Announcements
e Reading Chapter 11

CMSC 412 — S02_(lect 15)




Simple Directory Structures
e One directory
— Having all of the files in one name space is awkward
— lots of files to sort through
— different users would have to coordinate file names
— each file has to have a unique name

e [Two level directory
— top level is users
— second level is files per user

system hollings

user1
\

user2

user3

pd \

N

cc gdb /| fone

X

/

{444

CMSC 412 — S02_(lect 15)

o
5

4




Tree Directories
e create a tree of files

e each directory can contain files or directory entries

e each process has a current directory
— can name files relative to that directory
— can change directories as needed

users

! system

mail\‘{x

hoIIings/

user1

user2

\

\

CcC

Vi

one

CMSC 412 — S02_(lect 15)




Acylic Graph Directories

e Permit users to share subdirectories

! system users mail\{‘

hoIImgs user\1 user2

NN

one | to X y Z

CMSC 412 — S02_(lect 15)

ggsfgwg

é b




Issues for Acylic Graph Directories

e Same file may have several names
— absolute path name is different, but the file is the same
— similar to variable aliases in programming languages

e Deletion
— if one user deletes a file does it vanish for other users?
* yes, it should since the directory is shared
— what if one user deletes their entry for the shared directory
* no, only the last user to delete it should delete it
* maintain a reference count to the file

e Programs to walk the DAG need to be aware
— disk usage utilities
— backup utilities

CMSC 412 — S02_(lect 15)




Does the OS know what is stored in a file?

e needs to know about some types of files
— directories
— executables

e should other file types be visible to the OS?
— Example: word processing file vs. spreadsheet
— Advantages:
» OS knows what application to run
« Automatic make (tops-20)
— if source changed, re-compile before running
— Problems:
» to add new type, need to extend OS
« OS vs. application features are blurred
« what if a file is several types
— consider a compressed postscript file

CMSC 412 — S02_(lect 15)




Does the OS know what is stored in a file?

e needs to know about some types of files
— directories
— executables

e should other file types be visible to the OS?
— Example: word processing file vs. spreadsheet
— Advantages:
» OS knows what application to run
« Automatic make (tops-20)
— if source changed, re-compile before running
— Problems:
» to add new type, need to extend OS
« OS vs. application features are blurred
« what if a file is several types
— consider a compressed postscript file

CMSC 412 — S02_(lect 15)




Example of File Types

e Macintosh
— has a file type that is part of file meta-data
— also has an application associated with each file type

e \Windows 95/NT

— has a file type in the extension of the file name
— has a table (per user) to map extensions to applications

e Unix
— can use last part of filename like an extension
— applications can decide what (if anything) to do with it

CMSC 412 — S02_(lect 15)




File Protection
e How to give access to some users and not others?

e Access types:
— read, write, execute, append, delete, list
— rename: often based on protection of directory
— copy: usually the same as read

e Degree of control
— access lists
« list for each user for each file the permitted operations
— groups
* enumerate users in a list called a group
« provide same protection to all members of the group
* depending on system:
— files may be in one or many groups
— users may be in one or many groups
— per file passwords (tedious and a security problem)

CMSC 412 — S02_(lect 15)




File Protection Example (UNIX)

e each file has three classifications
— user: the user who owns the file
— group: a named group of other users
— world: all others

e cach file has three access types:
— read, write, execute

e directory protection
— read: list the files in the sub dir
— write: delete or create a file
— execute: see the attributes of the files in the subdir

— sticky bit: can only modify directory entries owned by
yourself

CMSC 412 — S02_(lect 15)

10




Unix File Protection (cont)

e Files have 12 bits of protection
— 9 bits are user, group, and world for:
 read: list the files in the sub dir
» write: delete or create a file
» execute: see the attributes of the files in the subdir
— sticky bit: leave executable in memory after is done
— setuid: run the program with the uid of the file’s owner
« used to provide extra privilege to some processes
— example: passwd command
— setgid: run the program with the group id of the file’s owner

CMSC 412 — S02_(lect 15)




UNIX File Protection Example

Stuff is a directory:
user hollings has r/w/x on the dir

foo is afile:

foo

user hollings has r, but
not write on this file

hollings can still write the file! ‘

(1) copy foo into a
new file called temp

l. (2) delete foo

foo

foo

(3) rename temp

to foo

CMSC 412 — S02_(lect 15)

12




	Announcements
	Simple Directory Structures
	Tree Directories
	Acylic Graph Directories
	Issues for Acylic Graph Directories
	Does the OS know what is stored in a file?
	Does the OS know what is stored in a file?
	Example of File Types
	File Protection
	File Protection Example (UNIX)
	Unix File Protection (cont)
	UNIX File Protection Example

