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Announcements
Program #1 
– Due Sunday

Reading
– Continue scheduling
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Priority Based Scheduling
Priorities
– assign each process a priority, and scheduler always 

chooses process of higher priority over one of lower priority

More than one ready queue, ordered by priorities
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Priority Algorithms

Fixed Queues
– processes are statically assigned to a queue
– sample queues: system, foreground, background

Multilevel Feedback
– processes are dynamically assigned to queues
– penalize jobs that have been running longer
– preemptive, with dynamic priority
– have N ready queues (RQ0-RQN), 

• start process in RQ0
• if quantum expires, moved to i + 1 queue
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Feedback scheduling (cont.)

– problem: turnaround time for longer processes
• can increase greatly, even starve them, if new short jobs 

regularly enter system
– solution1: vary preemption times according to queue

• processes in lower priority queues have longer time slices
– solution2: promote a process to higher priority queue 

• after it spends a certain amount of time waiting for service in its 
current queue, it moves up

– solution3: allocate fixed share of CPU time to jobs
• if a process doesn’t use its share, give it to other processes
• variation on this idea: lottery scheduling

– assign a process “tickets” (# of tickets is share)
– pick random number and run the process with the winning 

ticket.
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UNIX System V
Multilevel feedback, with 
– RR within each priority queue
– 10ms second preemption
– priority based on process type and execution history, lower 

value is higher priority
priority recomputed once per second, and scheduler 
selects new process to run
For process j, P(i) = Base + CPU(i-1)/2 + nice
– P(i) is priority of process j at interval i
– Base is base priority of process j
– CPU(i) = U(i)/2 + CPU(i-1)/2

• U(i) is CPU use of process j in interval i
• exponentially weighted average CPU use of process j 

through interval i
– nice is user-controllable adjustment factor
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UNIX (cont.)

Base priority divides all processes into (non-
overlapping) fixed bands of decreasing priority levels
– swapper, block I/O device control, file manipulation, 

character I/O device control, user processes

bands optimize access to block devices (disk), allow 
OS to respond quickly to system calls
penalizes CPU-bound processes w.r.t. I/O bound 
targets general-purpose time sharing environment
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Windows NT

Target:
– single user, in highly interactive environment
– a server

preemptive scheduler with multiple priority levels
flexible system of priorities, RR within each, plus 
dynamic variation on basis of current thread activity 
for some levels
2 priority bands, real-time and variable, each with 16 
levels
– real-time ones have higher priority, since require immediate 

attention(e.g. communication, real-time task)
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Windows NT (cont.)

In real-time class, all threads have fixed priority that 
never changes
In variable class, priority begins at an initial value, 
and can change, up or down
– FIFO queue at each level, but thread can switch queues 

Dynamic priority for a thread can be from 2 to 15
– if thread interrupted because time slice is up, priority lowered
– if interrupted to wait on I/O event, priority raised
– favors I/O-bound over CPU-bound threads
– for I/O bound threads, priority raised more for interactive 

waits (e.g. keyboard, display) than for other I/O (e.g. disk)
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Multi-Processor Scheduling

Multiple processes need to be scheduled together
– Called gang-scheduling
– Allowing communicating processes to interact w/o/ waiting

Try to schedule processes back to same processor
– Called affinity scheduling

• Maintain a small ready queue per processor
• Go to global queue if nothing local is ready
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Cooperating Processes

Often need to share information between processes
– information: a shared file
– computational speedup: 

• break the problem into several tasks that can be run on 
different processors

• requires several processors to actually get speedup
– modularity: separate processes for different functions 

• compiler driver, compiler, assembler, linker
– convenience: 

• editing, printing, and compiling all at once
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Interprocess Communication

Communicating processes establish a link
– can more than two processes use a link?
– are links one way or two way?
– how to establish a link

• how do processes name other processes to talk to
– use the process id (signals work this way)
– use a name in the filesystem (UNIX domain sockets)
– indirectly via mailboxes (a separate object)

Use send/receive functions to communicate
– send(dest, message)
– receive(dest, message)
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Producer-consumer pair

producer creates data and sends it to the consumer
consumer read the data and uses it
examples: compiler and assembler can be used as a 
producer consumer pair
Buffering
– processes may not produce and consume items one by one
– need a place to store produced items for the consumer

• called a buffer
– could be fixed size (bounded buffer) or unlimited (un-

bounded buffer)


