
1CMSC 412 – S04 (lect 3)

Announcements
Program #1
– Will be on the web shortly

Reading
– Chapter 3
– Chapter 4 (for Thursday)

2CMSC 412 – S04 (lect 3)

Project #1

Much harder than #0
Adds loading code

3CMSC 412 – S04 (lect 3)

System Structure

Simple Structure (or no structure)
– any part of the system may use the functionality of the rest of

the system
– MS-DOS (user programs can call low level I/O routines)

Layered Structure
– layer n can only see the functionality that layer n-1 exports
– provides good abstraction from the lower level details

• new hardware can be added if it provides the interface
required of a particular layer

– system call interface is an example of layering
– can be slow if there are too many layers

Hybrid Approach
– most real systems fall somewhere in the middle

4CMSC 412 – S04 (lect 3)

Policy vs. Mechanism

Policy - what to do
– users should not be able to read other users files

Mechanism- how to accomplish the goal
– file protection properties are checked on open system call

Want to be able to change policy without having to
change mechanism
– change default file protection

Extreme examples of each:
– micro-kernel OS - all mechanism, no policy
– MACOS - policy and mechanism are bound together

5CMSC 412 – S04 (lect 3)

Processes

What is a process?
– a program in execution
– “An execution stream in the context of a particular state”
– a piece of code along with all the things the code can affect

or be affected by.
• this is a bit too general. It includes all files and

transitively all other processes
– only one thing happens at a time within a process

What’s not a process?
– program on a disk - a process is an active object, but a

program is just a file

6CMSC 412 – S04 (lect 3)

Multi-programming

Systems that permit more than one process at once
– virtually all computers today

Permits more efficient use of resources
– while one process is waiting another can run

Provides natural abstraction of different activities
– windowing system
– editor
– mail daemon

Preemptive vs. non-preemptive muti-programming
– preemptive means that a process can be forced off the

processor by the OS
– provides processor protection

7CMSC 412 – S04 (lect 3)

Process State

Processes switch between different states based on
internal and external events
Each process is in exactly one state at a time
Typical States of Processes (varies with OS)
– New: The process is just being created
– Running: Instructions are being executed

• only one process per processor may be running
– Waiting: The process is waiting for an event to occur

• examples: I/O events, signals
– Ready: The process is waiting to be assigned to a processor
– Terminated: The process has finished execution

8CMSC 412 – S04 (lect 3)

Process State Transitions

new

readyready runningrunning

waitingwaiting

terminatedterminated
admitted

interrupt

dispatch

I/O request or event waitI/O request or
event wait done

Kill

exit

9CMSC 412 – S04 (lect 3)

Components of a Process

Memory Segments
– Program - often called the text segment
– Data - global variables
– Stack - contains activation records

Processor Registers
– program counter - next instruction to execute
– general purpose CPU registers
– processor status word

• results of compare operations
– floating point registers

10CMSC 412 – S04 (lect 3)

Process Control Block
Stores all of the information about a process
PCB contains
– process state: new, ready, etc.
– processor registers
– Memory Management Information

• page tables, and limit registers for segments
– CPU scheduling information

• process priority
• pointers to process queues

– Accounting information
• time used (and limits)
• files used
• program owner

– I/O status information
• list of open files
• pending I/O operations

11CMSC 412 – S04 (lect 3)

Storing PCBs

Need to keep track of the different processes in the
system
Collection of PCBs is called a process table
How to store the process table?
First Option:

Problems with Option 1:
– hard to find processes
– how to fairly select a process

P1 P2 P2 P3 P4 P5

Ready Waiting Waiting ReadyNew Term

12CMSC 412 – S04 (lect 3)

Queues of Processes

Store processes in queues based on state

P1 P2
Ready
Queue

P3 P4
Disk
Queue

P5 P6
Network
Queue

13CMSC 412 – S04 (lect 3)

forking a new process

create a PCB for the new process
– copy most entries from the parent
– clear accounting fields
– buffered pending I/O
– allocate a pid (process id for the new process)

allocate memory for it
– could require copying all of the parents segments
– however, text segment usually doesn’t change so that could

be shared
– might be able to use memory mapping hardware to help

• will talk more about this in the memory management part
of the class

add it to the ready queue

14CMSC 412 – S04 (lect 3)

Process Termination
Process can terminate self
– via the exit system call

One process can terminate another process
– use the kill system call
– can any process kill any other process?

• No, that would be bad.
• Normally an ancestor can terminate a descendant

OS kernel can terminate a process
– exceeds resource limits
– tries to perform an illegal operation

What if a parent terminates before the child
– called an orphan process
– in UNIX becomes child of the root process
– in VMS - causes all descendants to be killed

