
1CMSC 412 – S04 (lect6)

Announcements
Program #2
– Info on the Web

Reading
– Chapter 7

Don’t send me email from hotmail or yahoo
– It’s auto-deleted as SPAM

2CMSC 412 – S04 (lect6)

Cooperating Processes

Often need to share information between processes
– information: a shared file
– computational speedup:

• break the problem into several tasks that can be run on
different processors

• requires several processors to actually get speedup
– modularity: separate processes for different functions

• compiler driver, compiler, assembler, linker
– convenience:

• editing, printing, and compiling all at once

3CMSC 412 – S04 (lect6)

Interprocess Communication

Communicating processes establish a link
– can more than two processes use a link?
– are links one way or two way?
– how to establish a link

• how do processes name other processes to talk to
– use the process id (signals work this way)
– use a name in the filesystem (UNIX domain sockets)
– indirectly via mailboxes (a separate object)

Use send/receive functions to communicate
– send(dest, message)
– receive(dest, message)

4CMSC 412 – S04 (lect6)

Producer-consumer pair

producer creates data and sends it to the consumer
consumer read the data and uses it
examples: compiler and assembler can be used as a
producer consumer pair
Buffering
– processes may not produce and consume items one by one
– need a place to store produced items for the consumer

• called a buffer
– could be fixed size (bounded buffer) or unlimited (un-

bounded buffer)

5CMSC 412 – S04 (lect6)

Message Passing
What happens when a message is sent?
– sender blocks waiting for receiver to receive
– sender blocks until the message is on the wire
– sender blocks until the OS has a copy of the message
– sender blocks until the receiver responds to the message

• sort of like a procedure call
• could be expanded into a remote procedure call (RPC) system

Error cases
– a process terminates:

• receiver could wait forever
• sender could wait or continue (depending on semantics)

– a message is lost in transit
• who detects this? could be OS or the applications

Special case: if 2 messages are buffered, drop the older one
– useful for real-time info systems

6CMSC 412 – S04 (lect6)

Signals (UNIX)

provide a way to convey one bit of information
between two processes (or OS and a process)
types of signals:
– change in the system: window size
– time has elapsed: alarms
– error events: segmentation fault
– I/O events: data ready

are like interrupts
– a processes is stopped and a special handler function is

called
a fixed set of signals is normally available

7CMSC 412 – S04 (lect6)

Signals

Signal Handler
Table

SigIOHandler
{
}

SigAlarmHandler
{
}

SetSigAction(sig, handler)

8CMSC 412 – S04 (lect6)

Shared Memory

Process 1 Process 2

Shared Region

Like Threads, but only part of memory shared
Allows communication without needing kernel action
– Kernel calls setup shared region

9CMSC 412 – S04 (lect6)

Producer-consumer: shared memory
Consider the following code for a producer

repeat
….
produce an item into nextp
…
while counter == n;
buffer[in] = nextp;
in = (in+1) % n;
counter++;

until false;

Now consider the consumer
repeat

while counter == 0;
nextc = buffer[out];
out = (out + 1) % n;
counter--;
consume the item in nextc

until false;

Does it work?
NO!

10CMSC 412 – S04 (lect6)

Problems with the Producer-Consumer
Shared Memory Solution

Consider the three address code for the counter
Counter Increment Counter Decrement
reg1 = counter reg2 = counter
reg1 = reg1 + 1 reg2 = reg2 - 1
counter = reg1 counter = reg2

Now consider an ordering of these instructions
T0 producer reg1 = counter { reg1 = 5 }
T1 producer reg1 = reg1 + 1 { reg1 = 6 }
T2 consumer reg2 = counter { reg2 = 5 }
T3 consumer reg2 = reg2 - 1 { reg2 = 4 }
T4 producer counter = reg1 { counter = 6 }
T5 consumer counter = reg2 { counter = 4 }

This
should
be 5!

