
1CMSC 412 – S02 (lect 14)

Announcements
Midterm #1
– Re-grade requests due by end of class today

Project #3
– Is out
– Deadline is shortly after midterm #2 (start early)

2CMSC 412 – S02 (lect 14)

Project #3

What is pageable?
– User memory including text, data, and stack

Memory model
– Kernel memory in low memory
– User memory in high memory

Paging Bits
– cr3 – Page Table Base Register (PTBR)
– cr0:31 – Enable Paging bit
– cr2 – Address causing page fault

Page Faults
– Look in errorCode fields of interrupt

3CMSC 412 – S02 (lect 14)

Working Sets and Page Replacement

Programs usually display reference locality
– temporal locality

• repeated access to the same memory location
– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference
• sequence of nested storage media

Working set
– set of pages referenced in the last delta references

Small
Very Fast

Large
Very Slow

Working Set Size

4CMSC 412 – S02 (lect 14)

Preventing Threashing

Need to ensure that we can keep the working set in
memory
– if the working sets of the processes in memory exceed total

page frames, then we need to swap a process out
How do we compute the working set?
– can approximate it using a reference bit

5CMSC 412 – S02 (lect 14)

Implementation Issues

How big should a page be?
– want to trade cost of fault vs. fragmentation

• cost of fault is: trap + seek + latency + transfer
– Does the OS page size have to equal the HW page size?

• no, just needs to be a multiple of it
How does I/O relate to paging
– if we request I/O for a process, need to lock the page

• if not, the I/O device can overwrite the page
Can the kernel be paged?
– most of it can be.
– what about the code for the page fault handler?

6CMSC 412 – S02 (lect 14)

Segmentation

Segmentation is used to give each program several
independent protected address spaces
– each segment is an independent protected address space
– access to segments is controlled by data which describes

size, privilege level required to access, protection (whether
segment is read-only etc)

– segments may or may not overlap
• disjoint segments can be used to protect against

programming errors
• separate code, data stack segments

7CMSC 412 – S02 (lect 14)

– Disjoint Segments can be used to exploit expanded address
space

• In 16 bit architectures e.g. (8086 and 80x86 in V86
mode) each segment has only 16 bits of address space

• In distributed networks consisting of multiple 32 bit
machines, segmentation can be used to support single
huge address space

– Segments can span identical regions of address space - flat
model

• Windows NT and Windows ‘95 use 4 Gbyte code
segments, stack segments, data segments

8CMSC 412 – S02 (lect 14)

File Abstraction
What is a file?
– A named collection of information stored on secondary storage

Properties of a file
– non-volatile
– can read, read, or update it
– has meta-data to describe attributes of the file

File Attributes
– name: a way to describe the file
– type: some information about what is stored in the file
– location: how to find the file on disk
– size: number of bytes
– protection: access control

• may be different for read, write, execute, append, etc.
– time: access, modification, creation
– version: how many times has the file changed

9CMSC 412 – S02 (lect 14)

File Operations

Files are an abstract data type
– interface (this lecture)
– implementation (next lecture)

create a file
– assign it a name
– check permissions

open
– check permissions
– check that the file exists
– lock the file (if we don’t what to permit other users a the

same time)

10CMSC 412 – S02 (lect 14)

File Operations (cont)
write
– indicate what file to write (either name of handle)
– provide data to write
– specify where to write the data within the file

• generally this is implicit (file pointer)
• could be explicit (direct access)

read
– indicate what file to read (either name of handle)
– provide place to put information read
– indicate how much to read
– specify where to write the data within the file

• generally this is implicit (file pointer)
• could be explicit (direct access)

fsync (synchronize disk version with in-core version)
– ensure any previous writes to the file are stored on disk

11CMSC 412 – S02 (lect 14)

File Operations (cont)
seek
– move the implicit file pointer to a new offset in the file

delete
– remove named file

truncate
– remove the data in the file from the current position to end

close
– unlock the file (if open locked it)
– update meta data about time
– free system resources (file descriptors, buffers)

read meta data
– get file size, time, owner, etc.

update meta data
– change file size, time owner, etc.

	Announcements
	Project #3
	Working Sets and Page Replacement
	Preventing Threashing
	Implementation Issues
	Segmentation
	
	File Abstraction
	File Operations
	File Operations (cont)
	File Operations (cont)

