
;]
d N /
4

Copyright © 2008 by Hanan Samet 9

O K-D-B-TREES hi33.10

zrb

Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

When a node overflows, it is split along one of the axes

Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

R3 R4fl|R6
R1 R2
b
h . e
g
d i
f

Q
Al
C —
r1:[Ra[Rdl r2:[R5[Re]
R3:{d|g|h|R4fc|h|i|R5/c|[f|]i|R6jalble]i]

Copyright © 2008 by Hanan Samet

hi34
UNIFORM GRID

e |deal for uniformly distributed data

e Supports set-theoretic operations

* Spatial data (e.g., line segment data) is rarely uniformly
distributed

A

A
%

f
/
-

Copyright © 2008 by Hanan Samet

hi35
QUADTREES

« Hierarchical variab_le_ resolution data structure based on
regular decomposition

« Many different decomposition schemes and applicable
to different data types:

points

lines

regions

rectangles

surfaces

volumes

higher dimensions including time

« changes meaning of nearest
a. nearest in time, OR
b. nearest in distance

Nk =

« Can handle both raster and vector data as just a spatial
index

« Shape is usually independent of order of inserting data
« Ex: region quadtree

« A decomposition into blocks
— not necessarily a tree!

\,

Copyright © 2008 by Hanan Samet

11

hi36
REGION QUADTREE

* Repeatedly subdivide until obtain homogeneous region
« For a binary image (BLACK = 1 and WHITE = 0)

- Can also use for multicolored data (e.g., a landuse
class map associating colors with crops)

« Can also define data structure for grayscale images

A collection of maximal blocks of size power of two
and placed at predetermined positions
1. could implement as a list of blocks each of which
has a unique pair of numbers:

« concatenate sequence of 2 bit codes correspond-
ing to the path from the root to the block’s node

- the level of the block’s node
2. does not have to be implemented as a tree
* tree good for logarithmic access

« A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

37|38 N 0
39(40

57|58
59|60

ala|lm|lo|lo|lo|o|lo
alalala|lo|lo|o|lo
aflalalala|w oo
o|la|a|a|la|a]|olo
olo|=|=|=|-]|o|lo

o|lojojo|jo|o|o|O
o|lolojo|jlo|o|o|o
ololm|a|la|m|oOo|lO

37 383940 57 5859 60

Copyright © 2008 by Hanan Samet 12

bg7
SPACE REQUIREMENTS

1. Rationale for using quadtrees/octrees is not so much
for saving space but for saving execution time

2. Execution time of standard image processing
algorithms that are based on traversing the entire
image and performing a computation at each image
element is proportional to the number of blocks in the
decomposition of the image rather than their size

» aggregation of space leads directly to execution
time savings as the aggregate (i.e., block) is visited
just once instead of once for each image element
(i.e., pixel, voxel) in the aggregate (e.g., connected
component labeling)

3. If want to save space, then, in general, statistical
image compression methods are superior

« drawback: statistical methods are not progressive
as need to transmit the entire image whereas
quadtrees lend themselves to progressive
approximation

* quadtrees, though, do achieve compression as a
result of use of common subexpression elimination
techniques

a. e.g., checkerboard image
b. see also vector quantization
4. Sensitive to positioning of the origin of the
decomposition

« for an n x nimage, the optimal positioning requires
an O(nzlog,n) dynamic programming algorithm
(Li, Grosky, and Jain)

Copyright © 2008 by Hanan Samet

O bgs O
DIMENSION REDUCTION rgzrhb

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

« implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

* the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a.region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

* in contrast with quadrupling in the array representation

« for a region octree the space requirements quadruple
as the resolution doubles

* ex. :
array region quadtree

» easy to see dependence on perimeter as decomposition
only takes place on the boundary as the resolution
increases

Copyright © 2008 by Hanan Samet

hi37
PYRAMID

* Internal nodes contain summary of information in
nodes below them

« Useful for avoiding inspecting nodes where there could
be no relevant information

c3 c6

H ci @ c4
c2 c5
7

() {c1,c2,c3,c4,c5,c6}

{c1,c2,c3,
c4,c5,c6}

{6} | Ofc2,c3,c6) (O {c2,c3,c4,c5) O

HENpEpNE~NEEIIRIIRIINONEEN &\‘i.l

lIR=R7 = A L =

Copyright © 2008 by Hanan Samet

hi38
QUADTREES VS. PYRAMIDS

« Quadtrees are good for location-based queries
1. e.g., what is at location x?

2. not good if looking for a particular feature as have to
examine every block or location asking “are you the
one | am looking for?”

« Pyramid is good for feature-based queries — e.g.,

1. does wheat exist in region x?
- if wheat does not appear at the root node, then
impossible to find it in the rest of the structure and
the search can cease

2. report all crops in region x — just look at the root

3. select all locations where wheat is grown

 only descend node if there is possibility that wheat is
in one of its four sons — implies little wasted work

« Ex: truncated pyramid where 4 identically-colored sons

are merged
7
A O {c1,c2,c3,c4,c5,c6}
{c1,c2,c3,
Q c4,c5,c6}
/ \ 6y L1 Ofc2,e38,6) (O {c2,c3,c4,c5 O
AN

Z2HRIIRIIRIIBONII RN N () [

: c2,c3,c5 c1,c2,c3,c5
ot Nt 22 TIN }
VA c3 . c6 T T J T

« Can represent as a list of leaf and nonleaf blocks (e.g.,
as a linear quadtree)

Copyright © 2008 by Hanan Samet

' PR QUADTREE (Orenstein) elrlelslaalzld P9 O

1. Regular decomposition point representation

2. Decomposition occurs whenever a block contains more
than one point

3. Useful when the domain of data points is not discrete
but finite

4. Maximum level of decomposition depends on the
minimum separation between two points

« if two points are very close, then decomposition can be
very deep
» can be overcome by viewing blocks as buckets with

capacity ¢ and only decomposing the block when it
contains more than c¢ points

Ex:c=1
(0,100) (100,100)
(62,77)
Toronto
(]
(]
(82,65)
Buffalo
(5,45) (35,42)
Denver .(Chlcago
(27,35).
Omaha
(85,[L5)
Atlanta
[)
@®(52,10) (90,9
Mobile Miami| @
(0,0) (100,0)

Copyright © 2008 by Hanan Samet

saupenb Hd--/¥0-2¥0

~ REGION SEARCH slalslal1) hp10 C

e Ex: Find all points within radius r of point A

e Use of quadtree results in pruning the search space

¢ |f a quadrant subdivision point p lies in a region /, then
search the quadrants of p specified by /

SE 6. NE 11. All but SW
SE, SW 7. NE, NW 12. All but SE
SW 8. NW 13. All

SE, NE 9. All but NW
SW,NW (0. Allbut NE)

bl el A

Copyright 2008 by Hanan Samet

O FINDING THE NEAREST OBJECT hptt

« Ex: find the nearest object to P

12.E 8 7 .06
13 9 1 45
o | (ragl
10 115{/
new F
oF

» Assume PR quadtree for points (i.e., at most one point
per block)

« Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

« Algorithm:

1. start at block 2 and compute distance to p from A

* |f F was moved, a better order would have started with

block 11, the southern neighbor of 1, as it is closest
Copyright © 2008 by Hanan Samet

17

hp1ib
INCREMENTAL NEAREST NEIGHBORS P

(HJATASON/SAMET)
* Motivation

1. often don't know in advance how many neighbors
will need

2. e.g., want nearest city to Chicago with population > 1
million

* Several approaches

1. guess some area range around Chicago and check
populations of cities in range

* if find a city with population > 1 million, must
make sure that there are no other cities that are
closer with population > 1 million

* inefficient as have to guess size of area to search

* problem with guessing is we may choose too
small a region or too large a region

a. if size too small, area may not contain any
cities with right population and need to
expand the search region

b. if size too large, may be examining many
cities needlessly

2. sort all the cities by distance from Chicago

* impractical as we need to re-sort them each time
pose a similar query with respect to another city

* also sorting is overkill when only need first few
neighbors

3. find k closest neighbors and check population
condition

Copyright © 2008 by Hanan Samet

hp1

MECHANICS OF INCREMENTAL NEAREST NEIGHBOR
ALGORITHM

* Make use of a search hierarchy (e.g., tree) where
1. objects at lowest level

2. object approximations are at next level (e.g.,
bounding boxes in an R-tree)

3. nonleaf nodes in a tree-based index

* Traverse search hierarchy in a best-first manner similar
to A*-algorithm instead of more traditional depth-first or
breadth-first manners

1. at each step, visit element with smallest distance
from query object among all unvisited elements in
the search hierarchy

* i.e., all unvisited elements whose parents have
been visited

2. use a global list of elements, organized by their
distance from query object

* use a priority queue as it supports necessary
insert and delete minimum operations

* ties in distance: priority to lower type numbers

* if still tied, priority to elements deeper in search
hierarchy

Copyright © 2008 by Hanan Samet

1c

hp11d
INCREMENTAL NEAREST NEIGHBOR ALGORITHM

Algorithm:
INCNEAREST(q, S, T)
1. Q €< NEWPRIORITYQUEUE()

2. e, < root of the search hierarchy induced by g, S,
and T

3. ENQUEUE(Q, e, 0)

4. while not ISEMPTY(Q) do

5. e, € DEQUEUE(Q)

6. if t=0then/* e,is an object */

7. Report e, as the next nearest object
8. else

9. for each child element e, of e, do
10. ENQUEUE(Q, e, d,(q, e,)

3. Lines 1-3 initialize priority queue with root
4. In main loop take element g, closest to q off the queue

* report g, as next nearest object if g, is an object

» otherwise, insert child elements of e, into priority
queue

Copyright © 2008 by Hanan Samet

O 6 21 ¢cd32 ()
PM1 QUADTREE r

_‘
(op

« Vertex-based (one vertex per block)

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2008 by Hanan Samet

18

") MX-CIF QUADTREE (Kedem) hp14)

1. Collections of small rectangles for VLSI applications

2. Each rectangle is associated with its minimum
enclosing quadtiree block

3. Like hashing: quadtree blocks serve as hash buckets

4. Collision = more than one rectangle in a block

e resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

o B 4 F
! +-|+|+
' B 3| TE
T " — c 0
| 6 n
I
nl .

A {2,6,7,8,9,10}

D {11}

E {3,4,5} F {12}

Copyright © 2008 by Hanan Samet

24

Loose Quadtree (Octree)/Cover Fieldtree

® Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

B Instead, it depends on the position of the centroid of o and often

Consi.derably larger thaq 0 0 | e
W Solution: expand size of space M=
spanned by each quadtree block of ' B g E -
width w by expansion factor p (p > 0)] C
so expanded block is of width (1 + p)w - N -
1. p=0.3 i
2 p=1.0 d i)
B Maximum w (i.e., minimum depth of 10 Dill &
minimum enclosing quadtree block) is — [1-24
a function of p and radius r of o and in- 2

dependent of position of centroid of o
QA

1. Range of possible ratios w/2r :
1/(1+p) -w/2r <2/p

2. For p > 1, restricting w and r g
to powers of 2, w/2r takes on at
most 2 values and usually just 1

Copyright 2008 by Hanan Samet

O B} O D{}

2

'I'III'

00 Ct=57

() t7-8-+6}

E
1 00 0O @ 0O ¢

{24} [B0 OB I 0] CIe 10T I LI

T3 B @ 8 (0] (1} (12)

Partition Fieldtree

B Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

B Subdivision rule guarantees that width of minimum enclosing quadtree
block for rectangle o is bounded by 8 times the maximum extent r of o

B Same ratio is obtained for the
loose quadtree (octree)/cover field-
tree when p =1/4, and thus partition
fieldtree is superior to the cover field-
tree when p <1/4

B Summary: cover fieldtree expands r
the width of the quadtree blocks while
the partition fieldtree shifts the posi-
tions of their centroids

O] [

Copyright 2008 by Hanan Samet

sf2

HIERARCHICAL RECTANGULAR DECOMPOSITION
« Similar to triangular decomposition

« Good when data points are the vertices of a
rectangular grid

« Drawback is absence of continuity between adjacent
patches of unequal width (termed the alignment
problem)

« Overcoming the presence of cracks

1. use the interpolated point instead of the true point
(Barrera and Hinjosa)

2. triangulate the squares (Von Herzen and Barr)

 can split into 2, 4, or 8 triangles depending on how
many lines are drawn through the midpoint

« if split into 2 triangles, then cracks still remain
* no cracks if split into 4 or 8 triangles

Copyright © 2008 by Hanan Samet

25

O sf3 O
RESTRICTED QUADTREE (VON HERZEN/BARR)

 All 4-adjacent blocks are either of equal size or of ratio 2:1

Note: also used in finite element analysis to adptively
refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2008 by Hanan Samet 26

sf4
PROPERTY SPHERES (FEKETE)
« Approximation of spherical data
« Uses icosahedron which is a Platonic solid
1. 20 faces—each is a regular triangle

2. largest possible regular polyhedron

Copyright © 2008 by Hanan Samet

27

sf5

ALTERNATIVE SPHERICAL APPROXIMATIONS

* Could use other Platonic solids

1. all have faces that are regular polygons
« tetrahedron: 4 equilateral triangular faces
* hexahedron: 6 square faces
« octahedron: 8 equilateral triangular faces
« dodecahedron: 12 pentagonal faces

2. octahedron is nice for modeling the globe

« it can be aligned so that the poles are at opposite
vertices

 the prime meridian and the equator intersect at
another vertex

« one subdivision line of each face is parallel to the
equator

« Decompose on the basis of latitude and longitude
values

1. not so good if want a partition into units of equal
area as great problems around the poles

2. project sphere onto plane using Lambert’s
cylindrical projection which is locally area preserving

* Instead of approximating sphere with the solids,
project the faces of the solids on the sphere (Scott)

1. all edges become sub-arcs of a great circle

2. use regular decomposition on triangular, square, or
pentagonal spherical surface patches

Copyright © 2008 by Hanan Samet

28

hi60
OCTREES

1. Interior (voxels)
 analogous to region quadtree
« approximate object by aggregating similar voxels

« good for medical images but not for objects with
planar faces

Ex:
A
14 15
1 /12
B
910) 1234 31415
56 13
1 2
56 7 8 9 101112
2. Boundary
 adaptation of PM quadtree to three-dimensional
data
« decompose until each block contains
a. one face

b. more than one face but all meet at same edge

c. more than one edge but all meet at same
vertex

« impose a spatial index on a boundary model
(BRep)

Copyright © 2008 by Hanan Samet

29

hi39
EXAMPLE QUADTREE-BASED QUERY

« Query: find all cities with population in excess of 5,000 in
wheat growing regions within 10 miles of the Mississippi
River

1. assume river is a linear feature

* use aline map
 could be a region if asked for sandbars in the river

2. region map for the wheat
3. assume cities are points

 point map for cities
« could be region is asked for high income areas

« Combines spatial and non-spatial (i.e., attribute) data

« Many possible execution plans - e.g.,

compute buffer or corridor around river

extract wheat area

intersect 1 with 2

intersect city map with 3

retrieve value of population attribute for cities in 4 from
the nonspatial database (e.g., relational)

Al e

* Regular decomposition hierarchical data structures such
as the quadiree

1. all maps are in registration

« all blocks are in the same positions
 not true for R+-trees and BSP trees
« disjoint decomposition of space - unlike R-tree

2. can perform set-theoretic operations on different
feature types (e.g., 3 and 4)

Copyright © 2008 by Hanan Samet

FURTHER READING rf1

1. F. Brabec and H. Samet, Client-based spatial browsing on the
world wide web. |EEE Internet Computing, 11(1):52-59,
Jan/Feb 2007.

2. H. Samet, Foundations of Multidimensional and Metric Data
Structures, Morgan-Kaufmann, San Francisco, 2006.
[http://www.cs.umd.edu/~hjs/multidimensional-book—flyer.pdf]

3. H. Samet, Applications of Spatial Data Structures: Computer
Graphics, Image Processing, and GIS, Addison-Wesley,
Reading, MA, 1990.

4. H. Samet, Design and Analysis of Spatial Data Structures,
Addison-Wesley, Reading, MA, 1990.

5. Spatial Data Applets at http://www.cs.umd.edu/~hjs/quadtree

Copyright (c) 2008 by Hanan Samet

' ®
LN ‘ MORGAN KAUFMANN PUBLISHERS

“ The field of multidimensional and metric data structures is

Foundations of . ' large and growing very quickly. Here, for the first time,
Multidimensional ~- is a thorough treatment of multidimensional point data,
“\and s object and image-based object representations, intervals
and small rectangles, high-dimensional datasets, as well as datasets
for which we only know that they reside in a metric space.

-

“and
Metric Data Strucf-_fures%

ey

The book includes a thorough introduction; a comprehensive survey of
multidimensional (including spatial) and metric data structures and
algorithms; and implementation details for the most useful data structures.
Along with the hundreds of worked exercises and hundreds of illustrations,
the result is an excellent and valuable reference tool for professionals in
many areas, including computer graphics and visualization, databases,
geographic information systems (GIS), and spatial databases, game
programming, image processing and computer vision, pattern recognition,
solid modelling and computational geometry, similarity retrieval and multimedia databases, and VLSI design,
and search aspects of bioinformatics.

Features

0 First comprehensive work on multidimensional and metric data structures available, a thorough and
authoritative treatment.

0 An algorithmic rather than mathematical approach, with a liberal use of examples that allows the readers to
easily see the possible implementation and use.

0 Each section includes a large number of exercises and solutions to self-test and confirm the reader's
understanding and suggest future directions.

0 Written by a well-known authority in the area of multidimensional (including spatial) data structures who
has made many significant contributions to the field.

Hanan Samet is the dean of "spatial indexing"... This book is encyclopedic... this book will be invaluable for those of us who struggle with
spatial data, scientific datasets, graphics, vision problems involving volumetric queries, or with higher dimensional datasets common in
data mining.

- From the foreword by Jim Gray, Microsoft Research

Samet's book on multidimensional and metric data structures is the most complete and thorough presentation on this topic. It has broad
coverage of material from computational geometry, databases, graphics, GIS, and similarity retrieval literature. Written by the leading
authority on hierarchical spatial representations, this book is a "must have" for all instructor, researches, and developers working and
teaching in these areas.

- Dinesh Manocha, University of North Carolina at Chapel Hill

To summarize, this book is excellent! It’s a very comprehensive survey of spatial and multidimensional data structures and algorithms,
which is badly needed. The breadth and depth of coverage is astounding and I would consider several parts of it required reading for real
time graphics and game developers.

- Bretton Wade, University of Washington and Microsoft Corp.

20% OF

U

M I«

MORGAN KAUFMANN PUBLISHERS

an imprint of Elsevier

Chapter 1:
Multidimensional Point Data

Table of Contents and Topics

Chapter 3
Intervals and Small Rectangles

1.1 Introduction
1.2 Range Trees
1.3 Priority Search Trees
1.4 Quadtrees
1.4.1 Point Quadtrees
1.4.2 Trie-Based Quadtree
1.4.3 Comparison of Point and Trie-Based
Quadtrees
1.5 K-d Trees
1.5.1 Point K-d Trees
1.5.2 Trie-Based K-d Trees
1.5.3 Conjugation Tree
1.6 One-Dimensional Orderings
1.7 Bucket Methods
1.7.1 Tree Directory Methods (K-d-B-Tree,
Hybrid Tree, LSD Tree, hB-Tree, K-d-B-Trie, BV-
Tree)
1.7.2 Grid Directory Methods (Grid File,
EXCELL, Linear Hashing, Spiral Hashing)
1.7.3 Storage Utilization
1.8 PK-Tree
1.9 Conclusion

Chapter 2
Object-based and Image-based Image
Representations

3.1 Plane-Sweep Methods and the Rectangle
Intersection Problem

3.1.1 Segment Tree

3.1.2 Interval Tree

3.1.3 Priority Search Tree

3.1.4 Alternative Solutions and Related

Problems
3.2 Plane-sweep Methods and the Measure Problem
3.3 Point-Based Methods

3.3.1 Representative Points

3.3.2 Collections of Representative Points

3.3.3 LSD Tree

3.3.4 Summary
3.4 Area-Based Methods

3.4.1 MX-CIF Quadtree

3.4.2 Alternatives to the MX-CIF Quadtree
(HV/VH Tree)

3.4.3 Multiple Quadtree Block Representations

Chapter 4
High-Dimensional Data

2.1 Interior-Based Representations
2.1.1 Unit-Size Cells
2.1.2 Blocks (Medial Axis Transform, Region
Quadtree and Octree, Bintree, X-Y Tree, Treemap,
Puzzletree)
2.1.3 Nonorthogonal Blocks (BSP Tree,
Layered DAG)
2.1.4 Arbitrary Objects (Loose Octree, Field
Tree, PMR Quadtree)
2.1.5 Hierarchical Interior-Based
Representations (Pyramid, R-Tree, Hilbert R-
tree, R*-Tree, Packed R-Tree,R+-Tree, Cell
Tree, Bulk Loading)
2.2 Boundary-Based Representations
2.2.1 The Boundary Model (CSG,BREP,
Winged Edge, Quad Edge,Lath, Voronoi
Diagram, Delaunay Triangulation, Tetrahedra,
Triangle Table, Corner Table
2.2.2 Image-Based Boundary Representations
(PM Quadtree and Octree, Adaptively
Sampled Distance Field)
2.2.3 Object-based Boundary Representation
(LOD, Strip Tree, Simplification Methods)
2.2.4 Surface-Based Boundary Representations
(TIN)
2.3 Difference-Based Compaction Methods
2.3.1 Runlength Encoding
2.3.2 Chain Code
2.3.3 Vertex Representation
2.4 Historical Overview

4.1 Best-First Incremental Nearest Neighbor
Finding (Ranking)
4.1.1 Motivation
4.1.2 Search Hierarchy
4.1.3 Algorithm
4.1.4 Duplicate Objects
4.1.5 Spatial Networks
4.1.6 Algorithm Extensions (Farthest Neighbor,
Skylines)
4.1.7 Related Work
4.2 The Depth-First K-Nearest Neighbor Algorithm
4.2.1 Basic Algorithm
4.2.2 Pruning Rules
4.2.3 Effects of Clustering Methods on Pruning
4.2.4 Ordering the Processing of the Elements
of the Active List
4.2.5 Improved Algorithm
4.2.6 Incorporating MaxNearestDist in a Best-
First Algorithm
4.2.7 Example
4.2.8 Comparison
4.3 Approximate Nearest Neighbor Finding
4.4 Multidimensional Indexing Methods
4.4.1 X-Tree
4.4.2 Bounding Sphere Methods: Sphere Tree,
SS-Tree, Balltree, and SR-Tree
4.4.3 Increasing the Fanout: TV-Tree, Hybrid
Tree, and A-Tree
4.4.4 Methods Based on the Voronoi Diagram:
OS-Tree
4.4.5 Approximate Voronoi Diagram (AVD)
4.4.6 Avoiding Overlapping All of the Leaf
Blocks
4.4.77 Pyramid Technique
4.4.8 Sequential Scan Methods (VA-File, 1Q-
Tree,VA+-File)

4.5 Distance-Based Indexing Methods
4.5.1 Distance Metric and Search Pruning
4.5.2 Ball Partitioning Methods (VP-Tree,
MVP-Tree)
4.5.3 Generalized Hyperplane Partitioning
Methods (GH-Tree, GNAT, MB-Tree)
4.5.4 M-Tree
4.5.5 Sa-Tree
4.5.6 kNN Graph
4.5.7 Distance Matrix Methods
4.5.8 SASH - Indexing Without Using the
Triangle Inequality
4.6 Dimension-Reduction Methods
4.6.1 Searching in the Dimensionally-
Reduced Space
4.6.2 Using Only One Dimension
4.6.3 Representative Point Methods
4.6.4 Transformation into a Different and
Smaller Feature Set (SVD,DFT)
4.6.5 Summary
4.7 Embedding Methods
4.7.1 Introduction
4.7.2 Lipschitz Embeddings
4.7.3 FastMap
4.7.4 Locality Sensitive Hashing (LSH)
Appendix 1: Overview of B-Tbrees
Appendix 2: Linear Hashing
Appendix 3: Spiral Hashing
Appendix 4: Description of Pseudo-Code
Language
Solutions to Exercises
Bibliography
Name and Credit Index
Index
Keyword Index

