
1CMSC 412 – S02 (lect6)

Announcements
Program #1
– Additional info on elf file format is on the web
– See slide from today about project issues

Reading
– Chapter 6
– Chapter 7 (Tuesday)

2CMSC 412 – S02 (lect6)

Project Issues

Use one TSS for entire system
User Space Memory layout
– Text segment
– Data and stack are one segment
– Stack grows down

Kernel component of a process
– Has own stack (in kernel memory)

Malloc in libuser.a
– Write an emply malloc_Atomic in libuser.c is should call

Print_String to report and error and exit

3CMSC 412 – S02 (lect6)

User Process Memory Layout
File as loaded by loadFile

Elf Header

Text Seg HDR

Data Seg HDR

Text

Data

User-space Process

0

Text

Data

Stack Add 10*4096 to have room
For stack

SP

IP

copy

copy

Value of IP is
Entry from elf hdr

Data starts at
dataHdr.Vaddr from
start of region

SP should be size of region allocated
(I.e. dataHdr.Vaddr + dataHdr.memSize + 40960)

This is address 0 when running in user mode.

4CMSC 412 – S02 (lect6)

Short-term scheduling algorithms

First-Come, First-Served (FCFS, or FIFO)
– as process becomes ready, join Ready queue, scheduler

always selects process that has been in queue longest
– better for long processes than short ones
– favors CPU-bound over I/O-bound processes
– need priorities, on uniprocessor, to make it effective

5CMSC 412 – S02 (lect6)

Algorithms (cont.)

Round-Robin (RR)
– use preemption, based on clock - time slicing

• generate interrupt at periodic intervals
– when interrupt occurs, place running process in Ready

queue, select next process to run using FCFS
– what’s the length of a time slice

• short means short processes move through quickly, but
high overhead to deal with clock interrupts and
scheduling

• guideline is time slice should be slightly greater than time
of “typical job” CPU burst

– problem dealing with CPU and I/O bound processes

6CMSC 412 – S02 (lect6)

Algorithms (cont.)

Shortest Process Next (SPN)
– non-preemptive
– select process with shortest expected processing time
– improves response time, but increases its variability,

reducing predictability - provably decreases average waiting
time

– problem is estimating required processing time
– risk of starving longer processes, as long as there are

shorter processes around
– not good for time sharing - non-preemptive

7CMSC 412 – S02 (lect6)

Algorithms (cont.)

Shortest Remaining Time (SRT)
– preemptive version of SPN
– scheduler chooses process with shortest expected

remaining process time
– still need estimate of processing time, and can starve longer

processes
• no bias in favor of longer processes, as in FCFS
• no extra interrupts as in RR, so reduced overhead

– must record elapsed service times
– should give better turnaround time than SPN

8CMSC 412 – S02 (lect6)

Priority Based Scheduling
Priorities
– assign each process a priority, and scheduler always

chooses process of higher priority over one of lower priority
More than one ready queue, ordered by priorities

RQ0
CPU

RQ1

RQn

Blocked queue

...Admit

Event
Occurs

Event Wait

Preemption

Dispatch Release

9CMSC 412 – S02 (lect6)

Priority Algorithms

Fixed Queues
– processes are statically assigned to a queue
– sample queues: system, foreground, background

Multilevel Feedback
– processes are dynamically assigned to queues
– penalize jobs that have been running longer
– preemptive, with dynamic priority
– have N ready queues (RQ0-RQN),

• start process in RQ0
• if quantum expires, moved to i + 1 queue

10CMSC 412 – S02 (lect6)

Cooperating Processes

Often need to share information between processes
– information: a shared file
– computational speedup:

• break the problem into several tasks that can be run on
different processors

• requires several processors to actually get speedup
– modularity: separate processes for different functions

• compiler driver, compiler, assembler, linker
– convenience:

• editing, printing, and compiling all at once

11CMSC 412 – S02 (lect6)

Interprocess Communication

Communicating processes establish a link
– can more than two processes use a link?
– are links one way or two way?
– how to establish a link

• how do processes name other processes to talk to
– use the process id (signals work this way)
– use a name in the filesystem (UNIX domain sockets)
– indirectly via mailboxes (a separate object)

Use send/receive functions to communicate
– send(dest, message)
– receive(dest, message)

