

Project 6

 Check svn for updated files / tests
 https://svn.cs.umd.edu/repos/geekos/project0

 New pfat.c to allow cp etc.

 ACLs:

Project 6

 Aka Project #5 Part 2:
 Doubly Important to finish Project 5

 User ID
 Set Uid Bit (”sticky” bit)
 Access Control Lists

User Identifier

 Integer (well, almost)
 syscall.c:

 Sys_GetUid()
 Sys_SetUid(int uid)

 Start as root, change to any other user ID
 Not exactly linux like (where you login)
 But not so different either

Sticky bit

 SYS_SET_SET_UID
 Only user and owner can set
 Suppose a file has it set, and is writable, executable

by another user
 What is the risk?

 No need to implement a new syscal to read, but
you need to update all Stat...

Access Control Lists

 Project 5 : GOSFSfileNode
 This changes: ACLs are there:

typedef struct {
 char name[64]; /* name of file */
 int size; /* size of the file */
 unsigned int isUsed:1; /* is entry active */
 unsigned int isDirectory:1; /* is this file a directory */
 unsigned int isSetUid:1; /* set user id bit */
 int blocks[10]; /* ... */
 struct VFS_ACL_Entry acls[VFS_MAX_ACL_ENTRIES];

/* ACL entries */
} GOSFSfileNode;

●ACL system call

 Sys_SetAcl(char *name, int uid, int
permissions)

 Refers to ONE entry at a time
 Can be used to add / remove permissions
 Every {file,dir} has one and only one owner

 Set ower will change owner
 Owner can only be changed
 Use 0 to remove, (Owner stays)
 Example

VFS

 syscall.c
 Well, thats the easy part
 Sys_SetAcl(char *name, int uid, int permissions)

 Refers to ONE entry at a time
 Check

 You will have to add to VFS
 Part of the functionality is there:

 Structures (fileio.h, vfs.h)
 But will have to add code

 Check vfs.h TODO
 Add to mount point operations (why?)

fileio.h

/*
 * An entry in an Access Control List (ACL).
 * Represents a set of permissions for a particular user id.
 */
struct VFS_ACL_Entry {
 uint_t uid:28;
 uint_t permission:4;
};

/*
 * Generic structure representing the metadata for a directory entry.
 * This is filled in by the Stat() and FStat() VFS functions.
 */
struct VFS_File_Stat {
 int size;
 int isDirectory:1;
 int isSetuid:1;
 struct VFS_ACL_Entry acls[VFS_MAX_ACL_ENTRIES];
};

fileio.h (2)

 Why define O_OWNER as 1?

/*
 * File permissions.
 * These are used as flags for Open() VFS function.
 * O_READ and O_WRITE are also used in the permissions
 * field of struct VFS_ACL_Entry.
 */
#define O_CREATE 0x1 /* Create the file if it doesn't exist. */
#define O_READ 0x2 /* Open file for reading. */
#define O_WRITE 0x4 /* Open file for writing. */
/* conditional to support inclusion from user tools outside geekos */
#ifndef O_EXCL
#define O_EXCL 0x8 /* Don't create file if it already exists. */
#endif

/*
 * rest of File Permissions for the
 * field of struct VFS_ACL_Entry.
*/
#define O_OWNER 0x1 /* Is owner, there is always one and only owner */
#define O_EXECUTE 0x8 /* Can execute file */

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

