Announcements

e Program #1
— Additional info on elf file format is on the web
— See slide from today about project issues

e Reading
— Chapter 6
— Chapter 7 (Tuesday)

CMSC 412 — S02 (lectB)

Project Issues

e Use one TSS for entire system

e User Space Memory layout
— Text segment
— Data and stack are one segment
— Stack grows down

e Kernel component of a process
— Has own stack (in kernel memory)

e Malloc in libuser.a

— Write an emply malloc_Atomic in libuser.c is should call
Print_String to report and error and exit

CMSC 412 — S02 (lectB)

File as loaded by loadFile

User Process Memory Layout

User-space Process

Elf Header

Text Seg HDR

Data Seg HDR

Text

/|

Data

CMSC 412 — S02 (lectB)

cop

This is address 0 when running in user mode.

Py

O
|P __»4 TeXt
/V
/ Data
Stack
SpP—+

4

Value of IP is
Entry from elf hdr

Data starts at
dataHdr.Vaddr from
start of region

Add 10*4096 to have room
For stack

SP should be size of region allocated
(l.e. dataHdr.Vaddr + dataHdr.memSize + 40960)

Short-term scheduling algorithms

e First-Come, First-Served (FCFS, or FIFO)

— as process becomes ready, join Ready queue, scheduler
always selects process that has been in queue longest

— better for long processes than short ones
— favors CPU-bound over I/O-bound processes
— need priorities, on uniprocessor, to make it effective

CMSC 412 — S02 (lectB)

Algorithms (cont.)

e Round-Robin (RR)

— use preemption, based on clock - time slicing
* generate interrupt at periodic intervals

— when interrupt occurs, place running process in Ready
queue, select next process to run using FCFS

— what’s the length of a time slice

» short means short processes move through quickly, but
high overhead to deal with clock interrupts and
scheduling

» guideline is time slice should be slightly greater than time
of “typical job” CPU burst

— problem dealing with CPU and I/O bound processes

CMSC 412 — S02 (lectB)

Algorithms (cont.)

e Shortest Process Next (SPN)

non-preemptive
select process with shortest expected processing time

Improves response time, but increases its variability,
reducing predictability - provably decreases average waiting
time

problem is estimating required processing time

risk of starving longer processes, as long as there are
shorter processes around

not good for time sharing - non-preemptive

CMSC 412 — S02 (lectB)

Algorithms (cont.)

e Shortest Remaining Time (SRT)

preemptive version of SPN

scheduler chooses process with shortest expected
remaining process time

still need estimate of processing time, and can starve longer
processes

* no bias in favor of longer processes, as in FCFS

* no extra interrupts as in RR, so reduced overhead
must record elapsed service times
should give better turnaround time than SPN

CMSC 412 — S02 (lectB)

Priority Based Scheduling

e Priorities

— assign each process a priority, and scheduler always
chooses process of higher priority over one of lower priority

e More than one ready queue, ordered by priorities

R0

—>

Pispa‘rch) Relegse

ROn

Preemption

Event
Occurs

CMSC 412 — S02 (lectB)

<

Event Wait

Blocked queue

Priority Algorithms

e Fixed Queues
— processes are statically assigned to a queue
— sample queues: system, foreground, background

e Multilevel Feedback
— processes are dynamically assigned to queues
— penalize jobs that have been running longer
— preemptive, with dynamic priority
— have N ready queues (RQ0-RQN),
» start process in RQO
* if quantum expires, moved to i + 1 queue

CMSC 412 — S02 (lectB)

e Often

Cooperating Processes

need to share information between processes

— information: a shared file
— computational speedup:

break the problem into several tasks that can be run on
different processors

requires several processors to actually get speedup

— modularity: separate processes for different functions

compiler driver, compiler, assembler, linker

— convenience:

CMSC 412 — S02 (lectB)

editing, printing, and compiling all at once

10

Interprocess Communication

e Communicating processes establish a link
— can more than two processes use a link?
— are links one way or two way?
— how to establish a link
* how do processes name other processes to talk to

— use the process id (signals work this way)
— use a name in the filesystem (UNIX domain sockets)
— indirectly via mailboxes (a separate object)

e Use send/receive functions to communicate
— send(dest, message)
— receive(dest, message)

CMSC 412 — S02 (lectB)

11

