
1CMSC 412 – S04 (lect 12)

Announcements
Midterm #1
– Solution on web
– Must submit requests for re-grades via grade web site by

3/18/04
– Average: 64.3, Standard Dev: 13.9

P1 P2 P3 P4 P5 Tot
13.9 9.7 15.4 14.1 11.4 64.3

2CMSC 412 – S04 (lect 12)

Page Replacement Algorithms
FIFO
– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)
• number of page faults may increase when one increases number of

page frames (discouraging!)
– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

Optimal
– Replace the page that will be used furthest in the future
– Good algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is

sometimes possible

3CMSC 412 – S04 (lect 12)

Page Replacement Algorithms

LRU
– Replace the page that was actually used longest ago
– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page
Approximate LRU algorithms
– maintain reference bit(s) which are set whenever a page is

used
– at the end of a given time period, reference bits are cleared

4CMSC 412 – S04 (lect 12)

FIFO Example (3 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (1,2,5)
• access 2 - (1,2,5)
• access 3 - (2,5,3) fault, replacement
• access 4 - (5,3,4) fault, replacement
• access 5 - (5,3,4)

– 9 page faults

5CMSC 412 – S04 (lect 12)

LRU Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (2,5,1)
• access 2 - (5,1,2)
• access 3 - (1,2,3) fault, replacement
• access 4 - (2,3,4) fault, replacement
• access 5 - (3,4,5) fault, replacement

– 10 page faults

6CMSC 412 – S04 (lect 12)

LRU Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (1,2,3,4) fault, replacement
• access 1 - (2,3,4,1)
• access 2 - (3,4,1,2)
• access 5 - (4,1,2,5) fault, replacement
• access 1- (4,2,5,1)
• access 2 - (4,5,1,2)
• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 8 faults

7CMSC 412 – S04 (lect 12)

FIFO Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (1,2,3,4) fault, replacement
• access 1 - (1,2,3,4)
• access 2 - (1,2,3,4)
• access 5 - (2,3,4,5) fault, replacement
• access 1- (3,4,5,1) fault, replacement
• access 2 - (4,5,1,2) fault, replacement
• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 10 Page faults

8CMSC 412 – S04 (lect 12)

Thrashing

Virtual memory is not “free”
– can allocate so much virtual memory that the system spends

all its time getting pages
– the situation is called thrashing
– need to select one or more processes to swap out

Swapping
– write all of the memory of a process out to disk
– don’t run the process for a period of time
– part of medium term scheduling

How do we know when we are thrashing?
– check CPU utilization?
– check paging rate?
– Answer: need to look at both

• low CPU utilization plus high paging rate --> thrashing

9CMSC 412 – S04 (lect 12)

Working Sets and Page Replacement

Programs usually display reference locality
– temporal locality

• repeated access to the same memory location
– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference
• sequence of nested storage media

Working set
– set of pages referenced in the last delta references

Small
Very Fast

Large
Very Slow

Working Set Size

10CMSC 412 – S04 (lect 12)

Improving Heap Locality

Malloc (or new) don’t ensure locality among requests
– Two calls to malloc could get memory on different cache

lines, pages, etc.
Option 1:
– Malloc a large chunk of memory and parcel it out yourself

Option 2:
– Add a “near” hint parameter to malloc
– Indicates that memory should be allocated near the target

location
• It’s only a performance hint, and malloc can ignore it
• Allows locality improvement without major changes

11CMSC 412 – S04 (lect 12)

Preventing Thrashing

Need to ensure that we can keep the working set in
memory
– if the working sets of the processes in memory exceed total

page frames, then we need to swap a process out
How do we compute the working set?
– can approximate it using a reference bit

12CMSC 412 – S04 (lect 12)

Implementation Issues

How big should a page be?
– want to trade cost of fault vs. fragmentation

• cost of fault is: trap + seek + latency + transfer
– Does the OS page size have to equal the HW page size?

• no, just needs to be a multiple of it
How does I/O relate to paging
– if we request I/O for a process, need to lock the page

• if not, the I/O device can overwrite the page
Can the kernel be paged?
– most of it can be.
– what about the code for the page fault handler?

13CMSC 412 – S04 (lect 12)

Review Exam

We reviewed each question of the exam
Synchronization will appear again on the midterm #2

