
1CMSC 412 – S10 (lect6)

Announcements
Program #1
– Due Sunday

Reading
– Continue scheduling

2CMSC 412 – S10 (lect6)

Priority Based Scheduling
Priorities
– assign each process a priority, and scheduler always

chooses process of higher priority over one of lower priority

More than one ready queue, ordered by priorities
RQ0

CPU
RQ1

RQn

Blocked queue

...Admit

Event
Occurs

Event Wait

Preemption

Dispatch Release

3CMSC 412 – S10 (lect6)

Priority Algorithms

Fixed Queues
– processes are statically assigned to a queue
– sample queues: system, foreground, background

Multilevel Feedback
– processes are dynamically assigned to queues
– penalize jobs that have been running longer
– preemptive, with dynamic priority
– have N ready queues (RQ0-RQN),

• start process in RQ0
• if quantum expires, moved to i + 1 queue

4CMSC 412 – S10 (lect6)

Feedback scheduling (cont.)

– problem: turnaround time for longer processes
• can increase greatly, even starve them, if new short jobs

regularly enter system
– solution1: vary preemption times according to queue

• processes in lower priority queues have longer time slices
– solution2: promote a process to higher priority queue

• after it spends a certain amount of time waiting for service in its
current queue, it moves up

– solution3: allocate fixed share of CPU time to jobs
• if a process doesn’t use its share, give it to other processes
• variation on this idea: lottery scheduling

– assign a process “tickets” (# of tickets is share)
– pick random number and run the process with the winning

ticket.

5CMSC 412 – S10 (lect6)

UNIX System V
Multilevel feedback, with
– RR within each priority queue
– 10ms second preemption
– priority based on process type and execution history, lower

value is higher priority
priority recomputed once per second, and scheduler
selects new process to run
For process j, P(i) = Base + CPU(i-1)/2 + nice
– P(i) is priority of process j at interval i
– Base is base priority of process j
– CPU(i) = U(i)/2 + CPU(i-1)/2

• U(i) is CPU use of process j in interval i
• exponentially weighted average CPU use of process j

through interval i
– nice is user-controllable adjustment factor

6CMSC 412 – S10 (lect6)

UNIX (cont.)

Base priority divides all processes into (non-
overlapping) fixed bands of decreasing priority levels
– swapper, block I/O device control, file manipulation,

character I/O device control, user processes

bands optimize access to block devices (disk), allow
OS to respond quickly to system calls
penalizes CPU-bound processes w.r.t. I/O bound
targets general-purpose time sharing environment

7CMSC 412 – S10 (lect6)

Windows NT

Target:
– single user, in highly interactive environment
– a server

preemptive scheduler with multiple priority levels
flexible system of priorities, RR within each, plus
dynamic variation on basis of current thread activity
for some levels
2 priority bands, real-time and variable, each with 16
levels
– real-time ones have higher priority, since require immediate

attention(e.g. communication, real-time task)

8CMSC 412 – S10 (lect6)

Windows NT (cont.)

In real-time class, all threads have fixed priority that
never changes
In variable class, priority begins at an initial value,
and can change, up or down
– FIFO queue at each level, but thread can switch queues

Dynamic priority for a thread can be from 2 to 15
– if thread interrupted because time slice is up, priority lowered
– if interrupted to wait on I/O event, priority raised
– favors I/O-bound over CPU-bound threads
– for I/O bound threads, priority raised more for interactive

waits (e.g. keyboard, display) than for other I/O (e.g. disk)

9CMSC 412 – S10 (lect6)

Multi-Processor Scheduling

Multiple processes need to be scheduled together
– Called gang-scheduling
– Allowing communicating processes to interact w/o/ waiting

Try to schedule processes back to same processor
– Called affinity scheduling

• Maintain a small ready queue per processor
• Go to global queue if nothing local is ready

10CMSC 412 – S10 (lect6)

Cooperating Processes

Often need to share information between processes
– information: a shared file
– computational speedup:

• break the problem into several tasks that can be run on
different processors

• requires several processors to actually get speedup
– modularity: separate processes for different functions

• compiler driver, compiler, assembler, linker
– convenience:

• editing, printing, and compiling all at once

11CMSC 412 – S10 (lect6)

Interprocess Communication

Communicating processes establish a link
– can more than two processes use a link?
– are links one way or two way?
– how to establish a link

• how do processes name other processes to talk to
– use the process id (signals work this way)
– use a name in the filesystem (UNIX domain sockets)
– indirectly via mailboxes (a separate object)

Use send/receive functions to communicate
– send(dest, message)
– receive(dest, message)

12CMSC 412 – S10 (lect6)

Producer-consumer pair

producer creates data and sends it to the consumer
consumer read the data and uses it
examples: compiler and assembler can be used as a
producer consumer pair
Buffering
– processes may not produce and consume items one by one
– need a place to store produced items for the consumer

• called a buffer
– could be fixed size (bounded buffer) or unlimited (un-

bounded buffer)

