
1CMSC 412 – S02 (lect 16)

Announcements
Reading Chapter 12

2CMSC 412 – S02 (lect 16)

Modified Linked Allocation (FAT)
Section of disk contains a table
– called the file allocate table (FAT)
– used in MS-DOS

Directory entry contains the block number of the first
block in the file
Table entry contains the number of the next block in
the file
Last block has a end-of-file value as a table entry

directory entry

last entry
(for a file)
has EOF ptr FAT

ith block corresponds to the ith FAT entry

3CMSC 412 – S02 (lect 16)

Performance Issues

FAT
✔ simple, easy to implement
✔ faster to traverse than linked allocation
– random access requires following links
– files can’t have holes in them

Hybrid indirect
✔ fast access to any part of the file
✔ files can have holes in them
– more complex

4CMSC 412 – S02 (lect 16)

Free Space Management

How do we find a disk block to allocate?
Bit Vectors
– array of bits (one per block) that indicates if a block is free
– compact so can keep in memory

• 1.3 GB disk, 4K blocks -> 78K per disk
– easy to find long runs of free blocks

Linked lists
– each disk block contains the pointer to the next free block
– pointer to first free block is keep in a special location on disk

Run length encoding (called counting in book)
– pointer to first free block is keep in a special location on disk
– each free block also includes a count of the number of

consecutive blocks that are free

5CMSC 412 – S02 (lect 16)

Implementing Directories

Linear List
– array of names for files
– must search entire list to find or allocate a filename
– sorting can improve search performance, but adds

complexity
Hash table
– use hash function to find filenames in directory
– needs a good hash function
– need to resolve collisions
– must keep table small and expand on demand since many

directories are mostly empty

6CMSC 412 – S02 (lect 16)

DOS Directories
Root directory
– immediately follows the FAT

Directory is a table of 32 byte entries
– 8 byte file name, 3 byte filename extension
– size of file, data and time stamp, starting cluster number of

the file, file attribute codes
– Fixed size and capacity

Subdirectory
– This is just a file
– Record of where the subdirectory is located is stored in the

FAT

7CMSC 412 – S02 (lect 16)

Unix Directories
Space for directories are allocated in units called
chunks
– Size of a chunk is chosen so that each allocation can be

transferred to disk in a single operation
– Chunks are broken into variable-length directory entries to

allow filenames of arbitrary length
– No directory entry can span more than one chunk
– Directory entry contains

• pointer to inode (file data-structure)
• size of entry
• length of filename contained in entry (up to 255)
• remainder of entry is variable length - contains file name

8CMSC 412 – S02 (lect 16)

inodes

File index node
Contains:
– Pointers to blocks in a file (direct, single indirect, double

indirect, triple indirect)
– Type and access mode
– File’s owner
– Number of references to file
– Size of file
– Number of physical blocks

9CMSC 412 – S02 (lect 16)

Unix directories - links
Each file has unique inode but it may have multiple
directory entries in the same filesystem to reference
inode
Each directory entry creates a hard link of a filename
to the file’s inode
– Number of links to file are kept in reference count variable in

inode
– If links are removed, file is deleted when number of links

becomes zero
Symbolic or soft link
– Implemented as a file that contains a pathname
– Symbolic links do not have an effect on inode reference

count

10CMSC 412 – S02 (lect 16)

Root inode =2

usr

bin

vi

File Lookup (/usr/bin/vi)

Directory Entry Inode

Directory Entry
Inode

Indirect
Index

Directory Entry

Data Block

11CMSC 412 – S02 (lect 16)

Using UNIX filesystem data structures
Example: find /usr/bin/vi
– from Leffler, McKusick, Karels and Quarterman
– Search root directory of filesystem to find /usr

• root directory inode is, by convention, stored in inode #2
• inode shows where data blocks are for root directory - these

blocks (not the inode itself) must be retrieved and searched for
entry user

• we discover that the directory user’s inode is inode #4
– Search user for bin

• access blocks pointed to by inode #4 and search contents of
blocks for entry that gives us bin’s inode

• we discover that bin’s inode is inode #7
– Search bin for vi

• access blocks pointed to by inode #7 and search contents of
block for an entry that gives us vi’s inode

• we discover that vi’s inode is inode #7
– Access inode #7 - this is vi’s inode

12CMSC 412 – S02 (lect 16)

Magnetic Disks

Sector
TrackPlatter

Collection of platters (1-20)
Rotate at 3600-7200 RPM
Size - usually 2.5-3.5 inch
Usually 500-2500 tracks per platter
Track consists of around 64 sectors

zones: vary number of tracks/sector based on distance from center

Track

13CMSC 412 – S02 (lect 16)

Access Times

Seek: Move disk arm over appropriate track
– Seek times vary depending on locality - seek times are order of

milliseconds
Rotational delay: Wait time until desired information is under
disk arm
– A disk that rotates at 7200 RPM will take 8.3 ms to complete a full

rotation
Transfer time: time taken to transfer a block of bits (usually a
sector)
– Depends on recording density of track, rotation speed, block size
– Achieved transfer rate for many blocks can also be influenced by

other system bottlenecks (software, hardware)
– Rates range from 2 to 8 MB per second

	Announcements
	Modified Linked Allocation (FAT)
	Performance Issues
	Free Space Management
	Implementing Directories
	DOS Directories
	Unix Directories
	inodes
	Unix directories - links
	File Lookup (/usr/bin/vi)
	Using UNIX filesystem data structures
	Magnetic Disks
	Access Times

