
Translation Validation: Automatically Proving the
Correctness of Translations Involving Optimized Code

Hanan Samet

http://www.cs.umd.edu/˜hjs

hjs@cs.umd.edu

Department of Computer Science

University of Maryland

College Park, MD 20742, USA

http://www.cs.umd.edu/˜hjs/pubs/compilers/CS-TR-75- 498.pdf

http://www.cs.umd.edu/˜hjs/slides/translation-valid ation.pdf

All text in blue can be clicked to get more information
Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://www.cs.umd.edu/~hjs/slides/translation-validation.pdf

Compiler Testing (Now Known as Translation Validation
and Proof-Carrying Code)

Definition: a means for proving for a given compiler (or any program
translation procedure) for a high level language H and a low level language
L that a program written in H is successfully translated to L

Motivation is desire to prove that optimizations performed during the
translation process are correct
1. Often, optimizations are heuristics
2. Optimizations could be performed by simply peering over the code

Proof procedure should be independent of the translation process (e.g.,
compiler)

Notion of correctness must be defined carefully

Need a representation that reflects properties of both the high and low
level language programs. Must identify:
1. Critical semantic properties of high level language
2. Interrelationship to instruction set of computer executing the resulting

translation

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Prior Work in Program Verification

We are Interested in proving that programs are correctly translated

Different from proving that programs are correct

Different from showing that program is correct for a given input(s)

Historically, attempts have been based on use of assertions about the
intent of the program which are then proved to hold (Floyd,King)

Difficulties include:
1. Specification of the assertions
2. How to allow for possibility that assertions are inadequate to specify all

the effects of the program in question

No need for any knowledge about purpose of program to be translated
1. Many possible algorithms for sorting (e.g., Quicksort, Shellsort,

Insertion Sort, etc.)
2. To prove equivalence of any two of these algorithms, we must

demonstrate that they have identical input/output pairs
3. Conventional proof systems attempt to show that the algorithms yield

identical results for all possible inputs
4. Proving equivalence of different algorithms is known to be generally

impossible by use of halting problem-like arguments
Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Our Approach

In order to avoid unsolvability problem, need to be more precise on the
definition of equivalence

By equivalence we mean that two programs must be capable of being
proved to be structurally equivalent (termed “syntactic correspondence”)

Alternatively, must have identical execution sequences
Must test same conditions except for certain valid rearrangements of
computations

We prove correctness of the translation

Current realizations and efforts:
Originated as Compiler Testing by Samet in Ph.D. thesis in 1975

Certifying Compiler or Proof-Carrying Code by Necula and Lee in 1996

Rediscovered by Pnueli, Siegel, and Singerman in 1998 and termed it
Translation Validation and followed by Zuck, Pnueli, Fang, and
Goldberg in 2003
Acknowledgment of relationship to Samet’s work includes Blech,
Buttle, Gawkowski, Gregoire, Jourdan, Kundu, Leinenbach, Lerner,
Leroy, Pottier, Rideau, Shashidhar, Stepp, Stringer-Calvert, Tate,
Tatlock, Tristan, and Zimmerman

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://cseweb.ucsd.edu/classes/wi08/cse221/papers/necula96.pdf
http://link.springer.com/chapter/10.1007%2FBFb0054170
http://www.jucs.org/jucs_9_3/voc_a_methodology_for/Zuck_L.pdf
http://www.jucs.org/jucs_9_3/voc_a_methodology_for/Zuck_L.pdf

Alternative Approaches

One method is to prove that there does not exist a program which is
incorrectly translated by the compiler

Instead, we prove that for each program input to the translation process,
the translated version is equivalent to the original version
1. A proof must be generated for each input to the translation process
2. Advantage is that as long as compiler performs its job for each

program input to it, its correctness is of a secondary nature
3. Proof system can run as a postprocessing step to compilation
4. We have bootstrapped ourselves so that we can attribute an “effective

correctness to the compiler”
5. The proof process is independent of the compiler and thus proof

system also holds for other compilers from the same source and target
languages as well as some manual translations and optimizations

6. Identifies proof as belonging to the semantics of the high and low level
languages of the input and output rather than the translation process

A method that would prove a particular compiler correct is limited with
respect to the types of optimizations that it could handle as it would rely on
the identification of all possible optimizations a priori (e.g., LCOM0 and
LCOM4 of McCarthy)

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Historical Perspective I
1. McCarthy and Painter 1967: Proved correctness of an arithmetic

expression compiling algorithm

2. Milner 1971: Proposed “simulation” as a way to capture fact that two
programs realize the same algorithm but did not apply to compiler output

3. Kreisel 1971: Discusses notion of “checking” of programs and calls for
checking equivalence of programs through normalization transformations

4. Milner and Weyhrauch 1972: Present a machine-checked proof (using
LCF) of the correctness of McCarthy and Painter’s compiling algorithm

5. Samet 1972-1975: Proposed proving correctness of compilers by showing
source and target are equivalent and independent of the compiler

Notion of equivalence of of programs (termed “syntactic
correspondence”) similar to Milner’s notion of “simulation” of programs

6. Blum and Kannan 1989: Distinguish between verification and testing of
programs and proposed checking of programs as being in between

Checking: verifying that program returns a correct answer for each
input given to it rather than for all inputs
Samet 1972-1975: Originated application of checking to a compiler
and that the check is independent of the compiler
No mention or reference to the work of Samet

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.denizyuret.com/ref/mccarthy/mcpain.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.8519
http://www.cs.umd.edu/~hjs/pubs/compilers/archive/KreiselTR.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/archive/mi72-mil-wey.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://dl.acm.org/citation.cfm?id=73015&CFID=250586807&CFTOKEN=67370724

Historical Perspective II
Necula and Lee 1996 and Pnueli et al. 1998: certifying compiler
1. Necula and Lee 1996: Proof-carrying code: proof is part of certifying

compiler
Same as Samet when embed Samet’s check in the compiler
No mention or reference to the work of Samet

2. Pnueli et al. 1998: Translation validation: decouple compiler and proof
Same as Samet where proof is independent of compiler
No mention or reference to the work of Samet

Recent work acknowledging contributions of Samet
1. University of York in UK: Stringer-Calvert (1998) and Buttle (1998,

2001) who also mention the work of Pavey and Winsborrow (1995) for
the verification of a protection system for a nuclear power station

2. Germany: Zimmerman (2004, 2006), Leinenbach (2008), Gawkowski
(2008), Blech (2009), and Blech and Gregoire (2011)

3. France: Tristan (2008), Rideau and Leroy (2010), Jourdan, Pottier, and
Leroy (2012)

4. Belgium: Shashidhar (2008)
5. US: Kundu Tatlock, and Lerner (2009); Tate, Stepp, Tatlock, and

Lerner (2009,2011); Tatlock and Lerner (2010); Stepp, Tate, and
Lerner (2011)

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://cseweb.ucsd.edu/classes/wi08/cse221/papers/necula96.pdf
http://link.springer.com/chapter/10.1007%2FBFb0054170
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.3896
ftp://pisa.cs.york.ac.uk/reports/2001/YCST/04/YCST-2001-04.pdf
http://comjnl.oxfordjournals.org/content/36/7/654.full.pdf+html
http://www.springerlink.com/index/P546P071844UK4U2.pdf
http://scidok.sulb.uni-saarland.de/volltexte/2010/3240/pdf/Dissertation_6767_Lein_Dirk_2008.pdf
https://kluedo.ub.uni-kl.de/files/2168/Marek-Gawkowski-diss-25.11.2008.pdf
http://books.google.com/books?id=ExD3p7TWJ2kC
http://link.springer.com/content/pdf/10.1007%2Fs10703-010-0108-7
http://tel.archives-ouvertes.fr/docs/00/43/75/82/PDF/dissertation_english.pdf
http://www.springerlink.com/index/7031662n323108v1.pdf
http://pauillac.inria.fr/~xleroy/publi/validated-parser.pdf
http://pauillac.inria.fr/~xleroy/publi/validated-parser.pdf
https://lirias.kuleuven.be/handle/1979/1967
http://cseweb.ucsd.edu/~lerner/papers/pldi09-pec.html
http://cseweb.ucsd.edu/~lerner/papers/popl09.html
http://cseweb.ucsd.edu/~lerner/papers/popl09.html
http://cseweb.ucsd.edu/~lerner/papers/pldi10-xcert.html
http://cseweb.ucsd.edu/~lerner/papers/cav2011.pdf
http://cseweb.ucsd.edu/~lerner/papers/cav2011.pdf

Compiler Testing System Architecture

high level
language
program

representation
intermediate

symbolic
interpretation

pinpoint
errors

syntatic
transformations

language
program

representation
intermediate

low level

proof of
equivalence

end

TRUE

errors
correct

FALSE

Equivalence proof applies equivalence preserving transformations in an
attempt to reduce them to a common representation termed a normal form

Symbolic interpretation is different from:
1. symbolic execution where various cases of a high level language

program are tested by use of symbolic values for the parameters
2. decompilation as don’t return source high level program

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Example

High level language: LISP 1.6

Low level language: LAP (variant of DECsystem-10 assembly language)

Example function: intersection of two lists U,V

procedure INTERSECTION(U,V)

1 if NULL(U) then NIL
2 elseif MEMBER(CAR(U),V) then
3 CONS(CAR(U),INTERSECTION(CDR(U),V)
4 else INTERSECTION(CDR(U),V)
5 endif

Sample input/output: INTERSECTION(’(A B C),’(D C B)) = ’(B C)

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Flowchart of Conventional LAP Encoding

ENTER: R1=U
 R2=V

STACK <==R1
STACK <==R2

R1 CAR(R1)

R2 STACK(0)
R1 CDR(STACK(−1))
R1 INTERSECTION(R1,R2)

R1 CAR(STACK(−1))
R2 STACK(0)

R1 CDR(STACK(−1))
R1 INTERSECTION(R1,R2)

R1 XCONS(R1,R2)

STACK <== R1

STACK ==> R2

EQ(U, NIL)?

R1 MEMBER(R1, R2)

MEMBER(CAR(U), V)?
NO

YES

undo the first two stack operations
RETURN(R1)

YES

NO

END

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Example Optimized LAP Encoding

Obtained by hand optimization process

(CALL 2 (E INTERSECTION)) COMPUTE INTERSECTION(CDR(U),V)
(MOVE 2 0 12) LOAD ACC.2 WITH V
(MOVEM 1 0 12) SAVE INTERSECTION(CDR(U),V)
(HLRZ@ 1 −1 12) LOAD ACC.1 WITH CAR(U)
(CALL 2(E MEMBER)) COMPUTE MEMBER(CAR(U),V)
(EXCH 1 0 12) SAVE MEMBER(CAR(U),V)
 AND LOAD ACC.1 WITH
 INTERSECTION(CDR(U),V)
(HLRZ@ 2 −1 12) LOAD ACC.2 WITH CAR(U)
(SKIPE 0 0 12)	 SKIP IF MEMBER(CAR(U),V)
 IS NOT TRUE
(CALL 2(E XCONS)) COMPUTE CONS(CAR(U)),
 INTERSECTION(CDR(U),V)
(SUB 12(C 0 0 2 2)) UNDO THE FIRST TWO PUSH OPERATIONS

TAG1 (POPJ 12) RETURN

INTERSECTION (JUMPE 1 TAG 1) JUMP TO TAG1 IF U IS NIL

(PUSH 12 1) SAVE U ON THE STACK

(PUSH 12 2) SAVE V ON THE STACK

(HRRZ 1 0 1) LOAD ACC.1 WITH CDR(U)

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Flowchart of Optimized LAP Encoding

ENTER: R1=U
 R2=V

R1 XCONS(R1,R2)

R1 CAR(STACK(−1))
R1 MEMBER(R1,R2)

R1 CDR(R1)
R1 INTERSECTION(R1,R2)

R1 STACK(0)
R2 CAR(STACK(−1))

R2 STACK(0)
STACK(0) R1

EQ(U, NIL)?

YES

NO

END

MEMBER(CAR(U), V)?
NO

YES

STACK <==R1
STACK <==R2

undo the first two stack operations

RETURN(R1)

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Another Example

REVERSE function that reverses a list L

Sample input/output: REVERSE(’(A B C)) = ’(C B A)

Conventional version is recursive and slow due to use of APPEND

Use iterative (tail recursive) version REVERS1 with two arguments and
vary slightly so that the result is accumulated in the first argument which
enables some interesting optimizations

Initially invoked with REVERS1(NIL,L)

procedure REVERS1(RL,L)

1 if NULL(L) then RL
2 else REVERS1(CONS(CAR(L),RL),CDR(L))
3 endif

A number of possible encodings
1. Generated by compiler
2. Generated by hand optimization

Uses loop shortcutting
Exploits semantics of instructions that accomplish several tasks
simultaneously (e.g., SKIPN)

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Conventional LAP Encoding

undo the first two stack operations
RETURN(R1)

END

ENTER: R1=RL
 R2=L

STACK <==R1
STACK <==R2

R2 STACK(−1)
R1 CAR(STACK(0))
R1 CONS(R1,R2)
R2 CDR(STACK(0))
R1 REVERS1(R1,R2)

YES

NO
EQ(L, NIL)? PCI (PUSH 12 I)

PC2 (PUSH 12 2)
PC3 (JUMPN 2 TAG2)
PC4 (JRST 0 TAGI)
TAG2 (MOVE 2 -I 12)
PC6 (HLRZ@ I 0 12)
 (CALL 2 (E CONS))
 (HRRZ@ 2 0 12)
PC9 (CALL 2 (E REVERS1))
TAG1 (SUB 12 (C 0 0 2 2))
PC11 (POPJ 12)

save RL on the stack
save L on the stack
jump to TAG2 if L is not NIL
jump to TAG I
load accumulator 2 with RL
load accumulator 1 with CAR(L)
compute CONS(CAR(L),RL)
load accumulator 2 with CDR(L)
compute REVERSI(CONS(CAR(L),RL),CDR(L))
undo the first two push operations
return

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Hand-optimized LAP Encoding

ENTER: R1=RL
 R2=L

R2 CAR(R3)
R1 XCONS(R1,R2)
R3 CDR(R3)

END

R3=R2

YES

NO
EQ(L, NIL)?

YES

EQ(CDR(L), NIL)?
NO

RETURN(R1)

load accumulator 3 with L and skip if not NIL
return NIL
load accumulator 2 with CAR(L)
compute CONS (CAR(L),RL)
load accumulator 3 with CDR(L)
if CDR(L) is not NIL then compute
REVERS I (CONS (CAR (L), RL), CDR (L))
return

(SKIPN 3 2)
(POPJ 12)
(HLRZ 2 0 3)
(CALL 2 (E XCONS))
(HRRZ 3 0 3}
(JUMPN 3 REV)

(POPJ 12)

REV

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Intermediate Representation (INTERSECTION)

Use a prefix function representation

(EQ U NIL)

(EQ (MEMBER (CAR U) V) NIL)

(INTERSECTION (CDR U) V) (CONS (CAR U) (INTERSECTION (CDR U) V))

U

Source program

(EQ U NIL)

NIL (EQ (MEMBER (CAR U) V) NIL)

(INTERSECTION (CDR U) V) (CONS (CAR U) (INTERSECTION (CDR U) V))

Object program

Object program: obtained by symbolic interpretation

Differences
1. U and NIL may be used interchangeably
2. The symbolic intermediate representation does not indicate other

differences that are present
INTERSECTION(CDR(U),V) is only calculated once in the object
program while the source program calls for calculating it twice
INTERSECTION(CDR(U),V) is calculated before
MEMBER(CAR(U),V) in the object program while the source
program calls for its computation after MEMBER(CAR(U),V)

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Example Instruction Descriptions

FEXPR HLRZ(ARGS);
LOADSTORE(ACFIELD(ARGS),

EXTEXDZERO(

LEFTCONTENTS(
EFFECTADDRESS(ARGS)));

HLRZ

POPJ

BEGIN
NEW LAB;
LAB RIGHTCONTENTS(

END

UNCONDITIONALJUMP(LAB);
SUBX(<ACFIELD(ARGS),X11>);
DEALLOCATESTACKENTRY(ACFIELD(ARGS));

RIGHTCONTENTS(ACFIELD(ARGS)));

FEXR POPJ(ARGS);

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Example Instruction Descriptions

TST CHECKTEST(CONTENTS(ACFIELD(ARGS)),ZEROCNST);

JUMPE
FEXPR JUMPE(ARGS);
BEGIN

NEW TST;

IF TST THEN RETURN(
IF CDR (TST) THEN

UNCONDITIONALJUMP(EFFECTADDRESS(ARGS))

ELSE NEXTINSTRUCTION());

TRUEPREDICATE():
CONDITIONALJUMP(ARGS,FUNCTION JUMPTRUE);
CONDITIONALJUMP(ARGS,FUNCTION JUMPFALSE);
END;

FEXPR JUMPTRUE(ARGS);
UNCONDITIONALJUMP(EFFECTADDRESS(ARGS));

FEXPR JUMPFALSE(ARGS);
NEXTINSTRUCTION();

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Proof Process

Must prove that no side-effect computations (e.g., an operation having the
effect of a RPLACA or RPLACD in LISP) can occur between the instance
of computation of INTERSECTION(CDR(U),V) and the time at which it is
instantiated

May need to perform flow analysis

Some conflicts are resolved through the use of an additional intermediate
representation that captures the instances of time at which the various
computations were performed

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Normal Form

Normal form in terms of a tree

CONCLUSION ALTERNATIVE

PREDICATE

Obtained through use of following axioms:
1. (P→A,A)⇐⇒wA
2. (T→A,B)⇐⇒A
3. (NIL→A,B)⇐⇒B
4. (P→T,NIL)⇐⇒P
5. (P→(P→A,B),C)⇐⇒(P→A,C)
6. (P→A,(P→B,C))⇐⇒(P→A,C)
7. ((P→Q,R)→A,B)⇐⇒(P→(Q→A,B),(R→A,B))
8. (P→(Q→A,B),(Q→C,D))⇐⇒(Q→(P→A,C),(P→B,D))

Based on McCarthy’s 1963 paper and shown by Samet in Information
Processing Letters 1978 to hold for both weak and strong equivalence
thereby not needing an additional pair of axioms

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://dspace.mit.edu/bitstream/handle/1721.1/6099/AIM-031.pdf?sequence=2
http://www.cs.umd.edu/~hjs/pubs/compilers/cannonical-form.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/cannonical-form.pdf

Distributive Law for Functions

Example:
procedure UNION(U,V)
if NULL(U) then NIL
else UNION(CDR(U),

if MEMBER(CAR(U),V) then V
else CONS(CAR(U),V))
endif

endif

(EQ U NIL)

V

(UNION (CDR U) V) (UNION (CDR U) (CONS (CAR U) V))

(EQ (MEMBER (CAR U) V) NIL)

Intermediate representation reflects factoring of MEMBER test

MEMBER is encountered at a higher level in the tree than CDR(U)

Make use of an additional intermediate representation which assigns
numbers to the original function representation so that as the distributive
law is applied, the relative order in which the various computations are
performed is not overlooked

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (44 (20 5)(42 (24 5) 6))

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Normal Form Algorithm

Algorithm has two phases:
1. Apply axioms 2, 3, and 7 along with the distributive law for functions,

and also bind variables to their proper values
2. (T→A,B)⇐⇒A
3. (NIL→A,B)⇐⇒B
7. ((P→Q,R)→A,B)⇐⇒(P→(Q→A,B),(R→A,B))

2. Apply axioms 2, 3, 5 and 6 to get rid of duplicate occurrences of
predicates as well as redundant computations

2. (T→A,B)⇐⇒A
3. (NIL→A,B)⇐⇒B
5. (P→(P→A,B),C)⇐⇒(P→A,C)
6. (P→A,(P→B,C))⇐⇒(P→A,C)

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Renumbering

Step 2 means that whenever two functions have identical computation
numbers, then they must have been computed simultaneously (i.e., with
the same input conditions and identical parameter bindings)

Useful for common subexpression elimination

Example

(EQ U NIL)

V

(UNION (CDR U) V) (UNION (CDR U) (CONS (CAR U) V))

(EQ (MEMBER (CAR U) V) NIL)

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (44 (20 5)(42 (24 5) 6))

44 is associated with two instances of UNION which yield different results
as the second argument is bound to V in the first case and to ’(CONS
(CAR U) V)’ in the second case
Solution is to renumber and in the process
also preserve the property that each compu-
tation has a number greater than the num-
bers associated with its predecessors and
less than those associated with its successors

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (48 (20 5) (46 (24 5) 6))

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Proof

Process:
1. Transform each of the intermediate representations into the other
2. Prove that each computation appearing in one of the representations

appears in the other representation and vice versa

Method:
1. Uniformly assign the computation numbers in one representation, say

B, to be higher than all of the numbers in the other representation, say
A, and then in increasing order, search B for matching instances of
computations appearing in A

2. Reverse the above process
3. Make liberal use of axioms 1, 2, 3, 5, and 6 as well as substitution of

equals for equals
4. Axiom 8 allows rearranging of condition tests if necessary
5. Make use of a sophisticated algorithm for proving equalities and

inequalities of instances of formulas with function application rather
than just constant symbols

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/efficient-online.pdf

Example Proof

INTERSECTION

(10 5 0)

(16 (14 (12 5) 6) 0)0

(20 (18 5) 6) (26 (12 5) (24 (22 5) 6))

source program

(28 5 0)

5 (38 (36 (34 5) 6) 0)

(32 (30 5) 6) (40 (34 5)(32 (30 5) 6))

object program

Must prove that (INTERSECTION (CDR U) V) can be computed
simultaneously and before the test (MEMBER (CAR U) V)

In other words, (20 (18 5) 6) and (24 (22 5) 6) will be shown to be matched
by (32 (30 5) 6)

Therefore, we prove that the act of computing (MEMBER (CAR U) V) can
be postponed to a point after computing (INTERSECTION (CDR U) V)

Same proof process is repeated with all computations in the object
program having computation numbers less than those in the source
program so that there are no computations performed in the object
program that do not appear in the source program

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

Applications

1. Postoptimization component of a compiler

2. Interactive optimization process where a user applies transformations

3. Correctness of bootstrapping process
Suppose have a LISP interpreter available and want a compiler
Write a compiler C in LISP and let the compiler translate itself yielding
C

′ written in assembly language

Proof system can be used to prove that C and C
′ are equivalent and

that they generate equivalent code
Same process can be used if C runs on machine A generating code
for machine B and now compilers on A and B are equivalent

4. Bootstrapping correctness must be treated with caution as different
machine architectures can cause problems with respect to different word
sizes, character formats, input-output primitives, etc.

5. Found use in verifying optimizations that result in improvements in runtime
behavior by reducing number of active pointers thereby increasing the
amount of storage that is garbage collected

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/code-optimization.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/code-optimization.pdf

Concluding Remarks

1. Challenge was handling EQ(A,B) implies EQ(F(A),F(B))
Uniform word problem (see Samet 1974, Samet 1977 TR, Downey et al.
1978, Samet 1980 IEEETC)

2. Adapt to other high level languages and architectures

3. Recursion is the only control flow mechanism
Interpret recursion as having taken place whenever symbolic interpre-
tation process encounters an instruction which has been encountered
previously along the same path (termed loop shortcutting)

4. Could handle GO in LISP by breaking up program into modules of intervals
having one entry point and several exit points

Branches which jump back anywhere within the interval other than the
entry point are interpreted as instances of loop shortcutting
Branches to points other than entry nodes in other intervals are also
interpreted as instances of loop shortcutting
Need a proof for each interval

5. Potential drawback is that intermediate representation in the form of a tree
with N conditions could grow as big as 2

N execution paths
But COND (if-then-else) of N conditions only has N + 1 execution paths

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

https://dspace.library.cornell.edu/handle/1813/6298
http://www.cs.umd.edu/~hjs/pubs/compilers/TR556-1974-version.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/TR556-umd-eq-ocr.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/downey78.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/downey78.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/efficient-online.pdf

Samet References (Click on Blue Titles for PDFs)

1. H. Samet. Equivalence and inequivalence of instances of formulas
(unpublished). Computer Science Department, Stanford University,
Stanford, CA, April 1974.

2. H. Samet. Automatically proving the correctness of translations involving
optimized code. PhD thesis, Computer Science Department, Stanford
University, Stanford, CA, May 1975. Also Technical Report -
CS-TR-75-498 (Warning pdf size-58MB).

3. H.Samet. Increasing the reliability of code generation. In Proceedings of
the Fourth International Conference on the Implementation Design of
Algorithmic Languages, pages 193–203, New York, June 1976.

4. H.Samet. Compiler testing via symbolic interpretation. In Proceedings of
the ACM 29th Annual Conference, pages 492–497, Houston, TX, October
1976.

5. H.Samet. Towards code optimization in LISP. In Proceedings of the 5th
International Conference on the Implementation and Design of Algorithmic
Languages, pages 362–374, Rennes, France, May 1977.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/TR556-1974-version.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/increasing.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/compiler-testing.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/imp_design.pdf

Samet References (Continued)

6. H.Samet. A normal form for compiler testing. In Proceedings of the
SIGART SIGPLAN Symposium on Artificial Intelligence and Programming
Languages, pages 155–162, Rochester, NY, Aug 1977. Also in SIGPLAN
NOTICES, August 1977 and in SIGART NEWSLETTER, August 1977.

7. H. Samet. Equivalence and inequivalence of instances of formulas.
Computer Science Technical Report TR–553, University of Maryland,
College Park, MD, August 1977.

8. H. Samet. Toward automatic debugging of compilers. In Proceedings of
the 5th International Joint Conference on Artificial Intelligence, page 379,
Cambridge, MA, August 1977.

9. H. Samet. A machine description facility for compiler testing. IEEE
Transactions on Software Engineering, 3(5):343–351, September 1977.
Also in Computing Reviews, 19(3):113–114, entry 32738 March 1978.

10. H. Samet. A new approach to evaluating code generation in a student
environment. In Information Processing 77, B. Gilchrist, ed., pages
661–665. North Holland, Toronto, Canada, 1977.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/normal-form.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/TR556-umd-eq-ocr.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/toward-automatic-debugging.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/a_machine.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/new-approach.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/new-approach.pdf

Samet References (Continued)

11. P. J. Downey, H. Samet and R. Sethi. Off-line and on-line algorithms for
deducing equalities. In Proceedings of the 5th ACM Symposium on
Principles of Programming Languages (POPL’78), A. V. Aho, S. N. Zilles,
and T. G. Szymanski, eds., pages 158–170, Tucson, AZ, January 1978.
Also in Computing Reviews, 20(4):157, entry 34427, April 1979.

12. H.Samet. A canonical form algorithm for proving equivalences of
conditional forms. Information Processing Letters, 7(2):103–106, February
1978.

13. H.Samet. Proving correctness of heuristically optimized code.
Communications of the ACM, 21(7):570–582, July 1978.

14. H.Samet. Efficient on-line proofs of equalities and inequalitiesof formulas.
IEEE Transactions on Computers, 29(1):28–32, January 1980.

15. H.Samet and L.Marcus. Purging in an equality data base. Information
Processing Letters, 10(2):89–95, March 1980.

16. H.Samet. Experience with software conversion. Software - Practice and
Experience, 11(10):1053–1069, 1981.

17. H. Samet. Code optimization considerations in list processing systems.
IEEE Transactions on Software Engineering, 8(2):107–112, March 1982.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/downey78.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/downey78.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/cannonical-form.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/cannonical-form.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/proving-correctness.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/efficient-online.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/efficient-online.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/purging.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/experience-software.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/code-optimization.pdf

Historical References

1. J. McCarthy. A basis for a mathemtical theory of computation. In Computer
Programming and Formal Systems, P. Braffort and D. Hershberg, eds.,
vol. 35, pages 33–70. North Holland, Amsterdam, The Netherlands, 1963.

2. J. McCarthy and J. Painter. Correctness of a compiler for arithmetic
expressions. In Mathematical Aspects of Computer Science, J. T.
Schwartz, ed., vol. 19 of Proceedings of Symposia in Applied
Mathematics, pages 33–41, American Mathematical Society, 1967.

3. R. Milner. An algebraic definition of simulation between programs. In
Proceedings of the 2nd International Joint Conference on Artificial
Intelligence, D. C. Cooper, ed., pages 481–489, London, United Kingdom,
September 1971.

4. G. Kreisel. II. Checking of computer programs: An example of
non-numerical computation. In Five Notes on the Application of Proof
Theory to Computer Science, pages 15–21. Technical Report No. 182,
Institute for Mathematical Studies in the Social Sciences, Stanford
University, Stanford, CA, December 1971.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://dspace.mit.edu/bitstream/handle/1721.1/6099/AIM-031.pdf?sequence=2
http://www.denizyuret.com/ref/mccarthy/mcpain.pdf
http://www.denizyuret.com/ref/mccarthy/mcpain.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.8519
http://www.cs.umd.edu/~hjs/pubs/compilers/archive/KreiselTR.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/archive/KreiselTR.pdf
http://suppes-corpus.stanford.edu/techreports/IMSSS_182.pdf
http://suppes-corpus.stanford.edu/techreports/IMSSS_182.pdf

Historical References (Continued)

5. R. Milner and R. Weyhrauch. Proving compiler correctness in a
mechanized logic. In Proceedings of 7th Annual Machine Intelligence
Workshop, B. Meltzer and D. Michie, eds., vol. 7 of Machine Intelligence,
pages 51–72, Edinburgh University Press, 1972.

6. D.B. Krafft and A.J. Demers. Determining logical dependency in a decision
procedure for equality. Computer Science Technical Report TR–81–458,
Cornell University, Ithaca, NY, April 1981.

7. M. Blum and S. Kannan. Designing programs that check their work. In
Proceedings of the 21st Annual ACM Symposium on the Theory of
Computing, pages 86–97, Seattle, May 1989.

8. M. Blum and S. Kannan. Designing programs that check their work.
Journal of the ACM, 42(1):269–291, January 1995.

9. D.J. Pavey and L.A. Winsborrow. Demonstrating equivalence of source
code and prom contents. The Computer Journal, 36(7):654–667, January
1993.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://www.cs.umd.edu/~hjs/pubs/compilers/archive/mi72-mil-wey.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/archive/mi72-mil-wey.pdf
https://dspace.library.cornell.edu/handle/1813/6298
https://dspace.library.cornell.edu/handle/1813/6298
http://dl.acm.org/citation.cfm?id=73015&CFID=250586807&CFTOKEN=67370724
http://dl.acm.org/citation.cfm?id=200880
http://comjnl.oxfordjournals.org/content/36/7/654.full.pdf+html
http://comjnl.oxfordjournals.org/content/36/7/654.full.pdf+html

Proof-Carrying Code References

1. G. C. Necula and P. Lee. Safe kernel extensions without run-time
checking. In Proceedings of the Second USENIX Symposium on
Operating Systems Design and Implementation (OSDI), K. Petersen and
W. Zwaenepoel, eds., pages 229–243, Seattle, WA, October 1996.

2. G. C. Necula and P. Lee. Proof-carrying code. Technical Report
CMU–CS–96–165, School of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, November 1996.

3. G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’97), P. Lee, F. Henglein, and N. D. Jones, eds., pages 106–119,
Paris, France, January 1997.

4. G. C. Necula. Translation validation for an optimizing compiler. In
Proceedings of the 2000 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), M. S. Lam, ed., pages
83–94, Vancouver, Canada, June 2000.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://cseweb.ucsd.edu/classes/wi08/cse221/papers/necula96.pdf
http://cseweb.ucsd.edu/classes/wi08/cse221/papers/necula96.pdf
http://www.utdallas.edu/~hamlen/Papers/necula96.pdf
http://dl.acm.org/citation.cfm?doid=263699.263712
http://dl.acm.org/citation.cfm?doid=349299.349314

Translation Validation References

1. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In
Proceedings of the 4th International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS98), Steffen B, ed., vol.
1384 of Springer-Verlag Lecture Notes in Computer Science, pages
151–166, Lisbon, Portugal, March 1998.

2. L. D. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A methodology for
the translation validation of optimizing compilers. Journal of Universal
Computer Science, 9(3):223–247, 2003.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://link.springer.com/chapter/10.1007%2FBFb0054170
http://www.jucs.org/jucs_9_3/voc_a_methodology_for/Zuck_L.pdf
http://www.jucs.org/jucs_9_3/voc_a_methodology_for/Zuck_L.pdf

References Acknowledging Samet’s Contributions

1. D. W. J. Stringer-Calvert. Mechanical verification of compiler correctness
PhD thesis, Department of Computer Science, University of York, York,
UK, March 1998.

2. D. L. Buttle. Verification of compiled code PhD thesis, Department of
Computer Science, University of York, York, UK, January 2001.

3. W. Zimmerman. On the correctness of transformations in compiler
back-ends. In Proceedings of the First International Symposium on the
Leveraging of Formal Methods, vol. 4313 of Springer-Verlag Lecture Notes
in Computer Science, pages 74–95, Paphos, Cyprus, October 2004.

4. Shashidhar. Efficient automatic verification of loop and data-flow
transformations by functional equivalence checking. PhD thesis,
Department of Computer Science, Katholieke Universiteit Leuven, Leuven,
Belgium, May 2008.

5. D. C. Leinenbach. Compiler verification in the context of pervasive system
verification. PhD thesis, Naturwissenschaftlich-Technische Fakultat I,
Saarlandes University, Saarbrucken, Germany, 2008.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.3896
ftp://pisa.cs.york.ac.uk/reports/2001/YCST/04/YCST-2001-04.pdf
http://www.springerlink.com/index/P546P071844UK4U2.pdf
http://www.springerlink.com/index/P546P071844UK4U2.pdf
https://lirias.kuleuven.be/handle/1979/1967
https://lirias.kuleuven.be/handle/1979/1967
http://scidok.sulb.uni-saarland.de/volltexte/2010/3240/pdf/Dissertation_6767_Lein_Dirk_2008.pdf
http://scidok.sulb.uni-saarland.de/volltexte/2010/3240/pdf/Dissertation_6767_Lein_Dirk_2008.pdf

References Acknowledging Samet (Continued)

6. M. J. Gawkowski. Formal framework for proof generating optimizers. PhD
thesis, Fachbereich Informatik, Kaiserslautern University, Kaiserslautern,
Germany, November 2008.

7. J.-O. Blech. Certifying system translations using higher order theorem
provers. PhD thesis, Fachbereich Informatik, Kaiserslautern University,
Kaiserslautern, Germany, 2009.

8. J.-O. Blech and B. Grégoire. Certifying compilers using higher-order
theorem provers as certificate checkers. Formal Methods in System
Design, 38(1):33–61, February 2011.

9. J.-B. Tristan. Formal verification of translation validators. PhD thesis,
Graduate School of Mathematical Science of Paris Diderot (Paris 7), Paris,
France, November 2009.

10. S. Rideau and X. Leroy. Validating register allocation and spilling. In
Proceedings of the 19th International Conference on Compiler
Construction (CC2010), R. Gupta, ed., vol. 6011 of Springer-Verlag
Lecture Notes in Computer Science, pages 86–97, Paphos, Cyprus,
March 2010.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

https://kluedo.ub.uni-kl.de/files/2168/Marek-Gawkowski-diss-25.11.2008.pdf
http://books.google.com/books?id=ExD3p7TWJ2kC
http://books.google.com/books?id=ExD3p7TWJ2kC
http://link.springer.com/content/pdf/10.1007%2Fs10703-010-0108-7
http://link.springer.com/content/pdf/10.1007%2Fs10703-010-0108-7
http://tel.archives-ouvertes.fr/docs/00/43/75/82/PDF/dissertation_english.pdf
http://www.springerlink.com/index/7031662n323108v1.pdf

References Acknowledging Samet (Continued)

11. J.-H. Jourdan, F. Pottier, and X. Leroy. Validating LR(1) parsers. In
Programming Languages and Systems–Proceedings of the 21st European
Symposium on Programming (ESOP12), H. Seidl, ed., vol. 7211 of
Springer-Verlag Lecture Notes in Computer Science, pages 397–416,
Tallinn, Estonia, March 2012.

12. R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: a new
approach to optimization. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’09), Z. Shao and B. C. Pierce, eds., pages 264–276, Savannah,
GA, January 2009.

13. S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct using
parameterized program equivalence. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), M. Hind and A. Diwan, eds., pages 327–337,
Dublin, Ireland, June 2009.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://pauillac.inria.fr/~xleroy/publi/validated-parser.pdf
http://cseweb.ucsd.edu/~lerner/papers/popl09.html
http://cseweb.ucsd.edu/~lerner/papers/popl09.html
http://cseweb.ucsd.edu/~lerner/papers/pldi09-pec.html
http://cseweb.ucsd.edu/~lerner/papers/pldi09-pec.html

References Acknowledging Samet (Continued)

14. M. Stepp, R. Tate, and S. Lerner. Equality-based translation validator for
LLVM. In Computer Architectures for Spatially Distributed Data,
G. Gopalakrishnan and S. Qadeer, eds., vol. 6806 of Springer-Verlag
Lecture Notes in Computer Science, pages 737–742, Snowbird, UT,
July 2011.

15. R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: a new
approach to optimization. Logical Methods in Computer Science, 7(1),
2011.

16. Z. Tatlock and S. Lerner. Bringing extensibility to verified compilers. In
Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), B. G. Zorn and A. Aiken,
eds., pages 111–121, Toronto, Canada, June 2010.

Copyright 2013: Hanan Samet Translation Validation: Automatically Proving the Correctness of Translations Involving Optimized Code

http://cseweb.ucsd.edu/~lerner/papers/cav2011.pdf
http://cseweb.ucsd.edu/~lerner/papers/cav2011.pdf
http://cseweb.ucsd.edu/~lerner/papers/lmcs11-eqsat.pdf
http://cseweb.ucsd.edu/~lerner/papers/lmcs11-eqsat.pdf
http://cseweb.ucsd.edu/~lerner/papers/pldi10-xcert.html

	Compiler Testing (Now Known as Translation Validation\ �egin {minipage}{1.0linewidth } vspace {-0.35cm} {small and Proof-Carrying Code)} end {minipage}
	Prior Work in Program Verification
	Our Approach
	Alternative Approaches
	Historical Perspective I
	Historical Perspective II
	Compiler Testing System Architecture
	Example
	Flowchart of Conventional LAP Encoding
	Example Optimized LAP Encoding
	Flowchart of Optimized LAP Encoding
	Another Example
	Conventional LAP Encoding
	Hand-optimized LAP Encoding
	Intermediate Representation (INTERSECTION)
	Example Instruction Descriptions
	Example Instruction Descriptions
	Proof Process
	Normal Form
	Distributive Law for Functions
	Normal Form Algorithm
	Renumbering
	Proof
	Example Proof
	Applications
	Concluding Remarks
	Samet References (Click on {cblue Blue} Titles for PDFs)
	Samet References (Continued)
	Samet References (Continued)
	Historical References
	Historical References (Continued)
	Proof-Carrying Code References
	Translation Validation References
	References Acknowledging Samet's Contributions
	References Acknowledging Samet (Continued)
	References Acknowledging Samet (Continued)
	References Acknowledging Samet (Continued)

