

Address Types

 Three kinds of addresses
 Logical addresses

 X = relative user addresses
 Process P accesses memory address X

 Linear addresses
 L = base address of P + X
 Mapped via segmentation

 Physical addresses
 P = f(L) where f is a 1-1 function
 P in kernel-land is where data is!
 Mapped via paging

Addresses in GeekOS

 Currently in GeekOS
 Logical address → Linear address = Physical

address
 Downsides:

 Need space allocated for each process
 Limited by physical memory of the system

(GeekOS has 8MB of physical memory)
 Less flexible

IA-32 Memory Management

Paging Schemes

 Two-level paging scheme – directory and tables

 Why use this instead of a giant page table?

GeekOS Paging
 Given a linear address, how to get page?

 Take linear address (32 bits)

 First 10 bits to get directory entry → page table

 10 bits = 1024 entries per directory
 Next 10 bits to get table entry → page

 10 bits = 1024 entries per table
 Last 12 bits to get byte in page

 12 bits = 4096 bytes

per page
 Therefore, memory is split up

into ”chunks” of size 4KB
called pages

Mapping Kernel Memory (Part I)

 For the kernel, linear addresses = physical
addresses

 Therefore, for all linear pages, map linear
address X to physical address X

 Example!

 GeekOS should still work exactly the same,
except you've added a transparent paging
system

 Deadline April 8

GeekOS Memory – Linear
addresses

 0x0000 0000 (0GB) - Kernel Memory starts

 0x8000 0000 (2GB) - User Memory data/text start (base
address)

 0xFFFF E000 - User Memory - initial stack at top of this page

 0xFFFF F000 - User Memory - args in this page

 0xFFFF FFFF (4GB) - Memory space ends here

User Memory Mapping

 Implement in uservm.c, but copy-paste
massively from userseg.c

 Copy kernel page directory (bottom 2GB) so
that kernel can access memory when handling
interrupts

 Allocate pages for text/data/stack for the upper
2GB, but only pages the program needs!

Demand Paging

 Errors with paging trigger interrupt 14
 Register a page fault handler to handle this
 Default one provided kills user program
 Only user programs can fault

 Kernel accessing wrong address = boom

 If a user program accesses right above its
current stack limit, grow the stack!

 Page doesn't exist, so will trigger handler

Paging to Disk

 Before: only had 8MB physical memory
 What if a program wanted to use 20MB?
 Solution: write ”unused” memory to disk!
 First, we allocate swappable pages using

Alloc_Pageable_Page instead of Alloc_Page
 If our memory is full, call

Find_Page_To_Page_Out
 ”pseudo” LRU: Maintain ptr to a page, check

accessed bit
 if zero, reclaim page, otherwise, set to zero

Paging to Disk

 Take page, write it to disk
(Find_Space_On_Paging_File,
Write_To_Paging_File)

 Overwrite that page with whatever new data
 Later on... you try to access that page again,

and it's not there! It will trigger a page fault, so
you need to modify the interrupt handler to
swap it back in.

 Get index of block on disk from page table entry
pageBaseAddr

 Read_From_Paging_File

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

