
1CMSC 412 – S02 (lect 14)

Announcements
Project #3
– Is out
– Deadline is before midterm #2 (start early)

2CMSC 412 – S02 (lect 14)

Project #3

What is pageable?
– User memory including text, data, and stack

Memory model
– Kernel memory in low memory
– User memory in high memory

Paging Bits
– cr3 – Page Table Base Register (PTBR)
– cr0:31 – Enable Paging bit
– cr2 – Address causing page fault

Page Faults
– Look in errorCode fields of interrupt

3CMSC 412 – S02 (lect 14)

Steps of Project

Enable Paging
– Map all of physical memory

Get separate page table for User Process
– Map user pages at 2GB
– Update Segment Info
– Context switch PTBR

Get page faults working

4CMSC 412 – S02 (lect 14)

Working Sets and Page Replacement

Programs usually display reference locality
– temporal locality

• repeated access to the same memory location
– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference
• sequence of nested storage media

Working set
– set of pages referenced in the last delta references

Small
Very Fast

Large
Very Slow

Working Set Size

5CMSC 412 – S02 (lect 14)

Preventing Threashing

Need to ensure that we can keep the working set in
memory
– if the working sets of the processes in memory exceed total

page frames, then we need to swap a process out
How do we compute the working set?
– can approximate it using a reference bit

6CMSC 412 – S02 (lect 14)

Implementation Issues

How big should a page be?
– want to trade cost of fault vs. fragmentation

• cost of fault is: trap + seek + latency + transfer
– Does the OS page size have to equal the HW page size?

• no, just needs to be a multiple of it
How does I/O relate to paging
– if we request I/O for a process, need to lock the page

• if not, the I/O device can overwrite the page
Can the kernel be paged?
– most of it can be.
– what about the code for the page fault handler?

7CMSC 412 – S02 (lect 14)

Segmentation

Segmentation is used to give each program several
independent protected address spaces
– each segment is an independent protected address space
– access to segments is controlled by data which describes

size, privilege level required to access, protection (whether
segment is read-only etc)

– segments may or may not overlap
• disjoint segments can be used to protect against

programming errors
• separate code, data stack segments

8CMSC 412 – S02 (lect 14)

– Disjoint Segments can be used to exploit expanded address
space

• In 16 bit architectures e.g. (8086 and 80x86 in V86
mode) each segment has only 16 bits of address space

• In distributed networks consisting of multiple 32 bit
machines, segmentation can be used to support single
huge address space

– Segments can span identical regions of address space - flat
model

• Windows NT and Windows ‘95 use 4 Gbyte code
segments, stack segments, data segments

9CMSC 412 – S02 (lect 14)

X86 Segmentation + Paging
Offset

+

selector

directory offsetpage

Page Directory Page Table Page Frame

Seg Descriptor

Page Table
Entry

Stored in
Segment Register Virtual Address

