Chapter 9

Project 4: Virtual Memory

9.1 Introduction

The purpose of this project is to add paging to the GeekOS kernel. This will require many small, but difficult
changes to your project. More than any previous project, it will be important to implement one thing, test it
and then move to the next one.

9.2 Changing the Project to Use Page Tables

The first step is to modify your project to use page tables and segmentation rather than just segments to
provide memory protection. To enable using page tables, every region of memory your access (both kernel
and data segment) must have an entry in a page table. The way this will work is that there will be a single
page table for all kernel only threads, and a page table for each user process. In addition, the page tables for
user mode processes will also contain entries to address the kernel mode memory. The memory layout for
this is shown in Figure 9.1.

VA 0x0000 0000 Kernel Memary Start of kernel memory
{map all physical memory here)

VA 0x8000 0000 User Memory

<gap>
Stack Memory

VA OxFFFF FFFF Stack Starts Here

Figure 9.1: Virtual memory layout in GeekOS.

The kernel memory should be a one to one mapping of all of the physical memory in the processor (this
limits the physical memory of the processor to 2GB, but this is not a critical limit for this project). The page
table entries for this memory should be marked so that this memory is only accessible from kernel mode

33

9.3. HANDLING PAGE FAULTS CHAPTER 9. PROJECT 4: VIRTUAL MEMORY

(i.e. the userMode bit in the page directory and page table should be 0). To make this change, you should
start by creating a page directory and page table entries for the kernel threads by writing a function that
initializes the page tables and enables paging mode in the processor. You will do this in the Init _VM()
function in src/geekos/paging.c

To set up page tables, you will need to allocate a page directory (using Alloc _Page()) and then allocate
page tables for the entire region that will be mapped into this memory context. You will need to fill out the
appropriate fields in the page tables and page directories, which are represented by the pte _t and pde_t
datatypes defined in <geekos/paging.h> . Finally, to enable paging for the first time, you will need to
call an assembly routine, Enable _Paging() , that will take the base address of your page directory as a
parameter and then load the passed page directory address into register cr3 , and then set the paging bit in
cr0 (the MSB, bit 31).

The next step is to modify your user processes to all use pages in the user region. This is a two step
process. First, you need to allocate a page directory for this user space. You should copy all of the mappings
from the kernel mode page directory for those memory regions in the low range of memory. Next you need
to allocate page table entries for the user processes text and data regions. Do not allocate extra space for the
stack here. Finally, you should allocate space for one page of stack memory at the end of the virtual address
range (i.e. the last entry in the last page table). For the user space page mappings, make sure to enable the
userMode bits in both the page directory and page table entries.

You will also need to change some aspects of how the code from Project 1 sets things up. You should
change the code and data segments for user processes so that the base address is be 0x80000000, and the
limit is 0x80000000. This will allow the user space process to think that its virtual location 0 is the 2GB
point in the page layout and will greatly simplify your kernel compared to traditional paged systems. You
will also need to add code to Switch _To_Address _Space() to switch the PTBR register (cr3) as part of
a context switch; where you load the LDT of the user context, you should also load the address of the page
directory for the process, which is the pageDir field in the User _Context structure. !

When you are allocating pages of memory to use as part of a user address space, you should use a new
function, Alloc _Pageable _Page() (prototype in <geekos/mem.h> . The primary difference is that any
page allocated by this routine should have a special flag PAGEPAGEABLEset in the flags field of its entry
in the corresponding Page data structure. Having this flag set marks the page as being eligible to be stolen
and paged out to disk by the kernel when a page of memory is needed elsewhere, but no free pages are
available. Note that you should not allocate page tables or page directories using this function.

9.3 Handling Page Faults

One of the key features of using paging is to have the operating system handle page faults. To do this you
will need to write a page fault interrupt handler. The first thing the page fault handler will need to do is
to determine the address of the page fault; you can find out this address by calling the Get _Page_Fault _
Address() function (prototype in <geekos/paging.h> . Also, the errorCode field of the Interrupt

State data structure passed to the page fault interrupt handler contains information about the faulting
access. This information is defined in the faultcode _t data type defined in <geekos/paging.h> . Once
the fault address and fault code have been obtained, the page fault handler will need to determine an
appropriate action to take. Possible reasons for a page fault, and the action to take are shown in Figure 9.2.

9.4 Paging Out Pages

At some point, your operating system will run out of page frames to assign to processes. In this case, you
will need to pick a page to evict from memory and write it to the backing store (paging file). You should

You may choose to allocate the user code and data segment descriptors in the GDT (Global Descriptor Table) rather than having a
separate LDT for each process. If you decide to use this approach, then the User _Context will not need to contain an LDT or selector
fields. Instead, you should define user mode code and data segments in the GDT using the Allocate _Segment _Descriptor()
function, before any user process is created, and create selectors for these segments to use for the code and data segment registers for each
newly created process. Each user process can use the same user code and data segments; because each process uses a separate virtual
address space, there is no way that a process can access another process’s memory.

34

CHAPTER 9. PROJECT 4: VIRTUAL MEMORY 9.5. PAGE INS

Cause Indication Action

Stack growing to new Fault is within one page | Allocate a new page and
page of the current stack imit | continue,

Fault for paged out page | Bits in page table Read page from paging

indicate page is on disk | device (sector indicated in
PTE) and continue.

Fault for invalid address | Mone of the other Terminate user process
conditions apply

Figure 9.2: Actions to be taken when a page fault occurs.

implement a version of pseudo-LRU. Use the reference bit in the page tables to keep track of how frequently
pages are accessed. To do this, add a clock field to the Page structure in <geekos/mem.h> . You should
update the clock on every page fault.

You will also need to manage the use of the paging file. The paging file consists of a group of consecutive
512 bytes disk blocks. Calling the routine Get _Paging _Device() (prototype in <geekos/vfs.h>) will
return a Paging _Device() object; this consists of the block device the paging file is on, the start sector
(disk block number), and the number of sectors (disk blocks) in the paging file. Each page will consume
8 consecutive disk blocks. To read/write the paging device, use the functions Block _Read() and Block _
Write()

9.5 PageIns

When a page is paged out to disk, the kernel stores the index returned by Find _Space _-On.Paging _File(

) in the pageBaseAddr field of the page table entry (pte _t), and also stores the value KINFO_PAGEON
DISK in the entry’s kernelinfo field. In your page fault handler, when you find a non-present page that
is marked as being on disk, you can use the value stored in pageBaseAddr to find the data for the page in
the paging file.

9.6 Copying Data Between Kernel and User Memory

Because the GeekOS kernel is preemptible and user memory pages can be stolen at any time, some subtle
issues arise when copying data between the kernel and user memory spaces. Specifically, the kernel must
never read or write data on a user memory page if that page has the PAGEPAGEABLit set at any time that
a thread switch could occur. The reason is simple; if a thread switch did occur, another process could run
and steal the page. When control returns to the original thread, it would be reading or writing the wrong
data, causing serious memory corruption.

There are two general approaches to dealing with this problem. One is that interrupts (and thus preemp-
tion) should be disabled while touching user memory. This approach is not a complete solution, because it
is not legal to do I/O (i.e., Block _Read() and Block _Write()) while interrupts are disabled.

The second approach is to use page locking. Before touching a user memory page, the kernel will atom-
ically clear the PAGEPAGEABLHlag for the page; this is referred to as locking the page. Once a page is
locked, the kernel can then freely modify the page, safe in the knowledge that the page will not be stolen by
another process. When it is done reading or writing the page, it can unlock the page by clearing the PAGE
PAGEABLHlag. Note that page flags should only be modified while interrupts are disabled.

35

9.7. IMPLEMENTATION CHAPTER 9. PROJECT 4: VIRTUAL MEMORY

9.7 Implementation

In order to implementing virtual memory and paging, you will need to implement several functions.

9.7.1 Functions in src/geekos/paging.c

e Init _VM() (defined in) will set up the initial kernel page directory and page tables, and install a page
fault handler function.

e Init _Paging() (defined in src/geekos/paging.c) should initialize any data structures you need
to manage the paging file. As mentioned earlier, the Get _Paging _Device() function specifies what
device the paging file is located on, and the range of disk blocks it occupies.

e Find _Space _OnPaging _File() should find a free page-sized chunk of disk space in the paging file.
It should return an index identifying the chunk, or -1 if no space is available in the paging file.

e Free _Space OnPaging _File() will free a chunk of space in the paging file previously allocated by
Find _Space _OnPaging _File()

e Write _To_Paging _File() writes the data stored in a page of memory to the paging file.

e Read_From_Paging _File() reads the data for a page stored in the paging file into memory.

9.7.2 Functions in src/geekos/uservm.c

e Destroy _User _Context() frees all of the memory and other resources (semaphores, files) used by
a process.

e Load _User _Program() loads an executable file into memory, creating a complete, ready-to-execute
user address space.

e Copy_From_User() copies data from a user buffer into a kernel buffer.
e Copy_To_User() copies data from a kernel buffer into a user buffer.

e Switch _To_Address _Space() switches to a user address space by loading its page directory and (if
necessary) its LDT.

9.8 Extra Credit

The implementation of virtual memory in GeekOS is a very simple one. There are many ways that it can be
extended and improved.

9.8.1 Improving Find _Page_To_Page_Out()

When a page of pageable memory is required and no pages are available, the kernel uses the Find _Page_To_
Page_Out() function (in src/geekos/mem.c) to select a page to page out. While interrupts are disabled
(meaning no other threads or interrupt handlers can run), this function traverses the array of all Page data
structures, in order to find the one with the oldest clock field.

How can you make this function work more efficiently?

36

