Announcements

e Program #1
— Is on the web

e Reminder about change in office hours
— Now Tu & Th 11-12

e Reading
— Chapter 4
— Chapter 6 (for Tuesday)

CMSC 412 — S02 (lect 4)

Project Issues

e Role of libuser.c
— system call routines
— _Entry
« Calls Main
« Calls Exit
— Useful functions

e buildFat

— Standalone program to build fd.img (floppy disk)
— Needs to contain:

« Bootinfo

« Kernel

« User programs

CMSC 412 — S02 (lect 4)

User Process Memory Layout

User-space Process

File as loaded by loadFile

ElIf Header

Text Seg HDR

Data Seg HDR

Text

/|

Data

CMSC 412 — S02 (lect 4)

cop

This is address 0 when running in user mode.

Py

O
|P __»4 TeXt
e
/ Data
Stack
SP—»

4

Value of IP is
Entry from elf hdr

Data starts at
dataHdr.Vaddr from
start of region

Add 10*4096 to have room
For stack

SP éhould be size of region allocated
(I.e. dataHdr.Vaddr + dataHdr.memSize + 40960)

Process Termination

e Process can terminate self
— via the exit system call

e One process can terminate another process
— use the kill system call
— can any process Kill any other process?
* No, that would be bad.
* Normally an ancestor can terminate a descendant

e OS kernel can terminate a process
— exceeds resource limits
— tries to perform an illegal operation

e \What if a parent terminates before the child
— called an orphan process

— in UNIX becomes child of the root process
— in VMS - causes all descendants to be killed

CMSC 412 — S02 (lect 4)

Termination (cont.) - UNIX example

e Kernel
— frees memory used by the process
— moved process control block to the terminated queue

e [erminated process
— signals parent of its death (SIGCHILD)
— is called a zombie in UNIX
— remains around waiting to be reclaimed

e parent process
— wait system call retrieves info about the dead process
 exit status
 accounting information
— signal handler is generally called the reaper
* since its job is to collect the dead processes

CMSC 412 — S02 (lect 4)

Threads

e processes can be a heavy (expensive) object

e threads are like processes but generally a collection
of threads will share
— memory (except stack)
— open files (and buffered data)
— signals
e can be user or system level
— user level: kernel sees one process
+ easy to implement by users
- 1/O management is difficult
- in an multi-processor can'’t get parallelism
— system level: kernel schedules threads

CMSC 412 — S02 (lect 4)

Thread Implementation

Async Kernel Calls (TruUnix 64)

User Visible Threads

Light Weigth Processes (Solaris)

CMSC 412 — S02 (lect 4)

-

]

>

® <

A

]

-

]

>

Dispatcher

e The inner most part of the OS that runs processes

e Responsible for:
— saving state into PCB when switching to a new process
— selecting a process to run (from the ready queue)
— loading state of another process

e Sometimes called the short term scheduler
— but does more than schedule

e Switching between processes is called context
switching

e One of the most time critical parts of the OS

e Almost never can be written completely in a high
level language

CMSC 412 — S02 (lect 4)

Selecting a process to run

e called scheduling

e can simply pick the first item in the queue
— called round-robin scheduling
— is round-robin scheduling fair?

e can use more complex schemes
— we will study these in the future

e use alarm interrupts to switch between processes

— when time is up, a process is put back on the end of the
ready queue

— frequency of these interrupts is an important parameter
« typically 3-10ms on modern systems

« need to balance overhead of switching vs.
responsiveness

CMSC 412 — S02 (lect 4)

