Announcements

e Program #0
— its due next Friday

e Reading
— Chapter 2
— Chapter 3 (for Tuesday)

CMSC 412 — S10 (lect 2)




Computer Systems

e Computers have many different devices

— 1/O Devices

Memor
— Memory Processor y

 volatile storage |
Mem. Controller
— Processor(s)
Memory Bus
I/O Bus Controller
I/O Bus
Disk Controllerl | USB Adapter Display Adapter Network Adapter
- - USB Bus i
‘ \ QO %} Network
Disk Drives Keyboard DVD Drive

CMSC 412 — S10 (lect 2)




/O Systems

e Many different types of devices
— disks
— networks
— displays
— mouse
— keyboard
— tapes
e Each have a different expectation for performance
— bandwidth
 rate at which data can be moved
— latency
 time from request to first data back

CMSC 412 — S10 (lect 2)




Different Requirements lead to Multiple
Buses

e Processor Bus (on chip)
— Many Gigabytes/sec

e Memory Bus (on processor board)
— ~10s Gigabyte per second

e |/O Bus (PCI)

— ~1s gigabytes per second
— buses are more complex than we saw in class
» show PCI spec.

e Device Bus (SCSI, USB)
— tens of megabytes per second

CMSC 412 — S10 (lect 2)




Issues In Busses

e Performance
— Increase the data bus width
— have separate address and data busses
— block transfers
* move multiple words in a single request

e \Who controls the bus?
— one or more bus masters
e a bus master is a device that can initiate a bus request
— need to arbitrate who is the bus master
» assign priority to different devices
» use a protocol to select the highest priority item
— daisy chained
— central control

CMSC 412 — S10 (lect 2)




Disks

e Several types:

Hard Disks - rigid surface with magnetic coating

Floppy disks - flexible surface with magnetic coating

Optical (CDs and DVDs) - read only, write once, multi-write
Solid State (Flash) — fast seek times, limited number of writes

e Hard Disk Drives:

collection of platters
platters contain concentric rings called tracks
tracks are divided into fixed sized units called sectors
a cylinder is a collection of all tracks equal distant from the center of
disk
Current Performance:
e capacity: gigabytes to terabytes
« throughput: sustained < 20 megabytes/sec
 latency: mili-seconds

CMSC 412 — S10 (lect 2)




/O Interfaces

e Need to adapt Devices to CPU speeds

e Moving the data

— Programmed I/O
» Special instructions for I/O

— Mapped I/O
 looks like memory only slower

— DMA (direct memory access)
 device controller can write to memory
e processor is not required to be involved

e can grab bus bandwidth which can slow the processor
down

CMSC 412 — S10 (lect 2)




/O Interrupts

e Interrupt defined

— Indication of an event

— can be caused by hardware devices
 indicates data present or hardware free

— can be caused by software
» system call (or trap)

— CPU stops what it is doing and executes a handler function
e saves state about what was happening
» returns where it left off when the interrupt is done

e Need to know what device interrupted
— could ask each device (slow!)
— Instead use an interrupt vector
 array of pointers to functions to handle a specific interrupt

CMSC 412 — S10 (lect 2)




Hardware Protection

e Need to protect programs from each other

e Processor has modes
— user mode and supervisor (monitor, privileged)

— operations permitted in user mode are a subset of supervisor
mode

e Memory Protection
— control access to memory
— only part of the memory is available
e can be done with base/bound registers

e |/O Protection
— |/O devices can only be accessed in supervisor mode

e Processor Protection
— Periodic timer returns processor to supervisor mode

CMSC 412 — S10 (lect 2)




System Calls

e Provide the interface between application programs
and the kernel

e Are like procedure calls

— take parameters
— calling routine walits for response

e Permit application programs to access protected

resources
register rO

- \

load r0, x // \ Code for
sys call 10

system call 10

User Program Operating System

CMSC 412 — S10 (lect 2) (kernel)

10




System Call Mechanism

e Use numbers to indicate what call is made
e Parameters are passed in registers or on the stack

e \Why do we use indirection of system call numbers
rather than directly calling a kernel subroutine?

— provides protection since the only routines available are
those that are export

— permits changing the size and location of system call
Implementations without having to re-link application
programs

CMSC 412 — S10 (lect 2) 11




Types of System Calls

e File Related
— open, create
— read, write
— close, delete
— get or set file attributes
e [nformation
— gettime
— set system data (OS parameters)
— get process information (id, time used)
e Communication
— establish a connection
— send, receive messages
— terminate a connection
e Process control
— create/terminate a process (including self)

CMSC 412 — S10 (lect 2)

12




System Structure

e Simple Structure (or no structure)

— any part of the system may use the functionality of the rest of
the system

— MS-DOS (user programs can call low level I/O routines)

e Layered Structure
— layer n can only see the functionality that layer n-1 exports
— provides good abstraction from the lower level detalls

 new hardware can be added if it provides the interface
required of a particular layer

— system call interface is an example of layering
— can be slow if there are too many layers

e Hybrid Approach
— most real systems fall somewhere in the middle

CMSC 412 — S10 (lect 2) 13




Policy vs. Mechanism

e Policy - what to do
— users should not be able to read other users files

e Mechanism- how to accomplish the goal
— file protection properties are checked on open system call

e \Want to be able to change policy without having to
change mechanism
— change default file protection

e Extreme examples of each:
— micro-kernel OS - all mechanism, no policy
— MACQOS - policy and mechanism are bound together

CMSC 412 — S10 (lect 2) 14




Processes

e \What is a process?

a program in execution

“An execution stream in the context of a particular state”

a piece of code along with all the things the code can affect

or be affected by.

« this is a bit too general. It includes all files and
transitively all other processes

only one thing happens at a time within a process

e \What's not a process?
— program on a disk - a process is an active object, but a

program is just a fil

CMSC 412 — S10 (lect 2)

e

15




Multi-programming

e Systems that permit more than one process at once
— virtually all computers today

e Permits more efficient use of resources
— while one process is waiting another can run

e Provides natural abstraction of different activities
— windowing system

— editor

— mail daemon

e Preemptive vs. non-preemptive muti-programming

— preemptive means that a process can be forced off the
processor by the OS

— provides processor protection

CMSC 412 — S10 (lect 2)

16




