
1CMSC 412 – S10 (lect 2)

Announcements
Program #0
– its due next Friday

Reading
– Chapter 2
– Chapter 3 (for Tuesday)

2CMSC 412 – S10 (lect 2)

Computer Systems

Computers have many different devices
– I/O Devices
– Memory

• volatile storage
– Processor(s)

Processor Memory

Mem. Controller

I/O Bus Controller
Memory Bus

I/O Bus

Display AdapterUSB Adapter

USB Bus

Disk Drives Keyboard DVD Drive

Network Adapter

Network

Disk Controller

3CMSC 412 – S10 (lect 2)

I/O Systems

Many different types of devices
– disks
– networks
– displays
– mouse
– keyboard
– tapes

Each have a different expectation for performance
– bandwidth

• rate at which data can be moved
– latency

• time from request to first data back

4CMSC 412 – S10 (lect 2)

Different Requirements lead to Multiple
Buses

Processor Bus (on chip)
– Many Gigabytes/sec

Memory Bus (on processor board)
– ~10s Gigabyte per second

I/O Bus (PCI)
– ~1s gigabytes per second
– buses are more complex than we saw in class

• show PCI spec.

Device Bus (SCSI, USB)
– tens of megabytes per second

5CMSC 412 – S10 (lect 2)

Issues In Busses

Performance
– increase the data bus width
– have separate address and data busses
– block transfers

• move multiple words in a single request

Who controls the bus?
– one or more bus masters

• a bus master is a device that can initiate a bus request
– need to arbitrate who is the bus master

• assign priority to different devices
• use a protocol to select the highest priority item

– daisy chained
– central control

6CMSC 412 – S10 (lect 2)

Disks

Several types:
– Hard Disks - rigid surface with magnetic coating
– Floppy disks - flexible surface with magnetic coating
– Optical (CDs and DVDs) - read only, write once, multi-write
– Solid State (Flash) – fast seek times, limited number of writes

Hard Disk Drives:
– collection of platters
– platters contain concentric rings called tracks
– tracks are divided into fixed sized units called sectors
– a cylinder is a collection of all tracks equal distant from the center of

disk
– Current Performance:

• capacity: gigabytes to terabytes
• throughput: sustained < 20 megabytes/sec
• latency: mili-seconds

7CMSC 412 – S10 (lect 2)

I/O Interfaces
Need to adapt Devices to CPU speeds
Moving the data
– Programmed I/O

• Special instructions for I/O
– Mapped I/O

• looks like memory only slower
– DMA (direct memory access)

• device controller can write to memory
• processor is not required to be involved
• can grab bus bandwidth which can slow the processor

down

8CMSC 412 – S10 (lect 2)

I/O Interrupts

Interrupt defined
– indication of an event
– can be caused by hardware devices

• indicates data present or hardware free
– can be caused by software

• system call (or trap)
– CPU stops what it is doing and executes a handler function

• saves state about what was happening
• returns where it left off when the interrupt is done

Need to know what device interrupted
– could ask each device (slow!)
– instead use an interrupt vector

• array of pointers to functions to handle a specific interrupt

9CMSC 412 – S10 (lect 2)

Hardware Protection
Need to protect programs from each other
Processor has modes
– user mode and supervisor (monitor, privileged)
– operations permitted in user mode are a subset of supervisor

mode

Memory Protection
– control access to memory
– only part of the memory is available

• can be done with base/bound registers

I/O Protection
– I/O devices can only be accessed in supervisor mode

Processor Protection
– Periodic timer returns processor to supervisor mode

10CMSC 412 – S10 (lect 2)

System Calls

Provide the interface between application programs
and the kernel
Are like procedure calls
– take parameters
– calling routine waits for response

Permit application programs to access protected
resources

load r0, x
system call 10

User Program Operating System
(kernel)

Code for
sys call 10

register r0

11CMSC 412 – S10 (lect 2)

System Call Mechanism

Use numbers to indicate what call is made
Parameters are passed in registers or on the stack
Why do we use indirection of system call numbers
rather than directly calling a kernel subroutine?
– provides protection since the only routines available are

those that are export
– permits changing the size and location of system call

implementations without having to re-link application
programs

12CMSC 412 – S10 (lect 2)

Types of System Calls
File Related
– open, create
– read, write
– close, delete
– get or set file attributes

Information
– get time
– set system data (OS parameters)
– get process information (id, time used)

Communication
– establish a connection
– send, receive messages
– terminate a connection

Process control
– create/terminate a process (including self)

13CMSC 412 – S10 (lect 2)

System Structure

Simple Structure (or no structure)
– any part of the system may use the functionality of the rest of

the system
– MS-DOS (user programs can call low level I/O routines)

Layered Structure
– layer n can only see the functionality that layer n-1 exports
– provides good abstraction from the lower level details

• new hardware can be added if it provides the interface
required of a particular layer

– system call interface is an example of layering
– can be slow if there are too many layers

Hybrid Approach
– most real systems fall somewhere in the middle

14CMSC 412 – S10 (lect 2)

Policy vs. Mechanism

Policy - what to do
– users should not be able to read other users files

Mechanism- how to accomplish the goal
– file protection properties are checked on open system call

Want to be able to change policy without having to
change mechanism
– change default file protection

Extreme examples of each:
– micro-kernel OS - all mechanism, no policy
– MACOS - policy and mechanism are bound together

15CMSC 412 – S10 (lect 2)

Processes

What is a process?
– a program in execution
– “An execution stream in the context of a particular state”
– a piece of code along with all the things the code can affect

or be affected by.
• this is a bit too general. It includes all files and

transitively all other processes
– only one thing happens at a time within a process

What’s not a process?
– program on a disk - a process is an active object, but a

program is just a file

16CMSC 412 – S10 (lect 2)

Multi-programming

Systems that permit more than one process at once
– virtually all computers today

Permits more efficient use of resources
– while one process is waiting another can run

Provides natural abstraction of different activities
– windowing system
– editor
– mail daemon

Preemptive vs. non-preemptive muti-programming
– preemptive means that a process can be forced off the

processor by the OS
– provides processor protection

