
1CMSC 412 – S03 (lect 10)

Announcements
Midterm is Thursday

Project #2 is available on the web

2CMSC 412 – S03 (lect 10)

Deadlock Detection

Resource Allocation Graph
– Graph consists of vertices

• type P = {P1,..,Pn} represent processes
• type R = {R1,..,Rm} represent resources

– Directed edge from process Pi to resource type Rj signifies
that a process i has requested resource type j

– request edge
– A directed edge from Rj to Pi indicates that resource Rj has

been allocated to process Pi

– assignment edge

3CMSC 412 – S03 (lect 10)

Resource types may have more than one instance
Each resource vertex represents a resource type.
Each resource instance is of a unique resource type,
each resource instance is represented by a
“subvertex” associated with a resource vertex
– (Silverschatz represents resource vertices by squares,

resource instance “subvertices” by dots in the square.
Process vertices are represented by circles)

A request edge points to a resource vertex
An assignment edge points from a resource
“subvertex” to a process vertex

Deadlock Detection (cont.)

4CMSC 412 – S03 (lect 10)

Resource Allocation Graph

When a process Pi requests an instance of
resource type Rj, a request edge is inserted
into the resource allocation graph
When the request can be fulfilled, the request
edge is transformed into an assignment edge
When the process is done using the
resource, the assignment edge is deleted
If the graph contains no cycles, no deadlock
can exist

5CMSC 412 – S03 (lect 10)

Deadlock!

.

.P1 P2

R1

R2

6CMSC 412 – S03 (lect 10)

Deadlock??

R1

.

. .P1

P2
R2

P3

7CMSC 412 – S03 (lect 10)

No!!

P2

P3

P3 could finish with
its instance of R1, release
the instance, then P2
would claim that
instance of R1

.

. .P1

R2

R1

8CMSC 412 – S03 (lect 10)

.

. .P1

R2

R1

Then, P2 could
finish with its instances
of R1 and R2 and
release these resources.
P1 then gets what it wants

P3

P2

9CMSC 412 – S03 (lect 10)

Detecting Deadlock
Work is a vector of length m (resources)
Finish is a vector of length n (processes)

Allocation is an n x m matrix indicating the number of
each resource type held by each process
Request is an m x n matrix indicating the number of
additional resources requested by each process

1. Work = Available;
if Allocation[i] != 0 Finish = false else Finish = true;

2. Find an i such that Finish[i] = false and Requesti <=
Work if no such i, go to 4

3. Work += Allocation ; Finish[i] = true; goto step 2
4. If Finish[i] = false for some i, system is in deadlock
Note: this requires m x n2 steps

This is the difference from the
Banker’s algorithm.

10CMSC 412 – S03 (lect 10)

Recovery from deadlock

Must free up resources by some means
Process termination
– kill all deadlocked processes
– select one process and kill it

• must re-run deadlock detection algorithm again to see if it
is freed.

Resource Preemption
– select a process, resource and de-allocate it
– rollback the process

• needs to be reset the process to a safe state
• this requires additional state

– starvation
• what prevents a process from never finishing?

