Announcements

e Reading: Chapter 16
e Project #5 Due on Friday at 6:00 PM

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

Distributed Systems

e Provide:
— access to remote resources
— security
— location independence
— load balancing

e Basic Services:
— remote login (telnet and rlogin protocols)
« extends basic access provided by normal login
— file transfer (ftp, rcp)
¢ can support anonymous transfers
— Information services (http)
* two way protocols (request/response)

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

Distributed Systems

e A unified view of local and remote access

e Typical Services
— data migration
» provide only the data required, not the whole file
* manage multiple copies as versions of the same object
— process migration
e a process can move from one machine to another
* reasons for migration:
— load balancing
— data affinity
— hardware/software preference (better configuration)

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

Distributed OS Design Issues

e Should provide same model as a central system
— easy to understand for users

e Needs to be scaleable
— will it work with 100, 1,000, or 10,000 nodes?

e Failure Modes
— avoid a single central failure point
— can loss performance or functionality with failure
* but loss should be proportional to size of failure
e Security

— should provide same guarantees on data integrity as a local
system

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

File Server State

e Does the fileserver maintain information between
requests?

e Stateless
— example: NFS

— each request contains a request to read/write a specific part
of a file

— requests must be itempotent
» the same request can be applied several times
— makes recovery of failed clients/servers easier

e Stateful
— example: AFS
— servers maintain connections for clients
— Improves performance
— required for server based cache management

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

Mounting a filesystem

e Mount attaches a filesystem to a directory
— can be used for local or remote (NFS) filesystems

Before Mount
E filesystem
@ to mount
hollings honir@\
/ Sotngs) S
mount point @ bin
| |

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

NFS

e Provides a way to mount remote filesystems
— can be done explicitly
— can be done automatically (called an automounter)
— clients are provided “file handle” by the server for future use

e Uses VFS: extended UNIX filesystem
— Inodes are replaced by vnhodes
* network wide unigue inodes
« can refer to local or remote files

read/write/open
_UNIX NFS Client NFS Server _UNIX
Filesystem t Filesystem

=N

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

Network

NFS (cont.)

e Requests
— are sent via RPC to the server
— include read/write
— query: lookup this directory info
* must be done one step (directory) at a time
— change meta data: file permissions, etc.

e Popular due to free implementations
e Provides no coherency

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

AFS

e Designed to scale to 5,000 or more workstations

e Location independent naming
— within a single cell

e volumes
— basic unit of management
— canvary in size
— can be migrated among servers
e names are mapped to “fids”
— 96 bit unique id’s for a file
— three parts: volume, vnhode, and unigidentifier
— location information is stored in a volume to location DB
* replicated on every server

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

AFS (cont.)

e File Access
— open: file is transferred from server to client
« very large files may only be partially transferred
— read/write: performed on the client
— close: file (if dirty) is written back to server
e can fail if the disk is full

e Consistency
— clients have callbacks
— sever informs client when another client writes data
— only applies to open operation
— only requires communication when:
* more than one client wants to write
e one client wants to write and others to read

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

10

Announcements

e Reading: Chapter 16, 17
e Project #5 Due on Friday at 6:00 PM

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

11

Routing

e How does a packet find its destination?
— problem is called routing

e Several options:
— source routing
* end points know how to get everywhere
» each packet is given a list of hops before it is sent
— hop-by-hop
» each host knows for each destination how to get one
more hop in the right direction

e Can route packets:
— per session
e each packet in a connection takes same path
— per packet
» packets may take different routes
» possible to have out of order delivery

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

12

Routing IP Datagrams

e Direct Delivery:

a machine on a physical network can send a physical frame
directly to another

transmission of an IP datagram between two machines on a
single physical network does not involve routers.

e Sender encapsulates datagram into a physical frame,
maps destination IP address to a physical address and
sends frame directly to destination

Sender knows that a machine is on a directly connected
network

e compare network portion of destination ID with own ID - if
these match, the datagram can be sent directly

Direct delivery can be viewed as the final step in any
datagram transmission

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth 13

Routing Datagrams (cont.)

e Indirect Delivery

— sender must identify a router to which a datagram can be
sent

— sending processor can reach a router on the sending
processor’s physical network (otherwise the network is
Isolated!)

— when frame reaches router, router extracts encapsulated
datagram and IP software selects the next router

« datagram is placed in a frame and sent off to the next
router

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

14

Table Driven Routing

e Routing tables on each machine store information about
possible destinations and how to reach them

e Routing tables only need to contain network prefixes, not
full IP addresses

— No need to include information about specific hosts

e Each entry in a routing table points to a router that can be
reached across a single network

e Hosts and routers decide
— can packet be directly sent?

— which router should be responsible for a packet (if there is
more than one on physical net)

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

15

Routing

Network
20.0.0.0 .

Network Network

>

30.0.0.0 ZIONONON0

|

10.0.0.5 20.0.0.6 30.0.0.7

20.0.0.5 30.0.0.6 40.0.0.7

Example from Comer book: Internetworking with TCP/IP: volume 1 [Third Edition] 16
CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth 16

Algorithm: RouteDatagram (Datagram, RoutingTable)

Extract destination IP address, D, from datagram
and compute network prefix N

If N matches any directly connected network
address
[Direct delivery]

Else if the table contains a host-specific route for D
[send datagram to next-hop specified in table]

Else if the table contains a route for network N
[send datagram to next-hop specified in table]

Else if the table contains a default route
[send the datagram to the default route]

Else

Algorithm from Comer book: Internetworking with TCP/IP: volume 1 [Third Edition] 17

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth 17

Routing (w/ subnets)

Network Network Network Network
30.0.0.0/ 40.0.0.0/ 128.1.0.0/1 192.4.10.0/

8 8 6 24

30.0.0.7 40.0.0.8 128.1.0.9

40.0.0.7 128.1.0.8 192.4.10.9

Consider a datagram destined for address 192.4.10.3
and the datagram arrives at router R

Extract destination IP address, D from datagram
and compute network prefix N

255.0.0.0&192.4.10.3 is not equal to 30.0.0.0

<same for entry 2 and 3>

255.255.255.0&192.4.10.3=192.4.10.0

Mask field is used to extract the network part of an address ~ send t0 128.1.0.9
during lookup.

If((Mask[i] & D) == Destination[i]) forward to nextHop[i]

Example from Comer book: Internetworking with TCP/IP: volume 1 [Third Edition] 18
CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth 18

Router 2
20.0.0.5
30.0.0.7
40.0.0.9

Router 1
10.0.0.8
20.0.0.3

Router 3
40.0.0.8
10.0.0.3

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth 19

Routing with partial information

e Routing with partial information

— Hosts do not need complete knowledge of all possible
destination addresses

— Host sends non-local information to (a) router

e Routers can also route with partial information

— consider a topology consisting of two completely connected
subgraphs A and B

— subgraphs A and B share a single link

— If a router in A sees an address it does not recognize, it
sends the packet to B and vice-versa

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

20

Early Internet Architecture

e Small central set of routers that kept complete
Information about all destinations

e Larger set of outlying routers with only local
Information

e Default route for outlying routers is to a central router

e Local administrators can make changes

— Local changes need to be propagated locally as well as to
the central routers

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth 21

Internet Core Router System

_— | |

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

22

Internet Core Routing System

e Core routers exchange routing information so each will
have complete information about optimal routes to all
destinations

e This did not scale:
— maintaining consistency among core routers became
Increasingly difficult
— further difficulties arise when there are several backbones
(e.g. ARPAnet and NSFnet)

— If the core architecture is partitioned so that all routers use
default routes, may induce routing loops

« if routing information is not consistent, it is possible for a
packet to be repeatedly routed in a circle until the packet
times out

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

23

Distributed Systems

e Provide:
— access to remote resources
— security
— location independence
— load balancing
e Basic Services:
— remote login (telnet and rlogin protocols)
« extends basic access provided by normal login
— file transfer (ftp, rcp)
¢ can support anonymous transfers
— Information services (http)
* two way protocols (request/response)

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

24

Distributed Systems

e A unified view of local and remote access

e Typical Services
— data migration
» provide only the data required, not the whole file
* manage multiple copies as versions of the same object
— process migration
* a process can move from one machine to another
* reasons for migration:
— load balancing
— data affinity
— hardware/software preference (better configuration)

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth 25

CMSC 412 —

Distributed OS Design Issues

Should provide same model as a central system
— easy to understand for users
Needs to be scalable
— will it work with 100, 1,000, or 10,000 nodes?
Failure Modes
— avoid a single central failure point
— can loss performance or functionality with failure

* but loss should be proportional to size of failure
Security

— should provide same guarantees on data integrity as a local
system

S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

26

Distributed file systems

e Distributed systems can share physically dispersed files
by using a distributed file system

— Transparent DFS allows user mobility by bringing a user’s
environment (home directory) to wherever she logs in

e Naming: Location transparency vs. independence

— Transparency: name does not hint on file’s physical storage
location (ex. NFS)

— Independence: name of the file does not need to change
when the file’s physical storage location changes (ex. AFS)

27
CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth 27

File Server State

e Does the fileserver maintain information between
requests?

e Stateless
— example: NFS (no open/close ops)

— each request contains a request to read/write a specific part
of a file

— requests must be idempotent
» the same request can be applied several times
— makes recovery of failed clients/servers easier
e Stateful
— example: AFS (explicit open/close ops)
— servers maintain connections for clients
— Improves performance — via caching
— required for server based cache management

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

28

NFS: Mounting a filesystem

e Mount attaches a file-system to a directory
— can be used for local or remote (NFS) file-systems

Before Mount

E filesystem
@ to mount
/

/ hollings

mount point bin

L

D> S

/@'@\

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

29

NFS

e Provides a way to mount remote file-systems
— can be done explicitly
— can be done automatically (called an automounter)
— clients are provided “file handle” by the server for future use
e Uses VFS: extended UNIX file-system
— Inodes are replaced by vnodes
* network wide unique inodes
 can refer to local or remote files

read/write/open

UNIX NFS Client NFS Server UNIX
Filesystem Filesystem

Network
CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth 30

NFS (cont.)

e Requests
— are sent via RPC to the server
— include read/write
— query: lookup directory info
* must be done one step (directory) at a time
— change meta data: file permissions, etc.
e Popular due to free implementations

e Provides no coherency

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

31

AFS

e Designed to scale to 5,000 or more workstations
e Location independent naming
— within a single cell
e volumes
— basic unit of management
— canvary in size
— can be migrated among servers
e names are mapped to “fids”
— 96 bit unique id’s for a file
— three parts: volume, vnhode, and uniqgidentifier
— location information is stored in a volume to location DB
» replicated on every server

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

AFS (cont.)

e File Access
— open: file is transferred from server to client
« very large files may only be partially transferred
— read/write: performed on the client
— close: file (if dirty) is written back to server
 can fall if the disk is full

e Consistency
— clients have callbacks
— sever informs client when another client writes data
— only applies to open operation
— only requires communication when:
 more than one client wants to write
e one client wants to write and others to read

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

33

Display and Window Management

e The screen is a resource in a workstation system
— multiple processes desire to access the device and control it
— OS needs to provide abstractions to permit the interaction
e Services
— protection
— windows
— multiplex keyboard and mouse
— configuration and placement
e [ssues

— how to get good performance and remain device
independent

— how much policy to dictate to users

CMSC 412 — S10 (lect 24) copyright 2002 —4 Jeffrey K. Hollingsworth

34

