
1CMSC 412 – S3 (lect6)

Announcements
Program #1
– Additional info checklist on the web page

Reading
– Chapter 6
– Chapter 7 (Tuesday)

Don’t send me email from hotmail or yahoo
– It’s auto-deleted as SPAM

2CMSC 412 – S3 (lect6)

Priority Algorithms

Fixed Queues
– processes are statically assigned to a queue
– sample queues: system, foreground, background

Multilevel Feedback
– processes are dynamically assigned to queues
– penalize jobs that have been running longer
– preemptive, with dynamic priority
– have N ready queues (RQ0-RQN),

• start process in RQ0
• if quantum expires, moved to i + 1 queue

3CMSC 412 – S3 (lect6)

Feedback scheduling (cont.)

– problem: turnaround time for longer processes
• can increase greatly, even starve them, if new short jobs

regularly enter system
– solution1: vary preemption times according to queue

• processes in lower priority queues have longer time slices
– solution2: promote a process to higher priority queue

• after it spends a certain amount of time waiting for service in its
current queue, it moves up

– solution3: allocate fixed share of CPU time to jobs
• if a process doesn’t use its share, give it to other processes
• variation on this idea: lottery scheduling

– assign a process “tickets” (# of tickets is share)
– pick random number and run the process with the winning

ticket.

4CMSC 412 – S3 (lect6)

UNIX System V
Multilevel feedback, with
– RR within each priority queue
– 10ms second preemption
– priority based on process type and execution history, lower

value is higher priority
priority recomputed once per second, and scheduler
selects new process to run
For process j, P(i) = Base + CPU(i-1)/2 + nice
– P(i) is priority of process j at interval i
– Base is base priority of process j
– CPU(i) = U(i)/2 + CPU(i-1)/2

• U(i) is CPU use of process j in interval i
• exponentially weighted average CPU use of process j

through interval i
– nice is user-controllable adjustment factor

5CMSC 412 – S3 (lect6)

UNIX (cont.)

Base priority divides all processes into (non-
overlapping) fixed bands of decreasing priority levels
– swapper, block I/O device control, file manipulation,

character I/O device control, user processes
bands optimize access to block devices (disk), allow
OS to respond quickly to system calls
penalizes CPU-bound processes w.r.t. I/O bound
targets general-purpose time sharing environment

6CMSC 412 – S3 (lect6)

Windows NT

Target:
– single user, in highly interactive environment
– a server

preemptive scheduler with multiple priority levels
flexible system of priorities, RR within each, plus
dynamic variation on basis of current thread activity
for some levels
2 priority bands, real-time and variable, each with 16
levels
– real-time ones have higher priority, since require immediate

attention(e.g. communication, real-time task)

7CMSC 412 – S3 (lect6)

Windows NT (cont.)

In real-time class, all threads have fixed priority that
never changes
In variable class, priority begins at an initial value,
and can change, up or down
– FIFO queue at each level, but thread can switch queues

Dynamic priority for a thread can be from 2 to 15
– if thread interrupted because time slice is up, priority lowered
– if interrupted to wait on I/O event, priority raised
– favors I/O-bound over CPU-bound threads
– for I/O bound threads, priority raised more for interactive

waits (e.g. keyboard, display) than for other I/O (e.g. disk)

8CMSC 412 – S3 (lect6)

Cooperating Processes

Often need to share information between processes
– information: a shared file
– computational speedup:

• break the problem into several tasks that can be run on
different processors

• requires several processors to actually get speedup
– modularity: separate processes for different functions

• compiler driver, compiler, assembler, linker
– convenience:

• editing, printing, and compiling all at once

9CMSC 412 – S3 (lect6)

Interprocess Communication

Communicating processes establish a link
– can more than two processes use a link?
– are links one way or two way?
– how to establish a link

• how do processes name other processes to talk to
– use the process id (signals work this way)
– use a name in the filesystem (UNIX domain sockets)
– indirectly via mailboxes (a separate object)

Use send/receive functions to communicate
– send(dest, message)
– receive(dest, message)

10CMSC 412 – S3 (lect6)

Producer-consumer pair

producer creates data and sends it to the consumer
consumer read the data and uses it
examples: compiler and assembler can be used as a
producer consumer pair
Buffering
– processes may not produce and consume items one by one
– need a place to store produced items for the consumer

• called a buffer
– could be fixed size (bounded buffer) or unlimited (un-

bounded buffer)

11CMSC 412 – S3 (lect6)

Message Passing
What happens when a message is sent?
– sender blocks waiting for receiver to receive
– sender blocks until the message is on the wire
– sender blocks until the OS has a copy of the message
– sender blocks until the receiver responds to the message

• sort of like a procedure call
• could be expanded into a remote procedure call (RPC) system

Error cases
– a process terminates:

• receiver could wait forever
• sender could wait or continue (depending on semantics)

– a message is lost in transit
• who detects this? could be OS or the applications

Special case: if 2 messages are buffered, drop the older one
– useful for real-time info systems

