Announcements
e Midterm is Thursday

e Project #2 is available on the web

CMSC 412 — S03 (lect 10)

Deadlock Detection

e Resource Allocation Graph

— Graph consists of vertices
 type P ={P,,..,P,} represent processes
 type R ={R;,,..,R,,} represent resources

— Directed edge from process P, to resource type R; signifies
that a process i has requested resource type |

— request edge

— Adirected edge from R; to P, indicates that resource R, has
been allocated to process P,

— assignment edge

CMSC 412 — S03 (lect 10)

Deadlock Detection (cont.)

e Resource types may have more than one instance
e Each resource vertex represents a resource type.

e Each resource instance is of a unique resource type,
each resource instance is represented by a
“subvertex” associated with a resource vertex

— (Silverschatz represents resource vertices by squares,
resource instance “subvertices” by dots in the square.
Process vertices are represented by circles)

e A request edge points to a resource vertex

e An assignment edge points from a resource
“subvertex” to a process vertex

CMSC 412 — S03 (lect 10)

Resource Allocation Graph

e \When a process P, requests an instance of
resource type R;, a request edge is inserted
into the resource allocation graph

e \When the request can be fulfilled, the request
edge is transformed into an assignment edge

e \When the process is done using the
resource, the assignment edge is deleted

e If the graph contains no cycles, no deadlock
can exist

CMSC 412 — S03 (lect 10)

Pl

CMSC 412 — S03 (lect 10)

N

Deadlock!

R1

\ P2

.-

Pl

CMSC 412 — S03 (lect 10)

Deadlock??

N

R

1
R2

)
™~

-

P3

P2

P3 could finish with
1ts instance of R1, release
the instance, then P2

would claim that
instance of R1

Pl

CMSC 412 — S03 (lect 10)

N

No!!

R1

.-

P3

P2

Then, P2 could

finish with 1its instances
of R1 and R2 and
release these resources. R1

P1 then gets what 1t wants

Pl

CMSC 412 — S03 (lect 10)

L

P3

P2

Detecting Deadlock

Work is a vector of length m (resources)
Finish is a vector of length n (processes)

e Allocation is an n x m matrix indicating the number of
each resource type held by each process

e Requestis an m x n matrix indicating the number of
additional resources requested by each process

1. Work = Available; Borker's aiotme s e
If Allocation[i] =0 Finish*!alse else Finish = true;

2. Find an j such that Finishl[i] = false and Request, <=
Work if no such i, go to 4

3. Work += Allocation ; Finish[i] = true; goto step 2

4. If Finish[i] = false for some i, system is in deadlock

Note: this requires m x n? steps

CMSC 412 — S03 (lect 10)

Recovery from deadlock

e Must free up resources by some means

e Process termination
— kill all deadlocked processes
— select one process and Kkill it
« must re-run deadlock detection algorithm again to see if it
is freed.
e Resource Preemption
— select a process, resource and de-allocate it
— rollback the process
* needs to be reset the process to a safe state
* this requires additional state
— starvation
« what prevents a process from never finishing?

CMSC 412 — S03 (lect 10)

10

