

Project 4 Roadmap

Background

What about memory addresses?
 So far, just a contiguous space for each program
 User space
 Kernel space

Fragmentation
Virtual Memmory
Paging

 Page Directory
What would be the size of a single table Page

Directory?

x86 Paging Overview

ftp://download.intel.com/design/Pentium4/manuals/25366820.pdf

figures on pages 3-2, 3-21

ftp://download.intel.com/design/Pentium4/manuals/25366820.pdf

Mapping kernel memory (theory)

Premise: for the kernel, linear to physical mapping
is one-to-one

GeekOS has 8MB of physical memory
how many page directories will be needed ?
how many page tables will be needed ?

Kernel is mapped from 0-2GB, user from 2GB-4GB
how does the paging infrastructure look like ?

Mapping kernel memory (practice)

 Crucial ! cannot get credit for any part of the project if this
doesn’t work

 basic idea: for the kernel, linear to physical mapping is
one-to-one

 effectively
 for all linear pages: map linear pages i to physical page i)

 Start now!

Mapping kernel memory : steps

 determine the amount of physical memory (bootInfo->memSizeKB)
 allocate page directory
 write functions for allocating page directory entries/page table entries

 handy PAGE_DIRECTORY_INDEX/PAGE_TABLE_INDEX are defined for
you

 for (i=0; i< allPhysical Pages;i++) do
 register page (i.e. linear page i maps to physical page i)
 use Get_Page(addr) from mem.h to get the struct Page associated

with a physical page
 flags to (VM_WRITE | VM_READ | VM_USER) for pde_t/pte_t

 turn on paging (Enable_Paging)
 register page fault handler (Install_Interrupt_Handler)
 test here!
 works ? if yes, remove VM_USER from flags and go on

Remember: for the kernel, linear to physical mapping is one-to-one

User Memory Mapping

 uservm.c, but can copy-paste massively from
userseg.c

 Load_User_Program/Create_User_Context
 allocate page directory; save it in userContext->pageDir
 copy kernel’s page directory entries
 allocate pages for data/text; copy from image

 don’t leave space for stack
 allocate two more for stack/args
 linear memory space is identical for all processes now
 start address is 0x80000000, size is 0x80000000
 make sure you get userContext’s
memory/size/stackPointerAddr/argBlockAddr right

 Switch_To_Address_Space():switch LDT, PDBR
 Destroy_User_Context() : free all pages

Page fault handler (paging.c)
 register handler w/interrupt 14 in Init_VM()

Demand paging implementation
only a user program may fault
case 1 – “page in” request
case 2 – stack growth request

Test: use rec.c to trigger a fault (memory
pressure by stack expansion)

Demand Paging

Virtual Memory: Physical Page Allocation

 Alloc_Pageable_Page() vs
Alloc_Page()(mem.c)
 use Alloc_Page() for directories/page tables
 use Alloc_Pageable_Page() for everything else

 returned page is PAGE_PAGEABLE, hence possibly swap
out

Virtual Memory: Page Replacement

 LRU in theory:see textbook 9.4.5
 Ours - “pseudo” LRU

 add hook in Page_Fault_Handler()
 walk thru all physical pages
 if page subject to paging and accesed==1 then increment

clock, set accesed=0
(see struct Page, struct pte_t)

 HW sets the accesed to 1 automatically upon read/write in
that page; but you have to set it to 0 manually when you
update the clocks

 Find_Page_To_Page_Out finds page with lowest clock

Virtual Memory:Swapping

 Page out
 when ?
 which page ? (Find_Page_To_Page_Out, see previous slide!)
 where ? (Find_Space_On_Paging_File())
 how ? (you’ll do Write_To_Paging_File (void *paddr, ulong_t

virtual, int pageFileIndex))

 Page in
 when ?
 how ? (you’ll do Read_From_Paging_File(void *paddr, ulong_t

virtual, int pageFileIndex))

 Housekeeping
 pageTable->kernelInfo = KINFO_PAGE_ON_DISK/0
 pageTable->pageBaseAddr = <block on disk>
 disk page management – have to do it yourself

	Project 4 Roadmap
	Background
	x86 Paging Overview
	Slide 4
	Slide 5
	Mapping kernel memory (theory)
	Mapping kernel memory (practice)
	Mapping kernel memory : steps
	User Memory Mapping
	Demand Paging
	Virtual Memory: Physical Page Allocation
	Virtual Memory: Page Replacement
	Virtual Memory:Swapping

