
1CMSC 412 – S03 (lect8)

Announcements
Program #1
– Due on Th 9:00 AM

Midterm #1
– Thursday of next week (March 6th)

Reading
– Chapter 7 (this whole week)

2CMSC 412 – S03 (lect8)

Synchronization Hardware
If it’s hard to do synchronization in software, why not
do it in hardware?
Disable Interrupts
– works, but is not a great idea since important events may be

lost.
– doesn’t generalize to multi-processors

test-and-set instruction
– one atomic operation

• executes without being interrupted
– operates on one bit of memory
– returns the previous value and sets the bit to one

swap instruction
– one atomic operation
– swap(a,b) puts the old value of b into a and of a into b

3CMSC 412 – S03 (lect8)

Using Test and Set for Mutual Exclusion
repeat

while test-and-set(lock);
// critical section
lock = false;
// non-critical section

until false;

bounded waiting time version
repeat

waiting[i] = true;
key = true;
while waiting[i] and key

key = test-and-set(lock);
waiting[i] = false;
// critical section
j = (i + 1) % n
while (j != i) and (!waiting[j])

j = (j + 1) % n;
if (j == i)

lock = false;
else

waiting[j] = false;
// non-critical section

until false;

Note: no priority based on wait time

no process waiting

release process j

look for a waiting process

wait until released or no one busy

4CMSC 412 – S03 (lect8)

Semaphores

getting critical section problem correct is difficult
– harder to generalize to other synchronization problems
– Alternative is semaphores

semaphores
– integer variable
– only access is through atomic operations

P (or wait)
while s <= 0;
s = s - 1;

V (or signal)
s = s + 1

Two types of Semaphores
– Counting (values range from 0 to n)
– Binary (values range from 0 to 1)

5CMSC 412 – S03 (lect8)

Using Semaphores
critical section
repeat

P(mutex);
// critical section
V(mutex);
// non-critical section

until false;
Require that Process 2 begin statement S2 after
Process 1 has completed statement S1:
semaphore synch = 0;
Process 1

S1
V(synch)

Process 2
P(synch)
S2

6CMSC 412 – S03 (lect8)

Implementing semaphores

Busy waiting implementations
Instead of busy waiting, process can block itself
– place process into queue associated with semaphore
– state of process switched to waiting state
– transfer control to CPU scheduler
– process gets restarted when some other process executes a

signal operations

7CMSC 412 – S03 (lect8)

Implementing Semaphores
declaration
type semaphore = record

value: integer = 1;
L: FIFO list of process;

end;
P(S): S.value = S.value -1

if S.value < 0 then {
add this process to S.L
block;

};
V(S): S.value = S.value+1

if S.value <= 0 then {
remove process P from S.L
wakeup(P);

}

Can be neg, if so, indicates
how many waiting

Bounded waiting!!

Revised from class :-(

8CMSC 412 – S03 (lect8)

Readers/Writers Problem

Data area shared by processors
Some processes read data, others write data
– Any number of readers my simultaneously read the data
– Only one writer at a time may write
– If a writer is writing to the file, no reader may read it

Two of the possible approaches
– readers have priority or writers have priority

9CMSC 412 – S03 (lect8)

Readers have Priority
Semaphore wsem = 1, x = 1;
reader()
{
repeat

P(x);
readcount = readcount + 1;
if readcount = 1 then P (wsem);

V(x);
READUNIT;
P(x);

readcount = readcount - 1;
if readcount = 0 V(wsem);

V(x);
forever

};

writer()
{

repeat
P(wsem);
WRITEUNIT;
V(wsem)

forever
}

10CMSC 412 – S03 (lect8)

Comments on Reader Priority

semaphores x,wsem are initialized to 1
note that readers have priority - a writer can gain
access to the data only if there are no readers (i.e.
when readcount is zero, signal(wsem) executes)
possibility of starvation - writers may never gain
access to data

11CMSC 412 – S03 (lect8)

Writers Have Priority
reader
repeat

P(z);
P(rsem);
P(x);

readcount++;
if (readcount == 1) then

P(wsem);
V(x);
V(rsem);

V(z);
readunit;
P(x);

readcount- -;
if readcount == 0 then

V (wsem)
V(x)

forever

writer
repeat

P(y);
writecount++:
if writecount == 1 then

P(rsem);
V(y);
P(wsem);
writeunit
V(wsem);
P(y);

writecount--;
if (writecount == 0) then

V(rsem);
V(y);

forever;

12CMSC 412 – S03 (lect8)

Notes on readers/writers with writers
getting priority

P(z);
P(rsem);
P(x);

readcount++;
if (readcount==1) then

P(wsem);
V(x);
V(rsem);

V(z);

readers queue up on semaphore
z; this way only a single reader
queues on rsem. When a writer
signals rsem, only a single
reader is allowed through

Semaphores x,y,z,wsem,rsem are initialized to 1

