
1CMSC 412 – S02 (lect 9)

Announcements
Office hours
– W office hour will be 10-11 not 11-12 starting this week

Midterm is next Tuesday
– Covers through lecture on Thursday

Project #2 is available on the web

2CMSC 412 – S02 (lect 9)

Using Test and Test for Mutual Exclusion
repeat

while test-and-set(lock);
// critical section
lock = false;
// non-critical section

until false;

bounded waiting time version
repeat

waiting[i] = true;
key = true;
while waiting[i] and key

key = test-and-set(lock);
waiting[i] = false;
// critical section
j = (i + 1) % n
while (j != i) and (!waiting[j])

j = (j + 1) % n;
if (j == i)

lock = false;
else

waiting[j] = false;
// non-critical section

until false;

Note: no priority based on wait time

no process waiting

release process j

look for a waiting process

wait until released or no one busy

3CMSC 412 – S02 (lect 9)

Semaphores

getting critical section problem correct is difficult
– harder to generalize to other synchronization problems
– Alternative is semaphores

semaphores
– integer variable
– only access is through atomic operations

P (or wait)
while s <= 0;
s = s - 1;

V (or signal)
s = s + 1

Two types of Semaphores
– Counting (values range from 0 to n)
– Binary (values range from 0 to 1)

4CMSC 412 – S02 (lect 9)

Using Semaphores
critical section
repeat

P(mutex);
// critical section
V(mutex);
// non-critical section

until false;

Require that Process 2 begin statement S2 after
Process 1 has completed statement S1:
Process 2

S1
V(synch)

Process 1
P(synch)
S2

5CMSC 412 – S02 (lect 9)

Implementing semaphores

Busy waiting implementations
Instead of busy waiting, process can block itself
– place process into queue associated with semaphore
– state of process switched to waiting state
– transfer control to CPU scheduler
– process gets restarted when some other process executes a

signal operations

6CMSC 412 – S02 (lect 9)

Implementing Semaphores
declaration
type semaphore = record

value: integer = 1;
L: FIFO list of process;

end;
P(S): S.value = S.value -1

if S.value < 0 then {
add this process to S.L
block;

};
V(S): S.value = S.value+1

if S.value <= 0 then {
remove process P from S.L
wakeup(P);

}

Can be neg, if so, indicates
how many waiting

Bounded waiting!!

Revised from class :-(

7CMSC 412 – S02 (lect 9)

Readers/Writers Problem

Data area shared by processors
Some processors read data, other processors can
read or write data
– Any number of readers my simultaneously read the data
– Only one writer at a time may write
– If a writer is writing to the file, no reader may read it

Two of the possible approaches
– readers have priority or writers have priority

8CMSC 412 – S02 (lect 9)

Readers have Priority
reader()
{
repeat

P(x);
readcount = readcount + 1;
if readcount = 1 then P (wsem);

V(x);
READUNIT;
P(x);

readcount = readcount - 1;
if readcount = 0 V(wsem);

V(x);
forever

};

writer()
{

repeat
P(wsem);
WRITEUNIT;
V(wsem)

forever
}

9CMSC 412 – S02 (lect 9)

Comments on Reader Priority

semaphores x,wsem are initialized to 1
note that readers have priority - a writer can gain
access to the data only if there are no readers (i.e.
when readcount is zero, signal(wsem) executes)
possibility of starvation - writers may never gain
access to data

10CMSC 412 – S02 (lect 9)

Writers Have Priority
reader
repeat

P(z);
P(rsem);
P(x);

readcount++;
if (readcount == 1) then

P(wsem);
V(x);
V(rsem);

V(z);
readunit;
P(x);

readcount- -;
if readcount == 0 then

V (wsem)
V(x)

forever

writer
repeat

P(y);
writecount++:
if writecount == 1 then

P(rsem);
V(y);
P(wsem);
writeunit
V(wsem);
P(y);

writecount--;
if (writecount == 0) then

V(rsem);
V(y);

forever;

11CMSC 412 – S02 (lect 9)

Notes on readers/writers with writers
getting priority

P(z);
P(rsem);
P(x);

readcount++;
if (readcount==1) then

P(wsem);
V(x);
V(rsem);

V(z);

readers queue up on semaphore
z; this way only a single reader
queues on rsem. When a writer
signals rsem, only a single
reader is allowed through

Semaphores x,y,z,wsem,rsem are initialized to 1

12CMSC 412 – S02 (lect 9)

Deadlocks

System contains finite set of resources
– memory space
– printer
– tape
– file
– access to non-reentrant code

Process requests resource before using it,
must release resource after use
Process is in a deadlock state when every
process in the set is waiting for an event that
can be caused only by another process in the
set

13CMSC 412 – S02 (lect 9)

Formal Deadlocks

4 necessary deadlock conditions:
– Mutual exclusion - at least one resource must be

held in a non-sharable mode, that is, only a single
process at a time can use the resource. If another
process requests that resource, the requesting
process must be delayed until the resource is
released

– Hold and wait - There must exist a process that is
holding at least one resource and is waiting to
acquire additional resources that are currently
held by other processors

14CMSC 412 – S02 (lect 9)

Formal Deadlocks

– No preemption: Resources cannot be preempted;
a resource can be released only voluntarily by the
process holding it, after that process has
completed its task

– Circular wait: There must exist a set {P0,...,Pn} of
waiting processes such that P0 is waiting for a
resource that is held by P1, P1 is waiting for a
resource held by P2 etc.

Note that these are not sufficient conditions

15CMSC 412 – S02 (lect 9)

Deadlock Prevention
Ensure that one (or more) of the necessary
conditions for deadlock do not hold
Hold and wait
– guarantee that when a process requests a

resource, it does not hold any other resources
– Each process could be allocated all needed

resources before beginning execution
– Alternately, process might only be allowed to wait

for a new resource when it is not currently holding
any resource

16CMSC 412 – S02 (lect 9)

Deadlock Prevention

Mutual exclusion
– Sharable resources do not require mutually

exclusive access and cannot be involved in a
deadlock.

Circular wait
– Impose a total ordering on all resource types and make sure

that each process claims all resources in increasing order of
resource type enumeration

No Premption
– virutalize resources and permit them to be prempted. For

example, CPU can be prempted.

